Identify which intermolecular force(s) are at work (if only one substance is listed, resume forces between two molecules of that substance): 1. NaCl in H₂O 2. H₂ 3. H₂O 4. CH₄ 5. CO₂ 6. NH₃ 7. Li⁺ in CH₃OH 8. HF Make a drawing of the above #'s: 1. 3. 5. Comparing strengths of intermolecular forces ١. For the following: A. List the IMFs in each molecule (DD, dipole-dipole; ID, ion-dipole; LD, London dispersion; HB, hydrogen-bonding) B. Indicate which molecule has stronger intermolecular forces 1. CH₃OCH₃ vs. H_2O CH_4 2. C_6H_{14} VS. 3. CH₃OH CH₃SH vs. HCI 4. HF vs.

	5.	Br ₂	VS.	ICI			
	6.	CHCl ₃		vs.	CHBr ₃		
	7.	CH ₃ CH ₂ CH ₂ C	DН	vs.	CH₃CHOHCH₃		
II.		Which are most polarizeable: O, S, Se, Te?					
III.		Put the following in order of increasing polarizeability: GeCl ₄ , CH ₄ , SiCl ₄ , SiH ₄ , GeBr ₄					
Challenge question: Do molecules with strong IMFs tend to be solids and liquids or gases? Why? Hypothesize.							
IV.		a) NO ₂ w/	NO ₂ , H ₂	O w/ H ₂		ST viscosity. / Xe, Na $^{+}$ w/ H $_{2}$ O w/ Br $_{2}$, I $_{2}$ w/ I $_{2}$, CO w/ CO	
V.		A) For each molecule pair, list the types of IMFs possible for each B) Circle the molecule that you predict will have the higher melting point C) Give a brief explanation for your choice					
1.	CH	₃CH₂CH₂OCH₂	₂CH₂CH₃		vs.	CH ₃ OCH ₃	
2.	N_2				vs.	NO_2	
3.	CH	₃CH₂CH₂CH₂C	CH₃		VS.	CH ₃ CH ₂ OH	