Workshop on Qubits and Spacetime

Institute of Advanced Studies
December 3-4th, 2019

Entanglement Wedge Reconstruction in Infinite-dimensional Hilbert Spaces

MONICA JINWOO KANG
CALIFORNIA INSTITUTE OF TECHNOLOGY

arXiv: 1811.05482, 1910.06328 (MJK, Kolchmeyer), To appear (MJK, Tang), To appear(MJK, Gesteau)

Three ingredients

Holography

Local bulk operators

Boundary operators

 smeared over the entire spatial slice or a compact spatial subregion

Von Neumann algebra

Local operator algebra
 $=$ Von Neumann algebra

Local operator algebra $=\mathrm{vN}$ algebra

> QFTs with (infinite-dimensional) Hilbert space
> Local operator algebras
$=$ (infinite-dimensional) von Neumann algebra $M \subset B(\mathscr{H})$
the set of bounded operators in \mathscr{H}
$>$ Commutant: $\quad M^{\prime}=\left\{\mathscr{O} \in B(\mathscr{H}) \mid \mathscr{O} \mathscr{P}=\mathscr{P} \mathscr{O}^{\forall \mathscr{P} \in M\}}\right.$
$>$ Von Neumann algebra:
an algebra of bounded operators that

1) contains the identity,
2) closed under Hermitian conjugation, 3) $M=M^{\prime \prime}$ (*-algebra)

Quantum Error Correction

Local bulk operators

Code Subspace of the physical Hilbert space of the CFT

Finite-dimensional Hilbert space:

Relative Entropy Equivalence Between the bulk and the boundary

Finite-dimensional Hilbert space

Using Code subspace:

Reeh-Schlieder theorem

$>$ Want theories compatible with Reeh-Schlieder theorem.

- Then this leads to infinite-dimensional Hilbert spaces!
$>$ Reeh-Schlieder theorem:
For any region A, by acting on the vacuum $|\Omega\rangle$ with operators located in that region we can produce a set of states which is dense in the full Hilbert space of the QFT.
> Start with a cyclic and separating state, by acting with a suitable local operator
\Rightarrow Obtain a dense subset of the Hilbert space \mathscr{H}

Cyclic and Separating state

$>$ Define a map $e_{\Psi}: M \longrightarrow \mathscr{H}$ where $\mathcal{O} \mapsto \mathcal{O} \mid \Psi>$
$>\mid \Psi>$ is cyclic with respect to a von Neumann algebra M
$\Longleftrightarrow \mathscr{H}$ is the closure of the image of e_{Ψ}
$>|\Psi\rangle$ is separating with respect to a von Neumann algebra M $\Longleftrightarrow \operatorname{ker} e_{\Psi}=0$ (injection)
> If the physical content of the Reeh-Schlieder theorem is relevant for the bulk, the bulk reconstruction needs to be understood in infinite-dimensional Hilbert spaces.

Von Neumann algebra in QFT

$>$ Assume there is a unique ground state $\mid \Omega>\in \mathscr{H}$
$>$ The closure of the set of states obtained by acting on $\mid \Omega>$ (with sums of products of smeared operator)

Define

The vacuum superselection sector \mathscr{H}_{0}
$>$ Each superselection sector of the theory is invariant subspace of the algebra of local operators

Von Neumann algebra in QFT

Open region of
spacetime $\boldsymbol{U} \xrightarrow{\text { Define }} \boldsymbol{A}(\boldsymbol{U}) \quad \begin{aligned} & \text { An associated } \\ & \text { local operator algebra }\end{aligned}$

Von Neumann algebra in QFT

Unbounded!

Open region of
spacetime $\quad \boldsymbol{U} \xrightarrow{\text { Define }} \boldsymbol{A}(\boldsymbol{U}) \quad \begin{aligned} & \text { An associated } \\ & \text { local operator algebra }\end{aligned}$

Von Neumann algebra in QFT

Open region of

spacetime $\quad \boldsymbol{U} \xrightarrow{\text { Define }} \boldsymbol{A}(\boldsymbol{U})$| An associated |
| :---: |
| local operator algebra |

Von Neumann algebra in QFT

Von Neumann algebra in QFT

Von Neumann algebra $\quad M(u) \subset B(\mathscr{H})$

Von Neumann algebra in QFT

Von Neumann algebra $M(u) \subset B(\mathscr{H})$ is generated by

Partial isometries
associated with the operators in $M(u)$

Von Neumann algebra in QFT

Unbounded!

Open region of spacetime

Polar decomposition

A partial isometry

Canonically associated with a set of projections
(Spectral theorem)

Von Neumann algebra $M(u) \subset B(\mathscr{H})$ is generated by

Partial isometries

associated with the operators in $M(u)$

A set of all projections
\Rightarrow Denote subregions in the bulk \& the boundary

Von Neumann algebra and AdS/CFT

Boundary

Semi-classical
Bulk
$>$ Bulk theory may be effectively described by a QFT on a global AdS background
> Use von Neumann algebras to describe operators associated with covariantly defined subregions in the bulk

Von Neumann algebra and AdS/CFT

Boundary
$>$ Bulk theory may be effectively described by a QFT on a global AdS background
> Use von Neumann algebras to describe operators associated with
covariantly defined subregions in the bulk
i.e. Entanglement wedge of a boundary subregion

Von Neumann algebra and AdS/CFT

Boundary

$>$ Bulk theory may be effectively described by a QFT on a global AdS background
$>$ Use von Neumann algebras to describe operators associated with
covariantly defined subregions in the bulk
i.e. Entanglement wedge of a boundary subregion

Causally complete!

Von Neumann algebra and AdS/CFT

Boundary
$>$ Bulk theory may be effectively described by a QFT on a global AdS background
$>$ Use von Neumann algebras to describe operators associated with
covariantly defined subregions in the bulk
i.e. Entanglement wedge of a boundary subregion

Causally complete! Naturally have an associated von Neumann algebra

Recall:

Finite-dimensional Hilbert space

Infinite

-dimensional Hilbert space

Infinite

-dimensional Hilbert space

Infinite

-dimensional Hilbert space

Infinite

e-dimensional Hilbert space

Relative Entropy

$>$ In finite-dimensional Hilbert spaces: $S(\rho, \sigma)=\operatorname{Tr}(\rho \log \rho-\rho \log \sigma)$
$>$ The relative entropy $S(\rho, \sigma)$ does not increase upon performing a partial trace on ρ and σ.

- The relative entropy may be intuitively thought of as a measure of distinguishability between two states.
$>$ Infinite-dimensional case needs Tomita-Takesaki theory using von Neumann algebra.

Relative Entropy using von Neumann algebra

$>|\Psi>,|\Phi>\in \mathscr{H},| \Psi>$ is cyclic and separating.
$>$ Relative modular operator $\Delta_{\Psi \mid \Phi}:=\mathcal{S}_{\Psi \mid \Phi}^{\dagger} \mathcal{S}_{\Psi \mid \Phi}$
where $\mathcal{S}_{\Psi \mid \Phi}$ is a relative Tomita operator that acts as $\mathcal{S}_{\Psi \mid \Phi}|x>:=| y>\forall\left\{\mathcal{O}_{n}\right\} \in M$ such that the limits $\left|x>=\lim _{n \rightarrow \infty} \mathcal{O}_{n}\right| \Psi>$ and $\left|y>=\lim _{n \rightarrow \infty} \mathscr{O}_{n}^{\dagger}\right| \Phi>$ exist.
$>$ Relative entropy with respect to M of $\mid \Psi>$

$$
S_{\Psi \mid \Phi}(M)=-<\Psi\left|\log \Delta_{\Psi \mid \Phi}\right| \Psi>
$$

The equivalence theorem

>For (infinite-dimensional) Hilbert spaces:

```
Entanglement Wedge
    Reconstruction
```


Relative Entropy Equivalence
Between the bulk and the boundary
$>$ Ingredients of the theorem:

- An isometry $u: \mathscr{H}_{\text {code }} \rightarrow \mathscr{H}_{\text {phys }}$
- Von Neumann algebras on $\mathscr{H}_{\text {code }}$ and $\mathscr{H}_{\text {phys }}: M_{\text {code }}, M_{\text {code }}^{\prime}, M_{\text {phys }}, M_{p h y s}^{\prime}$

$>$ Assumption required:

- If $\mid \Psi>\in \mathscr{H}_{\text {code }}$ is cyclic and separating with respect to $M_{\text {code }}$, then $u \mid \Psi>$ is cyclic and separating with respect to $M_{\text {phys }}$.

The equivalence theorem

Entanglement Wedge
Reconstruction

$$
\forall \mathcal{O} \in M_{\text {code }} \forall \mathcal{O}^{\prime} \in M_{\text {code }}^{\prime}, \quad \exists \tilde{\mathcal{O}} \in M_{\text {phys }} \exists \tilde{\mathcal{O}}^{\prime} \in M_{\text {phys }}^{\prime} \quad \text { such that }
$$

$$
\forall \left\lvert\, \Theta>\in \mathscr{H}_{\text {code }} \quad \begin{cases}u \mathcal{O}|\Theta>=\tilde{O} u| \Theta>, & u \mathcal{O}^{\prime}\left|\Theta>=\tilde{\mathcal{O}}^{\prime} u\right| \Theta> \\ u \widetilde{O}^{\dagger}\left|\Theta>=\tilde{O}^{\dagger} u\right| \Theta>, & u \mathcal{O}^{\prime \dagger}\left|\Theta>=\tilde{O}^{\prime \dagger} u\right| \Theta>\end{cases}\right.
$$

Relative Entropy Equivalence Between the bulk and the boundary
$\forall|\Psi>,| \Phi>\in \mathscr{H}_{\text {code }}$ with $\mid \Psi>$ cyclic and separating w.r.t. $M_{\text {code }}$ $S_{\Psi \mid \Phi}\left(M_{c o d e}\right)=S_{u \Psi \mid u \Phi}\left(M_{p h y s}\right)$, and $S_{\Psi \mid \Phi}\left(M_{c o d e}^{\prime}\right)=S_{u \Psi \mid u \Phi}\left(M_{p h y s}^{\prime}\right)$

A toy model: tensor network

$>$ Goal: build an explicit quantum error correcting code that is of infinite-dimensional von Neumann algebra of type II ${ }_{1}$.
$>$ Want a uniform tensor network - consider qutrits!
$>$ Finite-dimensional collection:

A finite-dimensional tensor network

$>$ Three-qutrit code

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\lvert\, 0>\rightarrow \frac{1}{\sqrt{3}}(|\tilde{0} \tilde{0} \tilde{0}>+|\tilde{1} \tilde{1} \tilde{1}>+| \tilde{2} \tilde{2} \tilde{2}>),\right. \\
\left|1>\rightarrow \frac{1}{\sqrt{3}}(|0 \tilde{1} \tilde{1}\rangle+|\tilde{1} \tilde{2} \tilde{0}>+| \tilde{2} \tilde{0} \tilde{1}>),\right. \\
\left\lvert\, 2>\rightarrow \frac{1}{\sqrt{3}}(|0 \tilde{2} \tilde{1}>+|\tilde{1} \tilde{0} \tilde{2}>+| \tilde{2} \tilde{1} \tilde{0}>) .\right.
\end{array}\right. \\
& \Rightarrow\left|i>\longrightarrow \sum_{\tilde{a}, \vec{b}, \tilde{c}} T_{i \tilde{a} \tilde{\tilde{c}}}\right| \tilde{a} \tilde{b} \tilde{c}>,
\end{aligned}
$$

~ denotes qutrits in the physical Hilbert space
$>$ The isometry
$>$ Three-qutrit code $\tilde{b} \bigcirc i$

$$
\begin{cases}\left\lvert\, 0>\longrightarrow \frac{1}{\sqrt{3}}(|\tilde{0} \tilde{0} \tilde{0}>+|\tilde{1} \tilde{1} \tilde{1}>+| \tilde{2} \tilde{2} \tilde{2}>),\right. & >\text { Unitaries acting on a two-qutrit state } \\ \left\lvert\, 1>\longrightarrow \frac{1}{\sqrt{3}}(|\tilde{0} \tilde{1} \tilde{2}>+|\tilde{2} \tilde{2} \tilde{0}>+| \tilde{2} \tilde{0} \tilde{1}>),\right. & U|00>=|00>U| 11>=|20>U| 22>=| 10> \\ \left\lvert\, 2>\longrightarrow \frac{1}{\sqrt{3}}(|\tilde{0} \tilde{2} \tilde{1}>+|\tilde{1} \tilde{0} \tilde{2}>+| \tilde{2} \tilde{1} \tilde{0}>) .\right. & U|01>=|11>U| 12>=|01>U| 20>=| 21> \\ U|02>=|22>U| 10>=|12>U| 21>=| 02>\end{cases}
$$

\geqslant The reference state

$$
\left\lvert\, \lambda>:=\frac{1}{\sqrt{3}}[|00>+|11>+| 22>]\right.
$$

$>$ The isometry

$\Rightarrow\left|i>\longrightarrow \sum_{\tilde{a}, \vec{b}, \tilde{c}} T_{i \tilde{a} \tilde{\tilde{c}}}\right| \tilde{a} \tilde{b} \tilde{c}>$,

$$
\left|p>_{i}\right| q>_{j} \longrightarrow \sum_{\tilde{x} \tilde{y}, \tilde{y}, \tilde{c}, \tilde{w}} \sqrt{3} T_{p \tilde{x} \tilde{x} \tilde{c}} T_{q \tilde{z} \tilde{w} \tilde{c}}\left|\tilde{x}>_{\tilde{a}}\right| \tilde{y}>_{\tilde{b}}\left|\tilde{z}>_{\tilde{d}}\right| \tilde{w}>_{\tilde{e}}
$$

$>\mid \psi>_{i j}$ a vector in the Hilbert space of the black qutrits i, j
$>\mid \tilde{\psi}>_{\tilde{a} \tilde{b} \tilde{d} \tilde{e}}$ its image under the isometry
$>U_{\tilde{a} \tilde{b}}$ and $U_{\tilde{d} \tilde{e}}$ the unitary operator acting on qutrits \tilde{a}, \tilde{b} and \tilde{d}, \tilde{e} $>$ Then: $U_{\tilde{a} \tilde{b}}^{\dagger} U_{\tilde{d} \tilde{e}}^{\dagger}\left|\tilde{\psi}>_{\tilde{a} \tilde{b} \tilde{d} \tilde{e}}=\left|\psi>_{\tilde{a} \tilde{d}}\right| \lambda>_{\tilde{b} \tilde{e}}\right.$

$>\mid \psi>_{i j}$ a vector in the Hilbert space of the black qutrits i, j
$>\mid \tilde{\psi}>_{\tilde{a} \tilde{b} \tilde{d} \tilde{e}}$ its image under the isometry
$>U_{\tilde{a} \tilde{b}}$ and $U_{\tilde{d} \tilde{e}}$ the unitary operator acting on qutrits \tilde{a}, \tilde{b} and \tilde{d}, \tilde{e} $>$ Then: $U_{\tilde{a} \tilde{b}}^{\dagger} U_{\tilde{d} \tilde{e}}^{\dagger}\left|\tilde{\psi}>_{\tilde{a} \tilde{b} \tilde{d} \tilde{e}}=\left|\psi>_{\tilde{a} \tilde{d}}\right| \lambda>_{\tilde{b} \tilde{e}}\right.$ The same state as $\mid \psi>_{i j}$ except on white qutrits \tilde{a}, \tilde{d}

$>\mid \psi>_{i j}$ a vector in the Hilbert space of the black qutrits i, j
$>\mid \tilde{\psi}>_{\tilde{a} \tilde{b} \tilde{e} \tilde{e}}$ its image under the isometry
$>U_{\tilde{a} \tilde{b}}$ and $U_{\tilde{d} \tilde{e}}$ the unitary operator acting on qutrits \tilde{a}, \tilde{b} and \tilde{d}, \tilde{e}
$>$ Then:

$>|\psi\rangle_{i j}$ a vector in the Hilbert space of the black qutrits i, j
$>\mid \tilde{\psi}>_{\tilde{a} \tilde{b} \tilde{d} \tilde{e}}$ its image under the isometry
$>U_{\tilde{a} \tilde{b}}$ and $U_{\tilde{d} \tilde{e}}$ the unitary operator acting on qutrits \tilde{a}, \tilde{b} and \tilde{d}, \tilde{e}
$>$ Then:

$>\tilde{\mathscr{O}}$ an operator that acts on the adjacent white qutrits \tilde{a}, \tilde{b}

$$
\tilde{\mathcal{O}}:=\sum_{p, q}<p|\mathcal{O}| q>_{i}\left[U_{\tilde{a} \tilde{b}}\left|p>_{\tilde{a}}<q\right|_{\tilde{a}} U_{\tilde{a} \tilde{b}}^{\dagger} \otimes I_{\tilde{d} \tilde{e}}\right]
$$

An infinite-dimensional tensor network

> Now juxtapose infinitely...

Collection 1

Construct Hilbert spaces

> Pre-Hilbert space $p \mathscr{H}_{\text {code }}$ is defined to include states of black qutrits where all but finitely many pairs of black qutrits are in the state $\mid \lambda>$.
\Rightarrow Any vector in $p \mathscr{H}_{\text {code }}=$ a finite linear combination of vectors in an over complete basis
> Each basis vector:

$$
\left|M, p_{1}, \cdots, p_{M}, q_{1}, \cdots, q_{M}\right\rangle:=\left[\left|p_{1}\right\rangle_{i_{1}}\left|q_{1}\right\rangle_{j 1}\right] \otimes \cdots\left[\left|p_{1}\right\rangle_{i_{M}}\left|q_{1}\right\rangle_{j M}\right] \otimes|\lambda\rangle
$$

Construct Hilbert spaces

> Pre-Hilbert space $p \mathscr{H}_{\text {code }}$ is defined to include states of black qutrits where all but finitely many pairs of black qutrits are in the state $\mid \lambda>$.
$>$ Any vector in $p \mathscr{H}_{\text {code }}=$ a finite linear combination of vectors in an over complete basis
$>$ Each basis vector: (Renamed for convenience)
p_{k}, q_{k} index is valued in $\{0,1,2\}$ and specifies an orthonormal basis of a black qutrit

$$
\left|M,\{p, q\}>:=\left[\left|p_{1}>_{i_{1}}\right| q_{1}>_{j 1}\right] \otimes \cdots\left[\left|p_{1}>_{i_{M}}\right| q_{1}>_{j M}\right] \otimes\right| \lambda>
$$

Construct Hilbert spaces

> Pre-Hilbert space $p \mathscr{H}_{\text {code }}$ is defined to include states of black qutrits where all but finitely many pairs of black qutrits are in the state $\mid \lambda>$.
$>$ Any vector in $p \mathscr{H}_{\text {code }}=$ a finite linear combination of vectors in an over complete basis
$>$ Each basis vector: Not linearly independent!
p_{k}, q_{k} index is valued in $\{0,1,2\}$ and specifies an orthonormal basis of a black qutrit

$$
\left|M,\{p, q\}>:=\left[\left|p_{1}>_{i_{1}}\right| q_{1}>_{j 1}\right] \otimes \cdots\left[\left|p_{1}>_{i_{M}}\right| q_{1}>_{j M}\right] \otimes\right| \lambda>
$$

$>$ Consider two basis vectors $\mid M,\{p, q\}_{1}>$ and $\mid M,\{p, q\}_{2}>$
Inner product: ignore collections beyond max $\left(M_{1}, M_{2}\right)$
Take the usual inner product on the remaining $9^{\max \left(M_{1}, M_{2}\right)}$-dimensional Hilbert space

Construct Hilbert spaces

> Pre-Hilbert space $p \mathscr{H}_{\text {code }}$ is defined to include states of black qutrits where all but finitely many pairs of black qutrits are in the state $\mid \lambda>$.
$>$ Any vector in $p \mathscr{H}_{\text {code }}=$ a finite linear combination of vectors in an over complete basis
$>$ Each basis vector: Not linearly independent!
p_{k}, q_{k} index is valued in $\{0,1,2\}$ and specifies an orthonormal basis of a black qutrit

$$
\left|M,\{p, q\}>:=\left[\left|p_{1}>_{i_{1}}\right| q_{1}>_{j 1}\right] \otimes \cdots\left[\left|p_{1}>_{i_{M}}\right| q_{1}>_{j M}\right] \otimes\right| \lambda>
$$

$>$ Consider two basis vectors $\mid M,\{p, q\}_{1}>$ and $\mid M,\{p, q\}_{2}>$
Inner product: ignore collections beyond max $\left(M_{1}, M_{2}\right)$
Not mutually orthogonal but all normalized
Take the usual inner product on the remaining $9^{\max \left(M_{1}, M_{2}\right)}$-dimensional Hilbert space

Construct Hilbert spaces

> Pre-Hilbert space $p \mathscr{H}_{\text {code }}$ is defined to include states of black qutrits where all but finitely many pairs of black qutrits are in the state $\mid \lambda>$.
$>$ Any vector in $p \mathscr{H}_{\text {code }}=$ a finite linear combination of vectors in an over complete basis
$>$ Each basis vector: Not linearly independent!
p_{k}, q_{k} index is valued in $\{0,1,2\}$ and specifies an orthonormal basis of a black qutrit

$$
\left|M,\{p, q\}>:=\left[\left|p_{1}>_{i_{1}}\right| q_{1}>_{j 1}\right] \otimes \cdots\left[\left|p_{1}>_{i_{M}}\right| q_{1}>_{j M}\right] \otimes\right| \lambda>
$$

$>$ Consider two basis vectors $\mid M,\{p, q\}_{1}>$ and $\mid M,\{p, q\}_{2}>$

With inner product: we can define Cauchy sequences
Not mutually orthogonal but all normalized
$\mathscr{H}_{\text {code }}=$ the closure of $p \mathscr{H}_{\text {code }}$ so that all Cauchy sequence in $\mathscr{H}_{\text {code }}$ converges

The operator algebra: closed under the strong limit

> Analogously for operators
We can define *-algebra of operators acting on finite number of qutrits
To get the von Neumann algebra M, we need to compute the $M^{\prime \prime}$
$>$ Unlike C*-algebra, von Neumann algebra is closed under the strong limit (i.e. $\lim _{n \rightarrow \infty} \mathcal{O}_{n}|\Psi>=\mathcal{O}| \Psi>\forall \psi \in \mathscr{H}$)

Physical pre-Hilbert and Hilbert spaces

$>$ Can be done similarly to construct $p \mathscr{H}_{\text {phys }}$ and $\mathscr{H}_{\text {phys }}$
$>$ For each collection, 4 white qutrits
$>$ Physical reference state $\left|\lambda \lambda>:=\left|\lambda>_{\tilde{a} \tilde{d}}\right| \lambda>_{\tilde{b} \tilde{e}} \quad\right.$ Image of $\left.| \lambda\right\rangle_{i j}$
$>$ Construct the von Neumann algebras for the boundary

Physical pre-Hilbert and Hilbert spaces

$>$ Can be done similarly to construct $p \mathscr{H}_{\text {phys }}$ and $\mathscr{H}_{\text {phys }}$
$>$ For each collection, 4 white qutrits
$>$ Physical reference state $\left|\lambda \lambda>:=\left|\lambda>_{\tilde{a} \tilde{d}}\right| \lambda>_{\tilde{b} \tilde{e}} \quad\right.$ Image of $| \lambda>_{i j}$
$>$ Construct the von Neumann algebras for the boundary

Using in this manner, we can explicitly write down operators, von Neumann algebras as their operator algebras, unitaries, the isometry map
\Rightarrow Showed that Entanglement Wedge reconstruction is satisfied for this toy model

Generalize: von Neumann algebras of various type

$>$ Previously: every collection has a reference state $|\lambda\rangle:=\frac{1}{\sqrt{3}}[|00\rangle+|11\rangle+|22\rangle]$ $>$ An infinite sequence of (separable) Hilbert spaces \mathscr{H}_{n}, each equipped with a reference state $\left|\lambda_{n}\right\rangle:=\frac{1}{\sqrt{1+\alpha^{2}+\beta^{2}}}[|00>+\alpha| 11>+\beta \mid 22>]$

To appear (MJK, Tang)
$>\alpha=\beta=0:$ type I_{∞}
$>\alpha=\beta=1$: type I_{1} (the previous case, maximally entangled state)
$>\alpha=1$ and $\beta=0$: type $I I_{\infty}$
$>\alpha, \beta \neq 0$ and $\log \alpha / \log \beta \notin \mathbb{Q}$: type $I I_{1}$ (the generic operator algebra of local QFTs)
$>\alpha=\gamma^{k}, \beta=\gamma^{\ell}$ for $k, \ell \in \mathbb{Z}_{+}$and $0<\gamma<1$: type $I I I_{\lambda}$ for $\lambda=\gamma^{\operatorname{gcd}(k, \ell)}$
$>(\alpha<1$ and $\beta=0)$ or $(\alpha=0$ and $\beta<1)$: type $I I I_{\alpha}$ or $I I I_{\beta}$
$>\alpha>1$ and $\beta=0$ or $\alpha=0$ and $\beta>1$: type $I I I_{\alpha^{-1}}$ or $I I I_{\beta^{-1}}$

Tensor product of types of $v N$ algebras

$>$ More generally putting: type $T \rightarrow$ type $T \times I I_{1}=$ type ?

Tensor product of types of $\mathbf{v N}$ algebras

Generalize for $M_{A} \otimes M_{B}$

More complex QECC

$>$ For more complicated quantum error correcting codes (cf. HaPPY code)

- No way to construct the Hilbert space directly due to high complexity.

The toy model considered

More complex QECC Operator-pushing

$>$ Now easier to work with C*-algebra instead of von Neumann algebra as the first step and connect to von Neumann algebra afterwards for (thermal) states and relative entropies.
$>$ Von Neumann algebra is state-dependent but C*-algebra is not (with no 'commutant' either)

$>$ The thermal state: cyclic \& separating on C^{*}-algebra and von Neumann algebra
$>$ We can extend to more nontrivial QECCs and have entanglement wedge reconstructions (cf. HaPPY code)

Thank you for listening!

