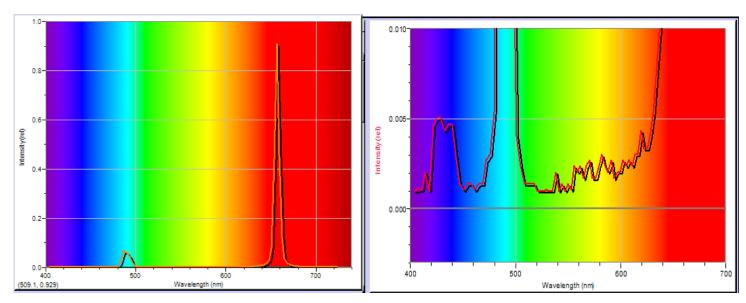

1. GRACE KIM RYDBERG CONSTANT LAB

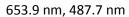
Wavelength (nm)	Wavenumber (m^-1)	Frequency (Hz)	Photon Energy (J)	n (Balmer series)	1/n^2	RH calc	% error
653.9	1.529E+06	4.588E+14	3.040E-19	3	0.11111	1.101E+07	0.372451
487.7	2.050E+06	6.151E+14	4.076E-19	4	0.06250	1.094E+07	0.312812
439.0	2.278E+06	6.834E+14	4.528E-19	5	0.04000	1.085E+07	1.11975
420.5	2.378E+06	7.134E+14	4.727E-19	6	0.02778	1.070E+07	2.447167
						1.087E+07	0.876819

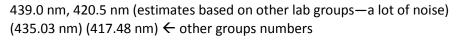
2. AVERAGE OF DATA CALCULATION: The average value for the Rydberg constant from the data is 1.087 x 10⁷ m²kg/s (0.88% error).

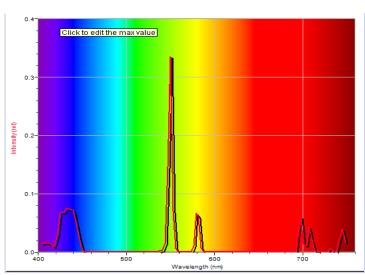
3. SLOPE/ GRAPHICAL DETERMINATION: The negative of the slope is the 1.000 x 10⁷ m²kg/s (8.84% error).

4. The % error is given in parenthesis after the value for #2 and #2.

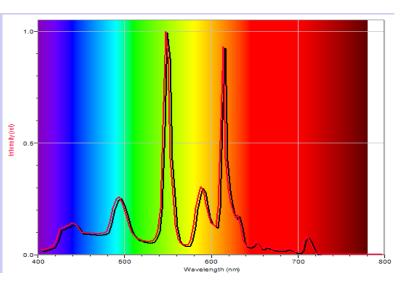

5. Since the error for the slope from the graph is so high, I used the average from my data.


 $1/\lambda = 1.087 \times 10^7 (1/(2^2) - 1/(7^2)) = 2295918.367 \text{ m}^{-1}$, so $\lambda = 400.6 \text{ nm}$.


There was a lot of noise in our spectrum (see below) and the calculated wavelength is on the edge of the detection range, so I do not think the fifth Balmer line appears in the graph.


Hydrogen-alpha

Hydrogen-lower intensity



Fluorescent light

Mercury calibration

549.6nm, 579.1 nm