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Motivation
➢ Elliptic Fibrations

◦ Geometrically engineered gauge theories

◦ Captures global aspect of the gauge theory

Gravity multiplets Gravity multiplets

Tensor multiplets

Vector multiplets Vector multiplets

Hypermultiplets Hypermultiplets

➢ 5d/6d Field Contents



Elliptic Fibrations and Gauge Theories

Elliptic Fibration Gauge Theory

Codimension 1 singularities Gauge algebra (   )

Codimension 2 singularities Representation (   )

Crepant resolutions Coulomb phases

Flops Phase transitions

Triple intersection polynomial 5d prepotential

Mordell-Weil group The fundamental group of the gauge group (           )

➢ (Semi-simple) Lie group      , Lie algebra     , Representation

➢ Dictionary between the elliptic fibration and the gauge theory



Elliptic Fibration
➢Weierstrass model:

◦ Projective Bundle:

An elliptic fibration                    cut out by the zero locus of a section of the line 

bundle  where is a line bundle over a quasi-projective variety B.

◦ Section:

◦ Projective coordinates:                 of a 

◦ Discriminant:

◦ j-invariant:



Kodaira Classification and Tate’s Algorithm



Algorithm To Get Geometric Data
Determine  a singular Weierstrass model with Kodaira fibers associated to the desired Lie group    .

Determine a crepant resolution of the singular Weierstrass model.

Compute the pushforward formulas to push the total Chern class of  the resolved elliptic fibration 
to its base. Then, the generating function of Euler characteristics is computed.
➢ For a d-dimensional base, the Euler characteristic is given by the coefficient of td in a power series expansion.

➢ Compute the Euler characteristics for Calabi-Yau threefolds.

Compute the Hodge numbers using the fact that the base is a rational surface and Shioda-Tate-
Wazir theorem. 

Determine the fiber structure of the resolved Weierstrass Model.

Determine the representations by computing the geometric weights of the irreducible components 
of the singular fibers over codimension-two points.

Compute the triple intersection polynomial.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.



Simple Groups

➢ Euler characteristics and Hodge 
numbers of Calabi-Yau threefolds
are computed for various simple 
groups. [Esole, Jefferson, MJK]



Simple Groups
➢ Euler characteristics and Hodge numbers are computed for various simple 
groups [Esole, Jefferson, MJK].

➢ Step 1-5 are studied for SU(n) for n≤5 [Esole, Yau] [Grimm, Hayashi] [Esole, 
Shao, Yau] [Esole, Shao].

➢ All Step1-7 are studied for G2, Spin(7), Spin(8) [Esole, Jagadeesan, MJK] and 
F4 [Esole, Jefferson, MJK].



Semi-simple Groups
➢ Semi-simple Lie algebras

◦ The discriminant of the fibration contains at least two irreducible components ∆1 and 
∆2 (for which the dual graph of the singular fiber over the generic point is reducible).

◦ “Collisions of singularities”

➢ Studied for various models
◦ SO(4) and Spin(4) [Esole, MJK]

◦ SU(2)×G2 [Esole, MJK]

◦ SU(2)×SU(4), (SU(2)×SU(4))/Z2, SU(2)×Sp(4), (SU(2)×Sp(4))/Z2, [Esole, MJK, Yau]

◦ SU(2)×SU(3) [To appear; Esole, Jagadeesan, MJK]

➢ Organize the collisions of singularities by the rank of the associated Lie algebra



The simplest: D2 = A1+A1
➢ Collisions of two singular fibers with dual graphs Ã1.

➢ Two possible gauge groups:
◦ Spin(4) = SU(2)×SU(2) Trivial Mordell-Weil

◦ SO(4) = (SU(2)×SU(2))/Z2 Mordell-Weil group Z2
[Esole, MJK]



Next simplest:
➢ Next simplest: SU(2)×G with G a simple Lie group of rank 2

➢ Three possible gauge groups:
◦ SU(2)×SU(3) :    Non-abelian sector of the standard model.

◦ SU(2)×Sp(4)       QCD-like theories obtained by replacing SU(3) by

◦ SU(2)×G2 another simple and simply-connected group of rank 2.

SU(2)×Sp(4)
[Esole, MJK, Yau]



SU(2)×G2 is an important model
➢M/F-theory: Naturally appears in the study of non-Higgsable clusters.

◦ Over non-compact bases, collisions of singularities are used to classify 6d N=(1,0) 
Superconformal field theories using elliptic fibrations.

◦ Ex: Such a non-Higgsable model is produced when the discriminant locus containing 
two rational curves with self-intersection -3 and -2 intersecting transversally or these 
rational curves which form a chain of curves intersecting transversally at a point with 
self intersections (-3,-2,-2).

◦ The non-Higgsable cluster (-2,-3) is an important example of an SU(2)×G2-model.

➢ Birational Geometry: Naturally appears as a key model due to the simplicity 
of its fiber structure.



Step1 of the algorithm 
Determine  a singular Weierstrass model with Kodaira fibers associated to the desired Lie group    .Step 1.

➢ Five possibilities: . 

➢ Non-Higgsable model studied in the literature: .

➢Weierstrass equation: .

➢ Discriminant locus: .



➢ There are four total independent crepant resolutions for SU(2)×G2-model.

Determine a crepant resolution of the singular Weierstrass model.Step 2.

Step2 of the algorithm 



➢ Three blowup maps to get a crepant resolution:

➢ Using pushforward theorems:

➢ Now for the Calabi-Yau threefolds: 
◦ Calabi-Yau condition: 

◦ Expand: 

◦ Euler characteristic of CY3:

Compute the pushforward formulas to push the total Chern class of  the resolved elliptic fibration 
to its base. Then we get the generating function of the Euler characteristics and total Chern classes.

Step 3.

Step3 of the algorithm 



➢ Since B is a rational surface, 

➢ Shioda-Tate-Wazir theorem:

◦

◦ is the number of geometrically irreducible fibral divisors not touching the zero section.

➢ Hodge numbers for SU(2), G2, and SU(2)×G2-model

Compute the Hodge numbers using the fact that the base is a rational surface and Shioda-Tate-Wazir theorem. Step 4.

Step4 of the algorithm 

Algebra Group Kodaira Fiber



➢ Example: Resolution I

➢ Codim-two, over both divisors S and T:
◦ Fiber of type III* (dual graph      with contracted nodes)

➢ Codim-three, over both divisors S and T:
◦ Fiber of type IV* (dual graph      with contracted nodes)

Determine the fiber structure of the resolved 
Weierstrass Model.

Step 5.

Step5 of the algorithm 



➢ Computed weights and representations of the curves composing the fiber.

➢ All four crepant resolutions yield the same representation:

◦ Each fundamentals are over a divisor S or T.
◦ Bifundamentals are over both divisors S and T.
◦ Adjoints as expected.

➢ The fundamental Weyl chamber is the half cone defined by
the positivity of the linear form by the simple roots:

➢ Three hyperplanes intersecting the interior of the fundamental Weyl chamber:

◦

Determine the representations by computing the geometric weights of the irreducible 
components of the singular fibers over codimension-two points.

Step 6.

Step6 of the algorithm-1 



➢ The 4 chambers identified:

➢ The flopping curves between the resolutions are 
also identified:

Compute the geometric weights of the irreducible components of the singular fibers over 
codimension-two points.

Step 6.

Step6 of the algorithm-2 



➢ Triple intersection polynomial (for Chamber I):

➢ The triple intersection numbers of the fibral divisors are the coefficients that are 
pushforwarded to the base B using the pushforward theorems.

Compute the triple intersection polynomial.Step 7.

Step7 of the algorithm 



5d Prepotential
➢ In the Coulomb phase of a 5d N=1 supergravity theory

◦ The scalar fields of the vector multiplets are restricted to the Cartan sub-algebra of the Lie 
group. (The Lie group is broken to U(1)r with r=rank(G).)

◦ The charge of an hypermultiplet is simply given by a weight of the representation R.

➢ 5d prepotential [Intrilligator, Morrison, Seiberg]:
◦ The quantum contribution to the prepotential of a 5d gauge theory with the matter fields in 

the representations Ri of the gauge group.

◦

➢ For SU(2)×G2-model (Chamber 1):



Triple Intersection Polynomial = Prepotetial
➢ Recall the dictionary:                        .

➢

➢

➢ Then we get the following linear relations of the number of charged hypers:

➢ Note: not all number of hypermultiplets are fixed!



6d Anomaly Cancellation via Green-Schwartz
➢ Number of multiplets are given by:

➢ Gravitational Anomalies are canceled when 

➢ For a semi-simple group with two simple components,                         , the remainder of the 

anomaly polynomial is given by

where

➢ If the I8 factors, then the anomalies are all canceled by Green-Schwartz mechanism.

➢We check that all the anomalies are canceled once all the number of hypermultiplets in each 
representation are identified.



Anomaly Cancellation Condition of the 
SU(2)×G2-model 
➢ For SU(2)×G2-model,

while fixing the number of number of charged hypermultiplets to be

➢ This is the unique choice of an anomaly-free theory of a 6d uplift.



➢ The anomaly-free theory carries .

➢ Recall the discriminant of the SU(2)×G2-model:                                      .
◦ The hypermultiplet transforming in (2,1) is localized at the non-transverse intersection of 

the divisors     and                                  .
◦ Then: Does not match.

➢ Look more closely at the curves:
◦ The two curves of the fiber III has a projective line and a conic 

◦ The discriminant of this conic w.r.t. a projective coordinate [y:s:x] is

◦ Then: Does not match.

➢ Also account for half-hypers in (2,7) affecting the determinant. So this gives a 
contribution of .
◦ Then: Match!

Numerical Oddities of 



Thank you for listening! ☺


