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Holography

vN algebra

Quantum Error 
Correction

Holography

Bulk Boundary

Local bulk operators

Boundary operators 
smeared over the entire spatial slice 

or a compact spatial subregion



Von Neumann algebra

vN algebra

Quantum Error 
Correction

Holography

Local operator algebra

Von Neumann algebra

Finite-dimensional Hilbert space: 

Infinite-dimensional Hilbert space:

In

I∞, II1, II∞, IIIλ (0 ≤ λ ≤ 1)



Local operator algebra = vN algebra
➢ QFTs with (infinite-dimensional) Hilbert space 
➢ Local operator algebras 

➢ Commutant: 
➢ Von Neumann algebra:

= (infinite-dimensional) von Neumann algebra M ⊂ B(ℋ)

M′� = {𝒪 ∈ B(ℋ) |𝒪𝒫 = 𝒫𝒪 ∀𝒫 ∈ M}

the set of bounded operators in ℋ

an algebra of bounded operators that 
1) contains the identity,     2) closed under Hermitian conjugation,   3) M = M′�′�

(*-algebra)



Quantum Error Correction
vN algebra

Quantum Error 
Correction

Holography

Code Subspace

Local bulk operators

of the physical Hilbert space 
of the CFT

Finite-dimensional Hilbert space: 

Entanglement Wedge 
Reconstruction

Ryu-Takayanagi 
Surface

Relative Entropy Equivalence 
Between the bulk and the boundary



Finite-dimensional Hilbert space
Using Code subspace:

Entanglement Wedge 
Reconstruction

Relative Entropy Equivalence 
between bulk & boundaryRyu-Takayanagi Surface

RT surface 
(minimal surface)

MM′�

γ



Reeh-Schlieder theorem
➢ Want theories compatible with Reeh-Schlieder theorem. 
◦  Then this leads to infinite-dimensional Hilbert spaces! 

➢ Reeh-Schlieder theorem: 

➢ Start with a cyclic and separating state, by acting with a suitable local operator

Obtain a dense subset of the Hilbert space ℋ



Cyclic and Separating state
➢ Define a map    where    

➢           is cyclic with respect to a von Neumann algebra  

➢           is separating with respect to a von Neumann algebra  

➢ If the physical content of the Reeh-Schlieder theorem is relevant 
for the bulk, the bulk reconstruction needs to be understood in 
infinite-dimensional Hilbert spaces.

eΨ : M ⟶ ℋ 𝒪 ↦ 𝒪 |Ψ >
M

M

|Ψ >

|Ψ >

⟺ ℋ is the closure of the image of eΨ

⟺ ker eΨ = 0 (injection)



Von Neumann algebra in QFT
➢ Assume there is a unique ground state 
➢  

➢ Each superselection sector of the theory is invariant subspace of 
the algebra of local operators

|Ω > ∈ ℋ
The closure of the set of states obtained by acting on 

(with sums of products of smeared operator )
|Ω >

The vacuum superselection sector ℋ0

Define



Von Neumann algebra in QFT

u ⟶ A(u)DefineOpen region of 
spacetime

An associated  
local operator algebra
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Von Neumann algebra in QFT

u ⟶ A(u)DefineOpen region of 
spacetime

An associated  
local operator algebra

A partial isometry A self-adjoint  
Positive operator

Polar decomposition

Unbounded!

Von Neumann algebra                                                is generated byM(u) ⊂ B(ℋ)

Canonically associated 
with a set of projections 

(Spectral theorem)

Partial isometries
associated with the operators in M(u)

A set of all projections
Denote subregions in the bulk & the boundary



Von Neumann algebra and AdS/CFT

Boundary

Semi-classical 
Bulk

➢ Bulk theory may be effectively described 
by a QFT on a global AdS background

operators associated with 
covariantly defined subregions in the bulk  

➢ Use von Neumann algebras to describe
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Von Neumann algebra and AdS/CFT

Boundary

Semi-classical 
Bulk

➢ Bulk theory may be effectively described 
by a QFT on a global AdS background

operators associated with 
covariantly defined subregions in the bulk  

➢ Use von Neumann algebras to describe

i.e. Entanglement wedge of a boundary subregion
Causally complete! Naturally have an associated von Neumann algebra



Finite-dimensional Hilbert space

RT surface 
(minimal surface)

MM′�

γ

Entanglement Wedge 
Reconstruction

Relative Entropy Equivalence 
between bulk & boundaryRyu-Takayanagi Surface

Recall:
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Finite-dimensional Hilbert space

Entanglement Wedge 
Reconstruction

Relative Entropy Equivalence 
between bulk & boundaryRyu-Takayanagi Surface

Infinite

Can we have a relation  
between these two directly? 

YES!

However, we need  
relative entropies  

for infinite-dimensional     . ℋNeeds regulating



Relative Entropy
➢ In finite-dimensional Hilbert spaces: 
➢ The relative entropy               does not increase upon performing a 
partial trace on 
◦ The relative entropy may be intuitively thought of as a measure of 

distinguishability between two states. 

➢ Infinite-dimensional case needs Tomita-Takesaki theory using 
von Neumann algebra.

S(ρ, σ) = Tr (ρ log ρ − ρ log σ)
S(ρ, σ)

ρ and σ .



Relative Entropy using von Neumann algebra
➢ is cyclic and separating. 

➢ Relative modular operator    

 where    is a relative Tomita operator that acts as 
   such that the limits 

and exist. 

➢ Relative entropy with respect to  of  

  

|Ψ > , |Φ > ∈ ℋ, |Ψ >
ΔΨ|Φ := 𝒮†

Ψ|Φ𝒮Ψ|Φ

𝒮Ψ|Φ
𝒮Ψ|Φ |x >:= |y > ∀{𝒪n} ∈ M
|x > = lim

n−>∞
𝒪n |Ψ > |y > = lim

n−>∞
𝒪†

n |Φ >

M |Ψ >
SΨ|Φ(M) = − < Ψ | log ΔΨ|Φ |Ψ >



The equivalence theorem 
➢ For (infinite-dimensional) Hilbert spaces: 

➢ Ingredients of the theorem: 
◦  An isometry   
◦  Von Neumann algebras on    and    :    

➢ Assumption required:  
◦  If    is cyclic and separating with respect to   , then  

is cyclic and separating with respect to   .

u : ℋcode → ℋphys
ℋcode ℋphys Mcode, M′�code, Mphys, M′ �phys

|Ψ > ∈ ℋcode Mcode
u |Ψ > Mphys

1811.05482 (MJK, Kolchmeyer)

Entanglement Wedge 
Reconstruction

Relative Entropy Equivalence 
Between the bulk and the boundary



The equivalence theorem 

Entanglement Wedge 
Reconstruction

Relative Entropy Equivalence 
Between the bulk and the boundary

∀𝒪 ∈ Mcode ∀𝒪′� ∈ M′�code, ∃�̃� ∈ Mphys ∃�̃�′� ∈ M′�phys such that

∀ |Θ > ∈ ℋcode {u𝒪 |Θ > = �̃�u |Θ > , u𝒪′�|Θ > = �̃�′�u |Θ > ,
u𝒪† |Θ > = �̃�†u |Θ > , u𝒪′�† |Θ > = �̃�′�†u |Θ > .

∀ |Ψ > , |Φ > ∈ ℋcode with  |Ψ > cyclic and separating w.r.t. Mcode

SΨ|Φ(Mcode) = SuΨ|uΦ(Mphys), and SΨ|Φ(M′�code) = SuΨ|uΦ(M′�phys)

1811.05482 (MJK, Kolchmeyer)



A toy model: tensor network
➢ Goal: build an explicit quantum error correcting code that is of 
infinite-dimensional von Neumann algebra of type II1.  

➢ Want a uniform tensor network — consider qutrits! 
➢ Finite-dimensional collection:



A finite-dimensional tensor network
➢ Three-qutrit code 

➢ The isometry

 denotes qutrits in the physical Hilbert space˜

|0 > ⟶ 1

3
( | 0̃0̃0̃ > + | 1̃1̃1̃ > + | 2̃2̃2̃ > ),

|1 > ⟶ 1

3
( | 0̃1̃2̃ > + | 1̃2̃0̃ > + | 2̃0̃1̃ > ),

|2 > ⟶ 1

3
( | 0̃2̃1̃ > + | 1̃0̃2̃ > + | 2̃1̃0̃ > ) .

| i > ⟶ ∑̃
a,b̃,c̃

Tiãb̃c̃ | ãb̃c̃ > ,

|p >i |q >j ⟶ ∑
x̃,ỹ,z̃,c̃,w̃

3Tpx̃ỹc̃Tqz̃w̃c̃ | x̃ >ã | ỹ >b̃ | z̃ >d̃ | w̃ >ẽ

1910.06328 (MJK, Kolchmeyer)



➢ Three-qutrit code 

➢ The isometry

 denotes qutrits in the physical Hilbert space˜

|0 > ⟶ 1

3
( | 0̃0̃0̃ > + | 1̃1̃1̃ > + | 2̃2̃2̃ > ),

|1 > ⟶ 1

3
( | 0̃1̃2̃ > + | 1̃2̃0̃ > + | 2̃0̃1̃ > ),

|2 > ⟶ 1

3
( | 0̃2̃1̃ > + | 1̃0̃2̃ > + | 2̃1̃0̃ > ) .

| i > ⟶ ∑̃
a,b̃,c̃

Tiãb̃c̃ | ãb̃c̃ > ,

|p >i |q >j ⟶ ∑
x̃,ỹ,z̃,c̃,w̃

3Tpx̃ỹc̃Tqz̃w̃c̃ | x̃ >ã | ỹ >b̃ | z̃ >d̃ | w̃ >ẽ

➢ Unitaries acting on a two-qutrit state
U |00 > = |00 > U |11 > = |20 > U |22 > = |10 >
U |01 > = |11 > U |12 > = |01 > U |20 > = |21 >
U |02 > = |22 > U |10 > = |12 > U |21 > = |02 >

➢ The reference state
|λ >:=

1

3
[ |00 > + |11 > + |22 > ]

Maximally entangled state



➢  a vector in the Hilbert space of the black qutrits   

➢  its image under the isometry 

➢   and    the unitary operator acting on qutrits  and  

➢ Then:    

|ψ >ij i, j
| ψ̃ >ãb̃d̃ẽ

Uãb̃ Ud̃ẽ ã, b̃ d̃, ẽ
U†

ãb̃
U†

d̃ẽ
| ψ̃ >ãb̃d̃ẽ = |ψ >ãd̃ |λ >b̃ẽ



➢  a vector in the Hilbert space of the black qutrits   

➢  its image under the isometry 

➢   and    the unitary operator acting on qutrits  and  

➢ Then:    

|ψ >ij i, j
| ψ̃ >ãb̃d̃ẽ

Uãb̃ Ud̃ẽ ã, b̃ d̃, ẽ
U†

ãb̃
U†

d̃ẽ
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The same state as except on white qutrits |ψ >ij ã, d̃



➢  a vector in the Hilbert space of the black qutrits   

➢  its image under the isometry 

➢   and    the unitary operator acting on qutrits  and  

➢ Then:    

|ψ >ij i, j
| ψ̃ >ãb̃d̃ẽ

Uãb̃ Ud̃ẽ ã, b̃ d̃, ẽ
U†

ãb̃
U†

d̃ẽ
| ψ̃ >ãb̃d̃ẽ = |ψ >ãd̃ |λ >b̃ẽ

The same state as except on white qutrits |ψ >ij ã, d̃

Recover
Recover



➢  a vector in the Hilbert space of the black qutrits   

➢  its image under the isometry 

➢   and    the unitary operator acting on qutrits  and  

➢ Then:      

➢   an operator that acts on the qutrit   

➢   an operator that acts on the adjacent white qutrits   
 

|ψ >ij i, j
| ψ̃ >ãb̃d̃ẽ

Uãb̃ Ud̃ẽ ã, b̃ d̃, ẽ
U†

ãb̃
U†

d̃ẽ
| ψ̃ >ãb̃d̃ẽ = |ψ >ãd̃ |λ >b̃ẽ

𝒪 i
�̃� ã, b̃

�̃� := ∑
p,q

< p |𝒪 |q >i [Uãb̃ |p >ã < q |ã U†
ãb̃

⊗ Id̃ẽ]

The same state as except on white qutrits |ψ >ij ã, d̃

Recover
Recover



An infinite-dimensional tensor network
➢ Now juxtapose infinitely… 1910.06328 (MJK, Kolchmeyer)



Construct Hilbert spaces
➢ Pre-Hilbert space    is defined to include states of black qutrits 
where all but finitely many pairs of black qutrits are in the state . 

➢ Any vector in  a finite linear combination of vectors in an 
over complete basis 
➢ Each basis vector: 

pℋcode
|λ >

pℋcode =

|M, p1, ⋯, pM, q1, ⋯, qM >:= [ |p1 >i1 |q1 >j1 ] ⊗ ⋯[ |p1 >iM |q1 >jM ] ⊗ |λ >



Construct Hilbert spaces
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(Renamed for convenience)   index is valued in  and specifies 
an orthonormal basis of a black qutrit

pk, qk {0,1,2}

Not linearly independent!



Construct Hilbert spaces
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Take the usual inner product on the remaining  -dimensional Hilbert space9max (M1,M2)
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Construct Hilbert spaces
➢ Pre-Hilbert space    is defined to include states of black qutrits 
where all but finitely many pairs of black qutrits are in the state . 

➢ Any vector in  a finite linear combination of vectors in an 
over complete basis 
➢ Each basis vector:  

 

➢ Consider two basis vectors and 

pℋcode
|λ >

pℋcode =

|M, {p, q} >:= [ |p1 >i1 |q1 >j1 ] ⊗ ⋯[ |p1 >iM |q1 >jM ] ⊗ |λ >

|M, {p, q}1 > |M, {p, q}2 >

  index is valued in  and specifies 
an orthonormal basis of a black qutrit

pk, qk {0,1,2}Not linearly independent!

With inner product: we can define Cauchy sequences

the closure of  so that all Cauchy sequence in  convergesℋcode = pℋcode ℋcode

Not mutually orthogonal 
but all normalized



The operator algebra: closed under the strong limit
➢ Analogously for operators 

➢ Unlike C*-algebra, von Neumann algebra is closed under the 
strong limit (i.e. )lim

n→∞
𝒪n |Ψ > = 𝒪 |Ψ > ∀ψ ∈ ℋ

We can define *-algebra of operators acting on finite number of qutrits 

To get the von Neumann algebra , we need to compute the M M′�′�



Physical pre-Hilbert and Hilbert spaces
➢ Can be done similarly to construct  and  
➢ For each collection, 4 white qutrits 
➢ Physical reference state  
➢ Construct the von Neumann algebras for the boundary

pℋphys ℋphys

|λλ >:= |λ >ãd̃ |λ >b̃ẽ Image of |λ >ij



Physical pre-Hilbert and Hilbert spaces
➢ Can be done similarly to construct  and  
➢ For each collection, 4 white qutrits 
➢ Physical reference state  
➢ Construct the von Neumann algebras for the boundary

pℋphys ℋphys

|λλ >:= |λ >ãd̃ |λ >b̃ẽ Image of |λ >ij

Using in this manner, we can explicitly write down operators, von Neumann 
algebras as their operator algebras, unitaries, the isometry map

Showed that Entanglement Wedge reconstruction is satisfied 
for this toy model



Generalize: von Neumann algebras of various type
➢ Previously: every collection has a reference state 

➢ An infinite sequence of (separable) Hilbert spaces  , each equipped with a reference 
state  

➢  : type  
➢  : type   (the previous case, maximally entangled state) 
➢  : type  

➢  : type  (the generic operator algebra of local QFTs) 
➢  : type  
➢  : type  or   

➢  : type  or 

ℋn
|λn >:=

1
1 + α2 + β2

[ |00 > + α |11 > + β |22 > ]
α = β = 0 I∞

α = β = 1 II1

α = 1 and β = 0 II∞

α, β ≠ 0 and log α / log β ∉ ℚ III1

α = γk, β = γℓ for k, ℓ ∈ ℤ+ and 0 < γ < 1 IIIλ for λ = γgcd(k,ℓ)

(α < 1 and β = 0) or (α = 0 and β < 1) IIIα IIIβ

α > 1 and β = 0 or α = 0 and β > 1 IIIα−1 IIIβ−1

|λ >:=
1

3
[ |00 > + |11 > + |22 > ]

To appear (MJK, Tang)



Tensor product of types of vN algebras

➢ More generally putting: type T → type T × II1 = type?



Tensor product of types of vN algebras

type T → type T × II1 = type?

Generalize for MA ⊗ MB
To appear (MJK, Tang)

0 < μ, λ < 1, σ = {αgcd(k,ℓ) if log λ / log μ ∈ ℚ
1 otherwise



More complex QECC
➢ For more complicated quantum error correcting codes (cf. HaPPY code) 
◦ No way to construct the Hilbert space directly due to high complexity. 

➢   

➢ Now easier to work with C*-algebra instead of von Neumann algebra as 
the first step and connect to von Neumann algebra afterwards for (thermal) 
states and relative entropies. 
➢ Von Neumann algebra is state-dependent but C*-algebra is not (with no 
‘commutant’ either)

The toy model considered State-pushing

More complex QECC Operator-pushing



➢ The thermal state: cyclic & separating on C*-algebra and von Neumann algebra 
➢ We can extend to more nontrivial QECCs and have entanglement wedge 
reconstructions (cf. HaPPY code)

C*-algebra on the bulk 
+ the pull-back of a KMS state  

C*-algebra on the boundary 
+ a KMS state  

C*-algebra with  
+ a thermal state 

ℋcode

C*-algebra with  
+ a thermal state

ℋphys

 (isometry)u u

GNS representation

GNS representation

Construct ℋcode

Construct ℋphys

Guaranteed by GNS 
due to the pull-back of 
the KMS state

To appear (MJK, Gesteau)



Thank you for listening!


