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Black Holes are hard to understand!

» Massive — strong gravity

» Black hole evaporation — quantum mechanical
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Quantum Gravity
»Quantum Field Theory

o Quantizes a point particle — the study of their worldline

o UV divergence

» String theory

> A 10d theory that is constructed via quantization of strings (1d object) — the dynamics is
captured by the 2d world sheet traced out by the string moving through spacetime

o UV-complete without spacetime divergence
> The particles that we observe = the Fourier modes of string quanta at a large distance.
> Looks like a point particle (Cannot resolve the extent of the string at such a low scale.)

> Folklore theorem of quantum gravity: the spectrum is comprised of massless states and
their towers of excitations thereby giving a complete set of the spectrum of particles




Gravity and gauge theory in Strings?
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F-t

neory

> F-t

neory: a mathematical toolbox to study string theory (type |IB)

» Fundamental tools to describe the basic interactions in physics
° Gauge theory

o Representation theory

» F-theory enables to have geometric perspective for analyzing
gauge theory and representation theory of its low energy EFT.

» Elliptic Fibrations are used for geometric engineering of physical
theories.



F-theory Construction
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» Strings compactifications:

F-theory — 6d EFT F-theory — 4d EFT NG
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Gauge theories via elliptic fibration
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5d/6d Supergravity

» Elliptic Fibrations

o Geometrically engineered gauge theories
o Captures global aspect of the gauge theory

/ F—Theory

M-Theory cy
3

CY3
6d ./ = (1,0) Theory

5d A4 =1 Theory

F-theory on Y M-theory on Y | F-theory on Y x S!
l | l
6d N = (1,0) sugra 5d N =1 sugra 5d N =1 sugra
) = hM(Y) =B -1 | ) =nl 4 np+1=RbY(Y) -1
ng =h*H(Y)+1 nf =h*H(Y)+1

» 5d/6d Field Contents

5d ./ =1 Theory

6d ./ = (1,0) Theory

Gravity multiplets
(g,uw ¢uI7 Au)

Vector multiplets
(A, A7 97)

Hypermultiplets
(¢ A7)

Gravity multiplets
(guw B;Lm ;)
Tensor multiplets
(Bo,. ¢, x™")
Vector multiplets
(A A7)

Hypermultiplets
(¢,;n™)

Vector multiplets — Weyl Chamber
Massless hypermultiplets at the singularities — subchamber structures

nr = hl'l(B) -1

ng =nYy +n%  (n% : neutral hypermultiplet, n$": charged hypermultiplet)




Necessary geometric data

> Required data to determine the spectra:
o Euler characteristic X and Hodge numbers h'!, h?!
> Triple intersection polynomial

» How do we compute these?
o Compute in the resolved space and then pushforward to the base.



Pushforward formula-1

» The following theorem gives the total Chern class after a blowup
along a local complete intersection.

Theorem (Aluffi). Let Z ¢ X be the complele intersection of d nonsingular
hypersurfaces Z1, ..., Zq meeting transversally in X. Let f: X — X be the

blowup of X centered at Z. We denote the exceptional divisor of f by E. The
total Chern class of X 1s then:

1

c(TX):(1+E)(d L+/Zi- b
=1

1z )f*c(TX).



Pushforward formula-2

» The following theorem provides a user-friendly method to compute
invariants of the blown-up space in terms of the original space.

Theorem (Esole—Jefferson-Kang). Let the nonsingular variety Z c X be a com-
plete intersection of d nonsingular hypersurfaces Z1, ..., Zq meeting transver-
sally in X. Let E be the class of the exceptional divisor of the blowup f: X — X
centered at Z. Let Q(t) =Y, f*Qqt® be a formal power series with Q, € A«(X).
We define the associated formal power series Q(t) = >, Qat®, whose coefficients
pullback to the coefficients of Q(t). Then the pushforward f+Q(FE) is

d d
f,,@v(E) = ZQ(Zg)Mg, where M, = H - ZmZ :
/=1 m — 4

m=1
m+¥4




Pushforward formula-3

» This theorem gives a simple method to pushforward analytic expressions
in the Chow ring of the projective bundle X, to the Chow ring of its base.

» It is a direct consequence of functorial properties of the Segre class.

Theorem (Esole—Jefferson—-Kang). Let £ be a line bundle over a variety B
and 7™ : Xg = P[0 ® £%®* & ¥®3] — B a projective bundle over B. Let
Q(t) = ¥, T Qqt* be a formal power series in t such that Qq € A.(B). Define
the auxiliary power series Q(t) =Y., Qqt*. Then

Q(H) Q(H)
H? H?

Q(0)

LQ(H) = -2 ,

+3
H=—2IL

+
H=-3L

where L =c1(Z) and H = c1(0x,(1)) is the first Chern class of the dual of the
tautological line bundle of m: Xog =P(Op & %% & £%®°) - B.



How C3

n this be used:

?

» Topologica

invariants for threefo

ds 1703.00905 (Esole, Jefferson, MJK)

» Various characteristic numbers for fourfolds 1807.08755, 1808.07054 (Esole, MIK)

» 5d/6d spectra and the geometry of Coulomb branch
o Simple models: G, 1805.03214 (Esole, Jagadeesan, MIK), F, 1704.08251 (Esole, Jefferson, MIK)
> Semi-simple models: SO(4) and Spin(4) 1802.04802 (Esole, MIK),
SU(2)xG, 1805.03214 (Esole, MJK), SU(2)xSU(3) 1905.05174 (Esole, Jagadeesan, MJK)
SU(2)xSp(4), (SU(2)xSp(4))/Z, , SU(2)xSU(4), (SU(2)xSU(4))/Z, 1712.02337 (Esole, MIK, Yau)

» Non-trivial Mordell-Weil group: U(1) 1410.0003 (Esole, MK, Yau),

Torsions (Z,, Z3) 1802.04802, 1808.07054 (Esole, MJK), 1712.02337 (Esole, MIK, Yau),



Simple Groups

» Euler characteristics and Hodge
numbers of Calabi-Yau threefolds
are computed for various simple
groups. [Esole, Jefferson, MJK]

Algebra | Group Kodaira Fiber | 2%1(Y3) h%1(Ys) x(Y3)
- {e} L 11-K? 11 +20K? —60K2
Ay SU(2) |G, IF, I, Iv™ | 12 - K? | 12+ 20K2+ 15K S +35% | —-60K2-30K S5 -652
Ay SU(3) g, Ive
13- K% | 13+20K?+24K S +65% | —60K?2- 48K 5 - 1252
G, G, Jac=
Ay SU(4) 5
14 - K? | 14+ 20K 2% + 32K 5 + 1052 | 60K 2 - 64K 5 - 2052
Bs Spin(7) s
Dy Spin(8) I
15— K% | 15+ 20K 2 + 36K S + 1252 | —60K 2 - 72K 5 - 2452
Fy Fy [vens
Ay Su(s) E 15— K2 | 15+ 20K 2 + 40K S + 1552 | 60K 2 - 80K 5 - 3052
Ds | Spin(10) I 16 - K2 | 16+ 20K 2 + 42K 5 + 1652 | —60K 2 - 84K 5 - 3252
Ee Ee v+ 17 - K2 | 17+ 20K 2 + 45K S + 1852 | —60K2-00K 5 - 3652
Ey Ey II1* 18 - K? [ 18+ 20K2 + 40K S + 215% | —60K? - 08K 5 - 4252
Es Es II* 10— K2 | 19+ 20K 2 + 60K S + 3052 | —60K? — 120K 5 — 6052
Ay S0(3) P 12 - K*? 12+17K? -36K?
B. SO(5) b 14 - K* 14+ 0K? -20K2
Ay S0(8) g 14 - K*? 14+ 5K? -12K*2




Semi-simple Groups

o> The discriminant of the fibration contains at least
two irreducible components A; A,.

o “Collisions of singularities”

a G =SU(2)xSU(4) N\

w2

G =SU(2)xSp(4) G =(SU(2)xSp(4))/ Z
O———O——0O

(- +] [+, +] [+.-]

| Models I Algebraic data | # Flops |
F =92 - (2 + apx’z + st’x2?)
54T | A =s%tY(a3 - 4st?) 3
MW =Zy | G=(SU(2)xSp(4))/Z2
R=(3,1)®(1,10)®(2,4)® (1,5)
X =-4(9K? + 8K - T + 3T?)
F =192 — (2% + apa®z + Qyst’x2® + Ts°t12%)
54T | A = s?tY(dadts — adas - 18astqtsst? + dajst? + 2Tazs*th) 3
MW = {1} | G =SU(2) x Sp(4)
R=(3,1)e(1,10)®(2,4)e(1,5)®(2,1)® (1,4)
X =-2(30K%+ 15K - S+ 30K - T + 35 + 85 - T + 10T?)
F =9’z + aywvyz — (2° + Gota®z + st’z2”)
1415 | A=s%t(af +8afdt + 16a5t> - 64st?) 12
MW =7Z, | G=(SU(2) xSU(4))/Z,
R=(3,1)e(1,15)®(2,4)® (2,4) & (1,6)
x=-12(3K*+3K -T +T?)
F =9’z +aywyz - (2% + Gota®z + Ayst?x2? + dest12%)
541 | A= s’ (af +8aldot + 16a5t - 64st?) 20
MW = {1} | G=SU(2) xSU(4)
R=(3,1)e(1,15)e(2,4)®(2,4)e(1,6)®(2,1)®(1,4) ®(1,4)
X =-2(30K?+15K - S + 32K - T + 35 +8S - T + 10T?)

G =(SU(2)xSU(4))/ Zs




6d Anomaly Cancellation via Green-Schwarz

» Number of multiplets are given by: ny =9 - K?, ny =dimG, »n% =hr>'(Y)+1.

> Gravitational Anomalies are canceled when nu —ni> + 297 — 273 = 0.

» For a semi-simple group with two simple components, G = G; + G», the remainder
of the anomaly polynomial is given by

K? 1 2
Is = — (R + 2 (X1 + X R? — (X7 + X57) + 4y
r D
< X(:(L4) — (Ba,adj — ZnRi,aBRi,a> tI'FaF;L1 + (Ca,adj — ZnRi,aCRi,a> (trFaF3)2, >
Yab = Z nRi,a,Rj,bARi,aARj,btrFatherFg'

. i S
» If the Ig factors, then the anomalies are all canceled by Green-Schwarz mechanism.

» We check that all the anomalies are canceled!




Gravity without Supersymmetry

» Want to understand lower-dimensional gravitational theories
without supersymmetry.
> Hard to do with top-down approach

> Holography (AdS/CFT) and Quantum Error Correction

» Want theories compatible with Reeh-Schlieder theorem.
° Then this leads to infinite-dimensional Hilbert spaces!

» Reeh-Schlieder theorem:

For any region A, by acting on the vacuum |€2) with operators located in that

region we can produce a set of states which is dense in the full Hilbert space of
the QFT.



Infinite-dimensional von Neumann Algebra

» Infinite-dimensional Hilbert space
> Now we consider infinite-dimensional von Neumann algebra

» infinite-dimensional von Neumann algebra:

An algebra of bounded operators that contains the identity operator, is
closed under Hermitian conjugation, and is equal to its double commutant.

» VVon Neumann algebra is naturally associated with causally
complete spacetime regions.

open region U 5 A(’U,) an associated
of spacetime local operator algebra



Relative Entropy

» Infinite-dimensional Hilbert space: S(p,0) =Tr (plogp—plogo)

» S(p,0) does not increase upon performing a partial trace on p and o.

> The relative entropy may be intuitively thought of as a measure of distinguishability
between two states.

» Infinite-dimensional case needs Tomita-Takesaki theory.




Relative Entropy and Tomita-Takesaki Theory

Let [U),|®) e H and M be a von Neumann algebra.
» The relative Tomita operator is the operator Syjp that acts as

Seje [7) = |y)

for any sequence {O,} € M such that the limits |z) = lim, . O, |¥) and

» The relative modular operator is
_ Qf
» The relative entropy with respect to M of |¥) is

Syje(M) = - (V[log Ay je|V).



How do we utilize this?

» We showed that for infinite-dimensional Hilbert spaces
Entanglement Wedge Reconstruction 1811.05482 (MK, Kolchmeyer)
< Equivalence of relative entropies between the boundary and the bulk

» Also, we have built an explicit quantum error correcting code that

is of infinite-dimensional von Neumann algebra of type Il,.

~ ~ ~ ~ ' ~

~
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_— 3 i Appearing on arXiv today!
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Conclusion

» We have extended understanding gravitational theories using two
different views:
° A top-down approach with F-theory and geometry of elliptic fibrations

> An holographic understanding using infinite-dimensional von Neumann algebra

» Many more exciting further works to come!




Thank you for listening! ©




