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Abstract
To improve the estimate of the shape of a reaction-time distribution, it is sometimes desirable to combine several samples, 
drawn from different sessions or different subjects. How should these samples be combined? This paper provides an evalu-
ation of four combination methods, two that are currently in use (the bin-means histogram, often called "Vincentizing", 
and quantile averaging) and two that are new (linear-transform pooling and shape averaging). The evaluation makes use 
of a modern method for describing the shape of a distribution, based on L-moments, rather than the traditional method, 
based on central moments. Also provided is an introduction to shape descriptors based on L-moments, whose advantages 
over central moments—less biased and less sensitive to outliers—are demonstrated. Whether traditional or modern shape 
descriptions are employed, the combination methods currently in use, especially bin-means histograms, based on averaged 
bin means, prove to be substantially inferior to the new methods. Averaged bin-means themselves are less deficient when 
estimating differences between distribution shapes, as in delta plots, but are nonetheless inferior to linear-transform pooling.
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1.   Introduction

 Since the revival of interest in reaction-time (RT) measure-
ment of the 1960s, the distributions of reaction-times, as well 
as their means, have been of interest. The shapes of observed 
distributions have been used to guide the choice of theoreti-
cal distributions (e.g., Christie & Luce, 1956; Hohle, 1965; 
McGill, 1963; Snodgrass et al., 1967; Sternberg, 1964; Stone, 
1960). And inferential methods have been developed that 
depend on the properties of observed distributions, differences 
between them, and combinations of them, with no commit-
ment to a particular theoretical distribution.

Examples include skewness and kurtosis (Vickers, 1979), 
the survivor interaction contrast (Townsend & Nozawa, 1995; 
Schweickert et al., 2012; Little et al., 2017), the summation 
test (Roberts & Sternberg, 1993; Schweickert et al., 2012), the 
race model inequality (Colonius & Vorberg, 1994; Gondan & 
Vorberg, 2021; Lombardi et al., 2019; Miller, 1982), the delta 
plot (de Jong et al., 1994; Ellinghaus & Miller, 2018; Macken-
zie et al., 2022; Miller & Schwarz, 2021; Schwarz & Miller, 
2012), tests of RT mixtures (Reynolds & Miller, 2009; Yantis 
et al., 1991), and the "short RT" and "long RT" properties 
(Sternberg, 1973; Vorberg, 1981; Townsend & Ashby, 1983, 
Ch. 8), and others (Schweickert & Giorgini, 1999). And it has 
been argued that the shapes of RT distributions are important 
for model discrimination (Ratcliff & Smith, 2010, p. 90). Some 
of the insights that have depended on distributional analysis, 
insights that were not evident from mean RTs alone, are sum-
marized by Balota and Yap (2011). Descriptors of distribu-
tional shape and the quality of their estimators have therefore 
become important.

The shape of a distribution consists of all its features 
other than its location and its scale (or spread). Thus, for 
constants a > 0 and b > 0, the distributions of X and of 
Y = a + bX differ in scale and location, but have the same 
shape: X and Y are then members of the same location-scale 
family (LSF).

Two major features of the shape of a distribution are its 
skewness (a measure of asymmetry: how much more the 
right side of the distribution is spread out than the left 
side) and its kurtosis (a measure of "tailweight": how 
much of the distribution is located in its tails versus its 
central region1). These features can be represented by a point 
in a plane in which the x- and y-axes represent measures 
of skewness and kurtosis, respectively. Given equal locations 
and scales, this is not to say that the shapes of two distri-
butions with the same skewness and kurtosis are identical; 
their shapes may have other features that differ. However, 
a necessary condition for a particular theoretical distribution 

to be compatible with an observed distribution is that their 
skewness and kurtosis agree.

To estimate the shape of a reaction-time distribution 
when there is no convincing basis for knowing its form, it is 
often desirable to combine two or more samples of RTs (for 
example, RTs from different subjects in the same experi-
mental condition), because the sizes of the individual sam-
ples are too small to provide accurate information about the 
shapes of their parent distributions. Such samples may come 
from parent distributions that differ only in location and/or 
scale, as might occur for several reasons, which include the 
effects of practice, differences between subjects, differences 
between stimuli, whether the previous trial’s stimulus is the 
same or different, or vocal response differences such as those 
due to differences among words in delays associated with the 
movements of the speech articulators and in the time taken 
for a voice detector to be triggered.2 Combining such sam-
ples by simple pooling is inappropriate: Doing so is likely 
to result in shape distortion.

Suppose, for example, that sixty RTs are collected from 
the same condition in each of two sessions, and we wish to 
combine the RTs from the two sessions for a subject. Sup-
pose further that the mean RTs differ, a practice effect. If 
we knew that the distributions of which the two sets of RT 
are samples were members of the same LSF, then we might 
choose to combine the samples by quantile averaging (dis-
cussed by Thomas & Ross, 1980, and by Jiang et al., 2004) 
with the goal of preserving their shape, or by pooling after 
adjusting their means and scales.

Unfortunately, we do not know that these distributions are 
members of the same LSF. If they were, the Q-Q plot of the 
samples would be linear, but the sample sizes are too small 

1  The meaning of "kurtosis", when it is defined, traditionally, as the 
standardized fourth central moment, is unclear (Westfall, 2014). The 
interpretation is clearer when it is defined in terms of L-moments, 
discussed below and in Appendix A. The corresponding density func-
tions in Panels A and B of Fig. D1 have the same values of L-skew-
ness, but differ in L-kurtosis, with values of L-kurtosis smaller in 
Panel B. The light curve in Panel A has about the same L-kurtosis as 
the broken curve in Panel C (0.175 vs. 0.172), but differs in L-skew-
ness (.100 vs .172).
2  Such speech detection variations can be as great as 100 ms, larger 
than the word- frequency effect often of primary interest (See Table 2 
in Andrews & Heathcote, 2001, and Table  4 in Spieler & Balota, 
1997). Detection delays can be reduced by using a speech detector 
that applies appropriately different but low thresholds to high and 
low audio frequencies, along with filtering that rejects the brief non-
speech lip noises that exceed the low thresholds. Alternatively, esti-
mates of such effects can be used to correct the RTs before combining 
data from different words. Without either suitable instrumentation or 
such correction, the shapes of distributions of combined RTs may be 
misleading.



Behavior Research Methods	

1 3

to confidently determine the linearity of such a Q-Q plot.3 
Also, it is argued in Section 5.3 that it is hard to justify the 
assumption that practice (as an example of one factor whose 
levels might differ between samples to be combined) influ-
ences only the location and scale, leaving the shape invariant.

What should we require of a good combination method? 
A minimum requirement is that if the parent distributions 
of the samples to be combined differ in location and scale 
but have the same shape, that shape should be approxi-
mated by the combination. A second requirement is that if 
the parent distributions differ in shape (which seems more 
likely), the combination method should produce a distribu-
tion whose shape features (among which are, e.g., skew-
ness and kurtosis) are, in some sense, averages of the shape 
features of the components. (This is why the title of the 
present paper refers to "conserving" rather than "preserv-
ing" shape.)

In this paper, I report on the evaluation of four com-
bination methods, two of which are in common use. 
Because of their bias and variability for small samples 
and their sensitivity to outliers, traditional measures of 
shape, based on central moments, can be problematic 
when used for this purpose. As demonstrated in Appen-
dices B and C, these difficulties are mitigated when the 
measures of shape are based on L-moments, introduced 
by Hosking (1990).4

2.  Traditional measures of shape: 
standardized central moments

For a distribution of x, the traditional measures of skewness and 
kurtosis are functions of its central moments ("C-moments", 
sometimes called "product moments"), �r = E

(

x − x
)r , (r = 2, 

3,...), with skewness measured by �̂1 = m3∕m
3∕2

2
 and kurtosis 

measured by �̂2 = m4∕m
2

2
 , where mk is an estimate of μk.5,6 

Thus the skewness and kurtosis of an observed distribution can 

be represented as a point in the β1−β2 plane, and these proper-
ties of the shapes permitted by any particular family of distribu-
tions may be represented in that plane as a point for some fami-
lies, or a curve, or a region, for others.7 For several examples, 
see Johnson et al. (1994), and Pearson (1963). By comparing 
the location of the 

(

�̂1, �̂2

)

 point for an observed distribution 
with the point, curve, or region permitted by a given family, one 
can learn whether the observations can be described by a mem-
ber of that family, or ways in which members of that family 
would be inadequate.

Generation of skewness–kurtosis curves  To show how such 
an implicit curve is generated from the parametric equations 
that specify β1 and β2, consider the ex-Gaussian distribution, 
familiar to some psychologists, as an example. For that dis-
tribution, whose density function is specified by Eq. (5), the 
parametric equations are β1 = 2τ3/(σ2 + τ2)1.5 and β2 = 3 + 6τ4/
(σ2 + τ2)2. A little algebra, aided by defining r = τ2/(σ2 + τ2), 
leads to the curve: β2 = 3 + 6(β1/2)4/3.

Among the difficulties associated with using β1 and β2 
is that not only are their estimates biased, especially in 
small samples (Appendix B; Headrick, 2011, pp. 2, 13; 
Marzuki et al., 2012; Vogel & Fennessey, 1993) and to an 
extent that depends on the underlying distribution, but, 
also, because they depend on C-moments (for which the 
RTs must be exponentiated), the variability of �̂1 and �̂2 is 
of special concern, and (as exemplified in Appendix C) 
they are especially sensitive to outliers.8

3.  Modern measures of shape: standardized 
L‑moments

These difficulties are mitigated by the use of L-moments, 
{λr} (instead of C-moments) and their standardized forms, 
sometimes called "L-moment ratios", especially L-skewness 
(λs3 = λ3/λ2) and L-kurtosis (λs4 = λ4/λ2).9 Introduced by 

3  Thomas and Ross (1980) and Jiang et al. (2004) showed that quan-
tile averaging has desirable properties when the parent distributions 
of the components belong to the same LSF, and Thomas and Ross 
(1980) recommended the use of Q-Q plots to test this. However, I 
have seen no evidence in the psychological literature of this test hav-
ing been applied as a prelude to quantile averaging. Furthermore, the 
evaluations described below show that with realistic sample sizes, 
quantile averaging is inadequate even when the samples are from 
members of the same LSF.
4  For an example of applying L-moments in the analysis of the 
shapes of RT distributions, see Sternberg & Backus, 2015.
5  Because of the standardization by m2, β1 and β2 are dimensionless 
quantities: The same (β1, β2) point represents distributions that can 
differ in location and/or scale.
6  Traditionally, β1 is defined as �2

3
∕�3

2
 , and the skewness measure 

as 
√

�1 (Kendall & Stuart, 1969, Chapter 3). For the purpose of this 
paper, β1 will be defined as �3∕�

3∕2

2
.

7  I use the term "family of distributions", or just "family" to indicate 
a theoretical distribution with the values of its parameters unspeci-
fied, and the term "distribution" to denote a particular member of that 
family, with specified parameter values.
8  The variability of these measures, emphasized for C-moments of 
RT data by Ratcliff (1979) and Heathcote et al. (1991), increases with 
the variance of the underlying distribution. Thus, when their use is 
anticipated, experimental methods are called for that reduce this vari-
ance, such as extensive practice, rest periods, adequate warning sig-
nals, and performance incentives and feedback.
9  L-skewness and L-kurtosis have often been represented by τ1 and 
τ2, respectively, by analogy to β1 and β2. To avoid their being con-
fused with τ, often used for the exponential parameter of the ex-
Gaussian distribution, popular in psychology, this paper will use λs3 
and λs4, etc., instead, where the "s" indicates the standardization.
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Hosking (1990), L-moments have been the subject of 
substantial theory and numerous applications, especially in 
hydrology, where a primary use is to help select and fit distri-
butions that will aid in predicting the risk of extreme weather 
events (see, e.g., Asquith, 2011; Headrick, 2011; Hosking, 
1992, 2006; Hosking & Wallis, 1997; Royston, 1992; Selaman 
et al., 2007; Ulrych et al., 2000; Vogel & Fennessey, 1993; 
Wang, 1996). The first six L-moments are defined and 
discussed in Appendix A. Estimates of L-moments and 
their ratios are "nearly unbiased for all underlying distribu-
tions" (Vogel & Fennessey, 1993, p. 1746; Headrick, 2011, 
Section 3), and, because L-moments are linear functions of 
sample values (hence the "L"), they are less sensitive to outli-
ers than C-moments (An et al., 2023).10 Comparisons of the 
bias and the sensitivity to outliers of ( ̂�s3 , �̂s4 ) and ( ̂�1 , �̂2 ) for 
several members of the Wald (inverse-Gaussian)  and ex-
Gaussian families are provided in Appendix B and C.11 
The bias is substantial for ( ̂�1 , �̂2 ), especially for small sam-
ples and for members of the families for which skewness and 
kurtosis are high, but negligible for ( ̂�s3 , �̂s4).12 In all cases, the 
effects of an outlier are considerably smaller, proportionally, 
for �̂s3 and �̂s4 than they are for �̂1 and �̂2.

Just as for the traditional measures β1 and β2, one can 
represent features of the shape of an observed distribution 
as a point in the λs3—λs4 plane, and consider its location 
relative to the points, curves, or regions in that plane asso-
ciated with various distribution families.13 Because of the 
desirable properties of L-moments and their ratios, this will 
be the approach taken in the present paper in considering 
the shapes of RT distributions. The primary application 
of L-moments has been to select theoretical distributions 
appropriate for sets of data, for which λs3 and λs4 have been 
employed. However, to describe the shape of a distribution, 
supplementing these values with λs5 and λs6 is useful.

The points and curves in Fig. 1 and similar figures that 
follow come from several sources, including the R packages 

lmom (Hosking, 2019) and lmomco (Asquith, 2021) and the 
appendix of Hosking and Wallis (1997), which provides 
L-moments for several distributions as well as approxima-
tions to some of the curves that relate λs4 to λs3 (also avail-
able as Table 10.1 in Asquith, 2011). For others I used dis-
tribution simulations with large samples and wide ranges 
of parameter values, determined the resulting estimates 
of �̂sk , k = 3, 4, 5, 6, which provided the equivalent of the 
required parametric equations, and plotted �̂s4 against �̂s3 , 
and �̂s6 against �̂s5 , as the resulting implicit curves.

3.1.  Why four L‑moment ratios?

Many applications of L-moment ratios (standardized 
L-moments) make use only of L-skewness (λs3) and L-kurtosis 
(λs4), because these are usually sufficient to decide on which of 
several theoretical distributions might best fit a set of observa-
tions.14 However, λs5 and λs6 also differ among alternative theo-
retical distributions (see, e.g., Fig. 1B), and can be important 
for at least two reasons. First, interesting different distributions 
associated with the same point in the λs3—λs4 plane exist (see 
Karvanen & Nuutinen, 2008). Second, they permit additional 
tests of goodness of fit of a theoretical distribution to a sample. 
And third, Headrick (2011) has adapted the "power method" of 
approximating distributions with specified central moments to 
doing so for distributions with specified L-moments, λ1 and λ2 
and L-moment ratios, λsk, (k = 3, 4, 5, 6). His procedure, which 
makes use of polynomials in powers of logistic or Gaussian 
random variables with coefficients that are functions of these 
quantities, can be used to generate random variables with the 
specified L-moments and L-moment ratios, and to specify the 
corresponding density functions.15 For an adequate specification 
of distributional shape, Headrick’s power method requires λs5 
and λs6, as well as the lower-order L-moments. It is easy to show 
that the resulting distribution is altered in response to changes in 
λs5 and λs6, indicating that all six quantities are necessary.

4.  Four combination methods

The methods to be described can be applied to any number 
of samples. They are bin-means histograms, quantile aver-
aging, linear-transform pooling and shape averaging.16 Both 

14  But see, e.g., Asquith, 2014; Hosking, 2007; Karvanen & Nuu-
tinen, 2008.
15  To derive the density function of the distribution of combined 
samples when using the shape averaging combination method, or to 
generate random samples from the combined distribution, Headrick’s 
procedure (or an equivalent) would be necessary.
16  I have not included the method devised by Cousineau et al. (2016), 
because it requires estimating the minimum RT, which depends on 
assuming a feature of the shape of the distribution.

10  When considering the sums of stochastically independent random 
variables, it should be noted that (functions of) L-moments do not 
share the very useful additivity property of the cumulants of a dis-
tribution (κr), which are functions of the C-moments. For example, 
when x and y are stochastically independent, then, for their sum, x + 
y, the cumulants are additive: κr (x + y) = κr (x) + κr (y), (r ≥ 2). 
It follows, for example, that the variance, third moment, and higher 
cumulants of the duration of a sequence of stochastically independent 
iterated processes all increase linearly with the number of iterations.
11  These two distributions are among those that have been applied to 
reaction-time data; see, e.g., Luce (1986), Anders et al. (2016).
12  These levels of bias for L-skewness and L-kurtosis can be further 
reduced by adopting the estimates developed by Withers & Nadarajah 
(2011).
13  Examples of distributions that are represented by regions, rather 
than points or curves, are the four-parameter Kappa distribution 
(Hosking & Wallis, 1997; Kjeldsen et al., 2017) and the generalized 
lambda distribution (Asquith, 2007).
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of the first two, which are currently in use to combine RT 
samples, have unfortunately been called by the same name: 
"Vincentizing" (Ratcliff, 1979; Rouder & Speckman, 2004; 
Thomas & Ross, 1980).17

4.1.  Bin‑means histograms

This method was devised by Ratcliff (1979) who named it 
"Vincentizing"; its use was advocated by Dawson (1988) 
and Heathcote (1996), who independently provided 
programs to implement it, in the context of fitting the ex-
Gaussian distribution. Select a desired number, m, of bins. 
To ensure that the sample, containing n observations, can be 

partitioned into m equal-size bins, replicate the sample m 
times. (The probability distribution of a replicated sample 
is the same as the probability distribution of the sample.) 
Define a set of equally spaced proportions, p1, p2,..., 
pm+1, where p1 = 0 and pm+1 = 1. Let qj = q( pj) be the quantile 
of the replicated sample associated with proportion 
pj. This defines a set of m bins, {bk}, (k = 1, 2,, …, m), with 
boundar ies (qk, qk+1), each containing values {Xki}, 
(i = 1, 2,.., n). For each sample, determine the means, {Xk•} of 
the n values in each bin.18,19
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Fig. 1   Distribution Families and Test Distributions. Panel A The λs3-
λs4 (L-skewness - L-kurtosis) plane with points and curves shown 
for fourteen distribution families. Values of L-skewness and L-kur-
tosis for the three test distributions in each of the generalized logis-
tic, ex-Gaussian, and Wald families are indicated by large open cir-
cles located on their respective curves. The open squares (for Mix.1) 
and filled circles (for Mix.2) mark points on each of these curves for 

the six sets of four distributions used in tests of combining samples 
from distributions with different shapes (See Tables  1, 2, and 3). 
Panel B The λs5-λs6 plane with curves for six distribution families, 
including the generalized logistic, ex-Gaussian, and Wald families. 
Open circles, open squares and filled circles have the same meaning 
as in Panel A 

17  Referring to these two methods, Jiang et al. (2004, p. 187), who dis-
tinguish them, claimed that "In practice, the two variants yield highly 
similar results." In what follows we shall see that one can be substan-
tially inferior to the other, especially if the number of bins in bin-means 
histograms is as small as has been recommended. See footnote 21.

18  The R function I used to obtain bin means is provided in Appendix G.
19  The midpoint of the jth bin is ( pj +  pj+1)/2. It has sometimes been 
claimed that the jth bin mean is the quantile associated with the jth bin 
midpoint. This is (approximately) true if and only if the distribution 
of observations within the jth bin is (approximately) symmetric. Thus, 
bin means for different samples are quantiles whose associated prob-
abilities are likely to differ.



	 Behavior Research Methods

1 3

The estimate of the combined distribution of several 
samples is achieved in two steps: First the number of 
bins, m, is selected, each sample is partitioned into m 
bins as described, the bin means {Xk•} are obtained for 
each sample, and corresponding bin means are averaged 
over samples, yielding the averaged bin means, Xk∙  , 
(k = 1, 2,, …, m). Second, the averaged bin means are 
used to create a bin-means histogram, representing the 
combined distribution, that consists of m equal-area rec-
tangles, extending from Xk∙  to Xk+1∙  , (k = 1, 2,, …, m). 
The number of bins typically used has ranged from five 
to 20. In the present paper, the method is evaluated for 
two variants, with m = 15 and m = 30.20, 21

In some applications, the combined distribution is rep-
resented by the averaged bin means themselves, usually 
obtained from five or ten bins, by plotting them as a function 
of bin number, for example, or by plotting differences between 
corresponding averaged bin means associated with different 
experimental conditions as a function of bin number. Such 
"delta plots" are discussed in Section 7.

4.2.  Quantile averaging

A set of equally spaced proportions from 0.0 to 1.0 is defined. 
In my evaluation of this method, they were separated by 0.01, 
0.02, or 0.05, but only my findings for 0.01, which provided 
the best estimates, are reported. For each sample, the quantiles 
associated with the set of proportions are determined. The sam-
ples are combined by averaging corresponding quantiles.22,23

In quantile averaging, each quantile is associated with a 
specified member of a set of equally spaced proportions; 
the sets of quantiles that are averaged across samples 
are associated with the same set of proportions. In bin-
means averaging, a bin mean is the mean of the observations 
between two such quantiles; the proportion for which it is 
the quantile is between the two corresponding proportions, 
but exactly where depends on the distribution of observa-
tions in that bin. Thus, in contrast with quantile averaging, 
the sets of bin means that are averaged across samples are 
likely to be associated with different sets of proportions.

4.3.  Linear‑transform pooling

Suppose we have observations {RT1j} and {RT2j} from two 
distributions, F1 and F2 that have the same shape, but differ 
in location and scale. Let F1 and F2 have locations loc1 and 
loc2 and scales scale1 and scale2. If we eliminated the differ-
ences between these locations and scales by linear transfor-
mations and pooled the distributions, then the distribution of 
the combined samples F12 would have the same shape as the 
components. We could do this by defining a target location, 
locT, and a target scale, scaleT, and adjusting the distribu-
tions as follows, for k = 1, 2:

If we applied these transformations to samples from the two 
distributions, and pooled the transformed values, the combined 
sample would have F12 as its parent population, with the same 
shape as F1 and F2, as desired. One problem with this idea is 
that we almost never know the locations or scales of the parent 
distributions; we have only their estimates, l̂oc1 , l̂oc2 , ŝcale1 , 
and ŝcale2 , obtained from the samples. Replacing the unknown 
values by their estimates, the transformations are, for k = 1, 2:

The shape of the combined sample is not affected by the 
choices of the targets locT and scaleT; in the evaluations of 
this method, I have used the means of the corresponding 
sample estimates.

Now, suppose that the samples come from distributions with 
different shapes. In that case, the shape of the pooled adjusted val-
ues should differ from the shapes of both of the components, but 
should be a kind of average of these shapes, an average whose 
properties will be determined in evaluations of the method.

By combining each of five alternative estimates of loca-
tion with each of six alternative estimates of scale I gener-
ated 30 variants of this method. The location measures are 
the mean, the median, the 20% winsorized mean, the 20% 

(1)RTkj.adj = locT +
(

RTkj − lock
)

[

scaleT

scalek

]

.

(2)RTkj.adj = locT +
(

RTkj − l̂ock

)

[

scaleT

ŝcalek

]

20  The bin means have sometimes been called "Vincentiles" (Van 
Zandt, 2000). They are also quantiles, of course, as are any values 
within the bounds of the sample, but these quantiles are not defined in 
terms of the proportions to which they correspond.
21  According to Ratcliff (1979, p. 459), whose examples included nine 
bins (Fig. 2) and 24 bins (Fig. 4), the procedure can be used with "as 
few as ten observations per subject". According to Heathcote (1996), 
who recommends between 4 and 19 bins, and whose example (Fig. 7) 
has 19 bins (p. 435), "For good ex-Gaussian fits, Vincentizing requires 
as few as 20 observations per condition". He also suggests (p. 436) 
that "Vincent averaging combines data across subjects or conditions 
without distorting the shape of the underlying distribution." According 
to Andrews & Heathcote (2001, p. 517), "Average vincentiles approxi-
mately preserve the shape of underlying distributions for each partici-
pant, as long as the individual participants’ distributions are unimodal 
and smooth." In what follows, the validity of these claims is tested.
22  I used Hyndman & Fan’s (1996) type-8 quantile estimator. This 
method might be improved by using a better quantile estimator, such 
as the one proposed by Navruz & Ozdemir (2020).
23  This method (which they call "Vincentizing") has been thoroughly 
discussed by Jiang et al. (2004), Rouder & Speckman (2004), and by 
Thomas & Ross (1980), who also discuss variants that make use of 
transformed observations. The differences between quantile histo-
grams and bin-means histograms (sometimes called "Vincent histo-
grams") are discussed by Van Zandt (2000). See also footnote 2 in 
Andrews & Heathcote (2001).
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trimmed mean, and the mean of the 0.25 and 0.75 quan-
tiles.24 The scale measures are the second L-moment (λ2), 
Qn (a robust measure; Rousseeuw & Croux, 1993),25 the 
interquartile range, the median absolute deviation (mad), 
the standard deviation, and the square root of the 20% win-
sorized variance (Wilcox, 2017).26 As described in Appen-
dix E, comparison of the estimation precision of the thirty 
variants led to the choice of the mean and Qn as the best 
measures of location and scale, respectively.

4.4.  Shape averaging

Perhaps the simplest way to specify the shape of the com-
bined samples is to determine the four corresponding shape 
measures, λskj, (k = 3, 4, 5, 6), for each of the samples, and 
to average them. For two samples the results would be 
λsk• = (�̂sk1 + �̂sk2)/2, (k = 3, 4, 5, 6). For deciding whether 
the combined shape is approximately consistent with any par-
ticular theoretical distribution, this is sufficient. If samples 
from a distribution with the resulting specified shape, or its 
density function, are desired, they can be generated using 
polynomial transformations of Gaussian or logistic random 
numbers (Headrick, 2011), where the polynomials are deter-
mined by �̂1 , �̂2 , and the �̂sk , (k = 3, 4, 5, 6).

Most of the distributions shown in Fig. 1 are represented by 
curves rather than points, which means that parameter changes 
are associated with shape changes. Consider a distribution fam-
ily that is represented as a curve on such a plot. Members of 
that family with different parameters will, in general, appear 
as separate points on its curve. The point that represents their 
mean L-skewness and mean L-kurtosis will not fall on the 
curve, so cannot represent the shape of a member of the same 
family (the curves in the λs3−λs4 and λs5−λs6 planes that repre-
sent the best-known distributions are all nonlinear, and, except 
for the ex-Gaussian, concave up). However, parts of many of 
the curves are close to linear, so that the shape of a combined 
distribution whose shape measures are close to the means of the 
component shape measures, will be similar, but not equal, to 
a member of the same family. For example, consider samples 
from two or more members of the ex-Gaussian family with 
different σ/τ ratios, corresponding to different points on the ex-
Gaussian curve. The point that represents their average shape 
will lie below the curve because it is concave down, but not 
very far from the curve, because the concavity is not great.

4.5.  Bypassing sample combination by assuming 
a theoretical distribution

An alternative approach to combining samples that is some-
times taken (and is advocated by Rouder & Speckman, 2004) 
is to assume a particular theoretical form for the RT distribu-
tion (often the ex-Gaussian, by psychologists), and to fit that 
distribution to each sample. Having done so, one can make 
inferences based on the fitted parameter values averaged over 
two or more such samples. Rouder and Speckman (2004) show 
that when the distribution from which samples are drawn is 
known, such parameter averaging is sometimes (but not always) 
preferable to quantile averaging followed by fitting the known 
theoretical distribution to the quantile averages. However, with-
out a strong argument that specifies the theoretical distribution, 
this makes sense only after first showing that the shapes of the 
sample distributions are consistent with that distribution, which 
often requires that the samples be combined to permit valid 
shape measures to be obtained, using a method that doesn’t 
depend on a commitment to a particular distribution, such as 
one of those under consideration.

4.6.  Some details

Information loss in the four methods  As illustrated in 
Appendix F, information about the distribution of observa-
tions less than the smallest bin mean and greater than the 
largest is not represented in the bin-means histogram. Also, 
creating the distribution representations for both of the first 
two methods entails the loss of shape-relevant information: 
the locations of the values within each bin (in bin-means 
histograms) and their locations between successive quantiles 
(in quantile averaging). More information is lost with fewer 
(larger) bins, and with greater separation between succes-
sive quantiles. The linear-transform method entails no such 
information loss. To the extent that different distributions 
can have the same values of λsk, (k = 3, 4, 5, 6), the shape 
averaging method loses shape-relevant information.

Estimation of L‑moments of combined distribu‑
tions  L-moments are provided directly by the shape aver-
aging method. Because L-moment estimators are based on 
means of linear functions of order statistics of small samples 
of various sizes, such estimates of the combined distribution 
require representing it in the form of observations, rather 
than bin means or quantiles. Such observations are provided 
directly by linear-transform pooling, but an additional step 
is required for quantile and bin-means averaging. Samples 
from the combined distributions created by these meth-
ods were computed by means of a deterministic version of 
inverse transform sampling. For quantile averaging, I created 
a fixed number of samples, equally spaced between each pair 

24  This last measure was used by Wolfe et al. (2010), who called it 
the "x- score transform".
25  Qn is given by the .25 quantile of the distances {|xi − xj|; i < j}
26  The linear-transform method was used by Roberts and Sternberg in 
their "summation test" (1993; Sternberg & Backus, 2015, Appendix), 
but using the median and the interquartile range as measures of loca-
tion and scale, respectively, which are not the choices that minimize 
the mean estimation error in my simulations (Appendix E).
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of quantiles. For quantiles separated by probability differ-
ences of 0.01 the number of samples was 5. Similarly, for 
bin-means averaging, I created a fixed number of samples, 
equally spaced between each pair of successive bin means. 
For analyses that make use of 15 and 30 bins, the numbers of 
samples were 20 and 10, respectively. Appendix G provides 
the R code for the function used for this purpose.

5.  Evaluation of combination methods

I conducted three kinds of evaluation of the four methods 
and their variants.

Ten same-shape parent distributions. In one kind I com-
bined ten samples from distributions of the same shape, 
but with differences in location and scale.
Four same-shape parent distributions. In a second kind, 
I combined four samples from distributions of the same 
shape, but with differences in location and scale.
Four different-shape parent distributions. In a third kind, 
I combined four samples from distributions in the same 
theoretical family, but with differences in shape, as well 
as differences in location and scale.

In each case I used the same four sample sizes: 30, 
60, 100, and 200. It can be argued that the third kind of 

evaluation corresponds more closely to what we would 
expect with real data, where shape is unlikely to be 
invar iant (see Section  5.3).  On the other hand, a 
good method should work well when the parent distribu-
tions of the samples to be combined have the same shape, 
and where the measure of success of the shape estimate is 
therefore more straightforward than when parent shapes 
differ.

5.1.  Test distributions

For the first two kinds of evaluation, I chose nine basic 
distributions to provide samples. The names of these dis-
tributions are marked by asterisks in Tables 1, 2, and 3. 
Six were selected to span a large range of skewness and 
kurtosis values: three generalized logistic distributions, 
whose density function is:

where Y = −(1/κ) log{1−κ(t−μ)/α}, if κ ≠ 0, and Y = 
(t−μ)/α, if κ = 0, and three shifted Wald (inverse Gaussian) 
distributions (Anders et al., 2016; Miller et al., 2017) with 
shift parameter θ, whose density function is:

(3)f (t;�,�, �) =

[

exp{−(1 − �)Y

�(1 + exp{−Y})2

]

,

(4)f (t;�, μ, �) =
(

�

2�T3

)

1

2

exp

{

−
�(T − μ)2

2�2T

}

,

Table 1   Generalized logistic distributions: parameter values and shape measures

Name Mix.1 Mix.2 μ α κ λs3 λs4 λs5 λs6

*glo.10 g1 396.0 24.0  − 0.10 0.100 0.175 0.043 0.073
glo.15 g1 394.0 23.0  − 0.15 0.149 0.185 0.064 0.080
glo.20 g1 392.0 22.0  − 0.20 0.199 0.199 0.087 0.090
*glo.25 g1 g2 390.0 19.0  − 0.25 0.250 0.219 0.113 0.104
glo.30 g2 388.0 21.0  − 0.30 0.300 0.241 0.140 0.121
glo.35 g2 387.0 19.0  − 0.35 0.351 0.269 0.171 0.144
*glo.40 g2 390.0 12.0  − 0.40 0.400 0.300 0.204 0.169

Table 2   Shifted wald distributions: parameter values and shape measures

Name Mix.1 Mix.2 μ λ θ λs3 λs4 λs5 λs6

*Wald.10 w1 216.9 5042.0 183.1 0.100 0.129 0.032 0.047
Wald.15 w1 142.2 142.1 258.0 0.151 0.136 0.047 0.051
Wald.20 w1 105.8 584.0 294.0 0.199 0.147 0.063 0.057
*Wald.25 w1 w2 82.0 272.2 318.0 0.249 0.162 0.080 0.064
Wald.30 w2 66.3 144.0 334.0 0.300 0.181 0.098 0.074
Wald.35 w2 54.7 81.0 345.0 0.350 0.204 0.118 0.086
*Wald.40 w2 45.9 47.7 354.1 0.400 0.232 0.140 0.101



Behavior Research Methods	

1 3

where T = t – θ.
Because of its popularity among psychologists, I also 

included three ex-Gaussian distributions, whose density 
function is

where Φ is the distribution function of the standard Gaussian 
distribution. The shapes of each of these distribution fami-
lies can be represented by a curve in the four-dimensional 
shape space with dimensions {λsk}, k = 3, 4, 5, 6; any mem-
ber of the family is represented by a point on this curve. All 
distributions were adjusted to have standard deviations of 
approximately 45 units, and means of approximately 400 
units, corresponding to millisecond units for typical RTs, 
before their locations and scales were modified in the evalu-
ations. The distributions used for the third kind of evalua-
tion are indicated by "Mix.1" and "Mix.2" in Tables 1, 2, 
and 3. For the mixture indicated by "g1" in Table 1, for 
example, one sample was drawn from each of the first four 
generalized logistic distributions in the table, for each rep-
lication. As shown in the three tables, there were six such 
sets of four distributions, g1, g2, w1, w2, e1, and e2. The 
three tables show parameter values and shape measures, in 
order of increasing L-skewness (λs3). Note that the names 
of the distributions include approximations of λs3 (the value 
of L-skewness).

For the basic Wald and generalized logistic distributions 
I chose parameters to provide L-skewness values of approxi-
mately 0.10, 0.25, and 0.40. This was not possible for the 
ex-Gaussian distribution, because of its more limited range 
of shapes. Density functions of the nine basic distributions 
(those marked by asterisks in Tables 1, 2, and 3) are dis-
played in Appendix D.

Panels A and B of Fig. 1 are projections of the shape 
space onto the first and second pair of dimensions, respec-
tively. The nine basic distributions are represented by large 
open circles; the six sets of four distributions (g1, g2, w1, 
w2, e1, and e2) are represented by smaller open squares and 
filled circles, marking points on the curves for the general-
ized logistic, ex-Gaussian, and Wald distributions.

5.2.  Evaluation procedure

It is helpful to think of the shape of the combined distribution 
produced by a particular method as an estimate of the shape of 
a parent distribution. The best method is one for which such 
estimates are the most accurate.

Samples from same‑shape parent distributions  In one set of 
tests, for each of the nine parent distributions I adjusted the 

(5)

f (t;μ, �, �) = (1∕�)exp

{

−
(t − μ)

�
+

�2

2�2

}

Φ

{

(t − μ)

�
−

�

�

}

,

location and scale by a linear transformation to create ten 
distributions of the same shape with ten different locations 
(adding 0, 10, . . . , 90 units to the parent location) and ten 
different scales (with multipliers from 0.55 to 1.45 applied 
to the scale of the parent), and with the location and scale 
adjustments paired randomly in each of the 500 replications. 
In each replication, then, the ten distributions were members 
of the same LSF. In each replication, a sample of size N , 
was obtained from each of the resulting distributions, pro-
viding ten samples of equal size, where N = 30, 60, 100, and 
200. Each of the combination methods was then applied to 
each of the resulting sets of ten samples.

A second set of tests was similar to the first, except for 
the number of samples combined: For each of the nine parent 
distributions I created four different distributions of the same 
shape with four different locations (by adding 0, 30, 60, and 
90 units to the location) and four different scales (by apply-
ing four scale multipliers from 0.55 to 1.45 to the scale of the 
parent), again with the location and scale adjustments paired 
randomly in each of 500 replications. In each replication a 
sample of size N was obtained from each of the resulting 
distributions, providing four samples of equal size, where 
N = 30, 60, 100, and 200. Each of the combination methods was 
then applied to each of the resulting sets of four samples.

Samples from different‑shape parent distributions  In a third 
set of tests, the samples were drawn from parent distribu-
tions with different shapes, such as the four different shapes 
called "g1" in Table 1: {Λskn}, (k = 3, 4, 5, 6; n = 1, 2, 3, 4). 
For present purposes, the mean shape of the distributions is 
the shape that corresponds to their four mean L-moments, 
in this case, {Λsk•}, (k = 3, 4, 5, 6). The mean Euclidean 
distance and bias of the combination shape relative to the 
mean shape are the measures I chose for evaluation.

5.3.  Implausibility of shape invariance

Before proceeding further, let us consider the likelihood 
that the samples to be combined from actual experiments 
are members of the same LSF. In a typical case, these 
samples might be generated by the same subject in differ-
ent sessions, and influenced by practice, or might be from 
different subjects, influenced by individual differences. If 
the differences are limited to the locations of the parent 
distributions of these samples, then they will have the same 
shape. But suppose that in addition to the location of the 
distribution, its variance (μ2) is influenced by practice, or 
differs among individuals.

Recall that, in terms of the central moments, skewness 
and kurtosis are defined, respectively, as �1 = �3∕�

3∕2

2
 , and 

�2 = �4∕�
2

2
 . Suppose that practice causes μ2 to be reduced 

so that �∗
2
 = αμ2, where μ2 and �∗

2
 are, respectively, the 
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second central moments before and after practice, and 
0 < α < 1. For the distributions before and after practice 
to have the same shape, both β1 and β2 must be invariant. 
Given the change in μ2, this requires that practice also 
causes quantitatively appropriate changes in in μ3 and μ4: 
In particular, whatever the value of α, we must also have 
�∗
3
= �3∕2�3  and �∗

4
= �2�4 . To me, such corresponding 

differences among the central moments seem implausible 
unless there is either persuasive evidence for shape invari-
ance, or some confirmed theoretical reason to expect it.27 
We should therefore require a combination method to work 
well when samples are drawn from parent distributions 
that differ in shape. However, although the combining of 
samples from same-shape distributions may be unrealis-
tic, we would also expect any good combination method 
to be effective in this simplified situation, which has the 
advantage that the measure of estimation accuracy of the 
combined distribution is straightforward: its shape should 
approximate the common shape of the parent distributions.

5.4.  Measures of success for same‑shape parent 
distributions

What would it mean for a combination method to be success-
ful? In the case of actual samples, the corresponding parent 
distributions, whose shapes we care about, are unknown. 
However, for the simulations that were used to test these 
methods, the shapes of the parent distributions are known and 
specified. If the parents have the same shape, we can ask how 
well the shape of the combination approximates that shape.

For replication j, let X1j, X2j,.., Xnj represent the n 
samples, and let Xcj represent their combination, arrived 
at by one of the methods under consideration. In each 
test I determined, for each replication, four standardized 

L-moments of Xcj, λcskj, (k = 3, 4, 5, 6), and compared 
them to the corresponding shape measures of the parent 
distribution, Λsk, (k = 3, 4, 5, 6). The mean estimation 
error is the Euclidean distance in the four-dimensional 
shape space between these two points, determined for 
each replication, and averaged over the 500 replications. 
The estimation bias is the Euclidean distance between 
the mean estimate of the shape of the combination, λcsk• 
and the corresponding shape measures of the parent 
distribution, Λsk, (k = 3, 4, 5, 6). The goals were to find the 
combination method for which the mean estimation error 
as well as the estimation bias are minimized.

5.5.  Measures of success for different‑shape parent 
distributions

As shown in Tables 1, 2, and 3, tests of combining sam-
ples from different-shape parent distributions all involved 
four different parent distributions from the same theoretical 
family, with shapes {Λskm}, (k = 1, 2, 3, 4, m = 1, 2, 3, 4). 
For each replication, samples of equal size, n, were drawn 
from each of these parents, with n = 30, 60, 100, 200. As 
above, for replication j, let X1j, X2j, X3j, and X4j represent 
the four samples, and let Xcj represent their combination. 
Again, in each test and for each replication, j, I determined 
four L-moment ratios of Xcj, λcskj, (k = 3, 4, 5, 6). In this case 
I compared the shape of Xcj to the mean shape of the four 
parent distributions, Λsk•, (k = 3, 4, 5, 6). The mean estima-
tion error and the estimation bias were then determined as 
in the case of same-shape parent distributions.

6.  Evaluation results

6.1.  Mean estimation error

For the reasons described in Appendix E, the variant of the 
linear-transform pooling method that I decided to use for 
comparison with the other methods is the one with the mean 
as the location measure, and Qn as the scale measure. And, 

Table 3   Ex-Gaussian distributions: parameter values and shape measures

Name Mix.1 Mix.2 μ σ τ λs3 λs4 λs5 λs6

*exg.05 e1 374.0 37.1 25.5 0.050 0.138 0.020 0.053
exg.09 e1 368.0 32.1 31.5 0.092 0.151 0.036 0.059
exg.13 e1 364.0 27.6 35.5 0.133 0.164 0.049 0.065
*exg.17 e1 e2 362.0 23.4 38.4 0.172 0.172 0.059 0.067
exg.20 e2 360.0 20.0 40.3 0.202 0.177 0.066 0.068
exg.23 e2 358.0 16.5 41.9 0.234 0.180 0.073 0.070
*exg.26 e2 357.0 13.1 43.0 0.264 0.181 0.079 0.070

27  A contrasting view is expressed by Ratcliff and Smith (2010, p. 
90), according to whom "Invariance of distribution shape is one of 
the most powerful constraints on models of RT distributions.That the 
diffusion model predicts this invariance is a strong argument in sup-
port of its use in performing process decomposition of RT data." See 
Sternberg & Backus (2015) for a discussion of arguments for (and 
evidence against) shape invariance.
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as mentioned above, for bin-means histograms, the results 
for both fifteen and thirty bins are reported. Mean estimation 
error is shown in Fig. 2, for combining ten samples (Panel 
A) and four samples (Panel B) from same-shape distribu-
tions, and four samples from different-shape distributions 
(Panel C). Quantile averaging and bin-means histograms are 
consistently worse than the other methods. When the sam-
ples being combined are from different-shape distributions, 
the advantages of the linear and mean-shape methods over 
quantile averaging are increased for N = 100 and N = 200. 
Unsurprisingly, the estimation error is reduced by increases 
in sample size.

6.2.  Magnitude of the estimation bias

The magnitude of the estimation bias for a combination 
method is the Euclidean distance between the mean esti-
mated shape produced by that method, averaged over the 
500 replications, and either the (common) shape of the par-
ent distributions (when they have the same shape), or their 
mean shape (when they differ in shape). The magnitude of 
the estimation bias is shown in Fig. 3, for combining ten 
samples (Panel A) and four samples (Panel B) from same-
shape distributions, averaged over the nine parent distribu-
tions, and four samples from different-shape distributions 
(Panel C), averaged over the six sets of four different-shape 
distributions. The effect of sample size on bias magnitude 
is substantially smaller for the mean shape and linear com-
bination methods.

6.3.  Nature of the estimation bias

We have considered the magnitude of the estimation bias 
in Fig. 3; it is also important to consider its form. This is 
shown for samples of size N = 60 in Fig. 4 (for combining 
ten samples from same-shape parent distributions), in Fig. 5 
(for combining four samples from same-shape parent dis-
tributions), and in Fig. 6 (for combining four samples from 
different-shape parent distributions). I chose to report the 
results for this sample size because it seems to be the most 
likely of the four sample sizes to be used for combining 
samples. Although the magnitude of the bias is sensitive to 
sample size, as we have seen, its direction tends not to be.

Estimates using the mean quantile method and based 
on combining samples with same-shape parents are more 
strongly biased for �̂s4 and especially �̂s6 than for �̂s3 and 
�̂s5 . Unlike bin-means histograms, when such estimates are 
based on data from different-shape parents, L-skewness ( ̂�s3 ) 
is over-estimated.

Estimates of all four shape measures based on bin-means 
histograms are substantially smaller than their target values, 
enough so that they are consistent with the wrong family of 
distributions. For example, estimates based on data from the 

generalized logistic distribution would lead one to conclude 
that the underlying family of distributions is the lognormal 
or ex-Gaussian, estimates based on data from the ex-Gauss-
ian distribution would suggest the gamma or Weibull fam-
ily, and estimates based on data from the Wald distribution 
would suggest the Weibull distribution. These findings sug-
gest that some conclusions based on past applications of 
bin-means histograms may have to be reconsidered.

All four methods have difficulty estimating the shape of 
the distribution with the greatest L-skewness and L-kurtosis; 
see especially the estimates of the variant of the generalized 
logistic distribution with the greatest values of λs3 and λs4 in 
Fig. 4 and 5. However, the problem is not due to high skew-
ness alone, as the biases of estimates of the most skewed 
Wald distribution, based on all except bin-means histograms, 
are not great.

6.4.  Evaluation of combination methods using 
traditional shape measures

As mentioned in Section 1, and documented in Appendices 
B and C, traditional shape measures, based on central 
moments, are inferior to L-moments in some ways. Perhaps 
for this reason, they were not used for evaluating the effec-
tiveness of bin-means histograms by its inventors and pro-
motors (Ratcliff, 1979; Heathcote et al., 1991), who argued 
against the use of central moments. Although inferior to 
L-moments (which were not available in 1979), central 
moments are hardly worthless for such purposes, and, 
indeed, have some useful properties not shared by 
L-moments.28 It therefore seemed of interest to compare the 
effectiveness of the alternative methods for which this was 
possible, using traditional shape measures (the shape averag-
ing method had to be excluded because its results are 
expressed in terms of L-moments). What would have been 
the outcome of evaluations of these methods before the inven-
tion of L-moments? This was done for combinations of ten 
samples from same-shape parent distributions. For each repli-
cation, j, and each of the methods other than shape averaging, 
I estimated β1j (traditional skewness) and β2j (traditional kur-
tosis) of the combined distribution, Xcj, using unbiased esti-
mators of the central moments, as follows: Let yj = Xcj − Xcj . 

Then m2j =
[

n∕(n − 1)
]

y2
j
 , m3j =

[

n2∕(n − 1)(n − 2)
]

y3
j

 , 

and  
m4j =

[

n2(n + 1)∕(n − 1)(n − 2)(n − 3)
]

y4
j
.  Finally, 

�̂1j = m3j∕m
3∕2

2j

 , and �̂2j = m4j∕m
2

2j

 . I then determined the 

mean estimation error (the mean over replications of the 
Euclidean distance in the β1−β2 plane between these values, 
and the corresponding values for the parent distributions).

28  See Footnote 10, and, for a recent validation of their use for infer-
ring distributional shape, Section 6.3 in Sternberg (2016).
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Figure 7A shows the means of these estimation errors, 
averaged over the 500 replications as well as the nine par-
ent distributions, and should be compared to Fig.  2A; 
Using shape estimates based on the third and fourth cen-
tral moments, the advantage of the linear-transform method 
over quantile averaging is relatively greater than when using 
shape estimates based on four L-moments. I also determined 
the mean magnitude of the estimation bias—the Euclidean 
distance in the β1−β2 plane between the mean estimated 
shape and the corresponding values for the parent distribu-
tion, averaged over the nine distributions; these values are 
shown in Fig. 7B, which should be compared to Fig. 3A. 
Again, the β1−β2 measures reveal a relatively greater advan-
tage of the linear-transform method over quantile averaging 
for the larger samples.

7.  Estimation of shape differences

Relations between the shapes of RT distributions, rather than 
the shapes themselves, are sometimes of interest. For example, 
one might want to compare shapes of RT distributions under 
two conditions to determine whether differences are associated 
with just the longer RTs. One approach is to estimate the dif-
ference between the distribution functions of two distributions, 
possibly after using linear transformations to equate their loca-
tions and scales. This kind of analysis leads to the question of 
how close the estimated shape difference between two distribu-
tions is to the true shape difference, using alternative methods 
of shape estimation. If the biases were approximately equal for 
the distributions to be compared, then we might be fortunate, 
as they would "cancel out" in the estimated difference.
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Fig. 2   Mean Estimation Error as a Function of Sample Size for Five 
Combination Methods. Panels A and B give mean estimation error as 
a function of sample size when the samples being combined are from 
same-shape parent distributions, ten samples in Panel A, four samples 
in Panel B. Panel C gives the results when four samples from dif-

ferent shape parent distributions are combined. Also shown for each 
sample size are the mean values of ± SE, averaged over the five meth-
ods. The SEs vary relatively little across methods, from 93 to 113% 
of the mean for ten samples, and from 91 to 109% of the mean for 
four samples
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I used the nine basic distributions (those with asterisks 
in Tables 1, 2, and 3), determining the true shape differ-
ence for each of the 36 pairs of different distributions. These 
were compared to the differences among the corresponding 
pairs of estimated shapes of the combinations of ten samples 
of size N = 60 from same-shape parent distributions, using 
the five combination methods. In each case I computed the 
Euclidean distance between the estimated and true shape 
difference in the four-dimensional shape space defined by 
standardized L-moments. The results are shown in Table 4. 
The mean, maximum, and minimum Euclidean distance 
over distribution pairs, multiplied by 100, are shown for 
each method, first for all 36 distribution pairs, then for the 
21 pairs that remain when the two most highly skewed dis-
tributions, glo40 and wald40 (which produce the greatest 
distances) are removed, and finally for the three pairs that 
involve just the three ex-Gaussian distributions.

Among the alternative methods, linear-transform pooling 
provided the best estimates of shape differences, and bin-
means histograms with 15 bins provided the worst estimates.

An important alternative approach to comparing distribu-
tions is the computing of "delta plots" (Schwarz & Miller, 
2012, pp. 556–558), first used by De Jong et al. (1994), which 
typically makes use of bin-means averaging with five or ten 
bins to combine distributions over subjects for each of two 
conditions. Delta plots use bin-means averages themselves, 
rather than the bin-means histograms derived from them, to 
compare two distributions. An example is provided by Balota 
et al. (2008, Experiment 1, Fig. 6), who assessed the effects 
of semantic priming on word-naming RTs by comparing bin-
means averages of the RT distributions with related versus 
unrelated primes. Using ten bins, they measured the priming 
effect as the set of differences between bin-means averages 
under primed and unprimed conditions. The finding that these 
estimated differences were approximately equal for the ten 
bin-means averages was interpreted to mean that the shapes 
of the RT distributions under the two conditions are approxi-
mately the same. A second example is provided by Johnson 
et al. (2012), whose analysis of the effect of a transposed-letter 
neighbor on the RT for word naming included examining the 
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Fig. 3   Mean Magnitude of Estimation Bias as a Function of Sample 
Size for Five Combination Methods. Panel A gives the results when 
samples from ten distributions with the same shape are combined, 

Panel B when samples from four distributions with the same shape 
are combined, and Panel C when samples from four distributions 
with different shapes are combined
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set of differences between bin-means averages, also with ten 
bins, on trials with such a neighbor versus trials without one 
(their Fig. 3), and noting that the presence of a neighbor tended 
to influence the longer RTs selectively, producing a difference 
in shape.

Accuracy of delta plots  It is of interest to ask about the 
accuracy of delta plots compared to other ways of compar-
ing two distributions. Consider first the accuracy of bin-
means averages as estimates of the quantiles of individual 
distributions For the nine basic distributions we have been 
considering (marked by asterisks in Tables 1, 2, and 3, all 
positively skewed) the estimation errors, averaged over 
100 replications, are substantial only for the rightmost 
bin, which represents the right-hand tail of the distri-
bution. For these distributions, estimation errors of the 
midpoint quantile (corresponding to probability = 0.90) 

by the fifth bin-mean average of five bins ranged from 
6.4 to 19.2 ms, with a mean of 12.0 ms; and estimation 
errors of the midpoint quantile (corresponding to prob-
ability = 0.95) by the tenth bin-mean average of ten bins 
ranged from 5.1 to 24.3 ms, with a mean of 11.7 ms. Cor-
responding estimation errors provided by linear-transform 
pooling were smaller: For the 0.90 quantile, they ranged 
from – 0.9 to 4.7 ms with a mean of 0.7 ms, and for the 
0.95 quantile they ranged from – 6.8 to 7.9 ms with a mean 
of – 0.2 ms.

To consider the accuracy of delta plots I selected three 
pairs of distributions, drawn from the nine basic distri-
butions: exg.05 versus exg.26, exg.05 versus glo.40, and 
Wald.10 versus Wald.40. For each of the five distributions 
in these comparisons, I created ten samples of size 60 with 
different locations and scales, and used three procedures 
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Fig. 4   Estimates provided by four combination methods in the 
λs3 − λs4 plane (Panel A) and the λs5 −λs6 plane (Panel B) when sam-
ples of size 60 from ten same-shape distributions are combined. The 
large circles represent the true shapes of the nine test distributions. 
Estimates of the same distribution are connected by line segments. 
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to combine the samples: linear-transform pooling, bin-
means averaging with 10 bins, and bin-means averaging 
with five bins. Figure 8 shows the true differences together 
with estimates based on means from 100 replications. The 
differences between bin-means averages are plotted against 
the midpoints of the corresponding bins. Estimating dif-
ferences between the right-hand tails of the distributions 
appears to cause difficulties for bin-means averaging: the 
differences are underestimated by a mean of 8.9 ms (for 
the fifth of five average bin means) and by 10.6 ms (for the 
tenth of ten average bin means). Corresponding mean bias 
values of the 0.90 and 0.95 quantiles provided by linear-
transform pooling (midpoints of the corresponding bins) 
are overestimates with much smaller magnitudes: 0.5 and 
1.1 ms, respectively.

Precision of delta plots  In addition to the bias of an esti-
mation method it is important to know about its precision. 
Consider first the precision of estimates of quantiles of 
individual distributions. To compare the precision of the 
continuous measure produced by linear-transform pooling 
to the precision of averaged bin means (five or ten discrete 

values associated with bin midpoints), I chose quantiles of 
the distributions produced by the former that corresponded 
to the bin midpoints. For example, for five bins, the bin 
midpoints are the probabilities 0.1, 0.3, 0.5, 0.7, and 0.9, 
so I chose the five corresponding quantiles. With 100 rep-
lications, we thus had 100 sets of each of five (ten) values 
for each method and each of the nine basic distributions. 
Averaging over distributions, the mean standard deviation 
for bin-means averaging with five (ten) bins was 2.53 (2.69) 
ms; for the corresponding quantiles estimated by linear-
transform pooling, the corresponding values were 2.29 
(2.41) ms. For the rightmost bin these values were 5.53 
(8.41) ms and 4.25 (6.22) ms. Thus, estimates obtained by 
linear transform pooling are somewhat more precise than 
those obtained by bin-means averaging. These differences 
in precision for individual distributions are also shown by 
estimates of differences between distributions: Averaging 
standard deviations over the five (ten) difference values for 
each of the three comparisons shown in Fig. 8, the mean 
standard deviation of the bin-mean differences was 3.74 
(4.01) ms; while the corresponding value for linear-trans-
form pooling was 3.52 (3.77) ms, slightly smaller.
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Fig. 5   The same as Fig. 4, except that samples from four same-shape distributions are combined
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Fig. 6   Estimation Bias, Samples from Four Different − Shape Distri-
butions Combined. The same as Fig. 4, except that samples from four 
different-shape distributions are combined, and each open circle rep-

resents the mean shape of one of the six sets of four distributions that 
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Fig. 7   Evaluation of Four Combination Methods in β1−β2 Shape 
Space. Mean estimation error (Panel A) and estimation bias mag-
nitude (Panel B) as functions of sample size for four combination 
methods, with shape measures (β1 and β2) based on central moments. 

These results, for combining ten samples from same-shape parent 
distributions, show that neither the evaluation of these combina-
tion methods nor its qualitative results depend on the availability of 
L-moments as shape measures
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Even with ten bins, detail is lost relative to what is pro-
vided by linear-transform pooling, whose accuracy and pre-
cision both appear to be better. Why restrict estimates to a 
small discrete set of points when linear-transform pooling 
provides a continuum, and with greater accuracy and preci-
sion? Based on this set of differences of three pairs of distri-
butions, linear-transform pooling is to be preferred.

8.  Conclusions

The sample sizes of reaction-time data collected under con-
stant conditions are inevitably small, too small to enable reli-
able estimation of the shape of the underlying distribution: 
Within subjects there are practice and fatigue effects, and 
across subjects there are individual differences. One pos-
sibility (shape invariance) is that these differences influence 
only the location and spread of RT distributions, but not 
their shapes. An alternative possibility (shape variation) is 
that the differences also influence their shapes. Given shape 
invariance, we would like to combine the samples in such 
a way as to estimate the shape that is shared by their par-
ent distributions. Given shape variation, we would like to 
combine the samples in such a way as to estimate a shape 
that is some sort of average of the different shapes of their 
parent distributions.

This paper considers two combination methods that have 
been proposed and reported in the psychological literature: 
bin-means averaging with its associated bin-means histo-
grams (sometimes called "Vincentizing"), and quantile aver-
aging. And it introduces two additional methods: shape aver-
aging (which depends on L-moments) and linear-transform 
pooling. Simulations in which the underlying distributions 
are specified are used to evaluate the estimates produced 
by the four methods. In some of the simulations, the parent 
distributions from which samples are drawn and combined 
have the same shape but differ in location and scale; in other 
simulations they differ in shape.

Most of the evaluations use shape measures based on 
L-moments, measures that were introduced by Hosking in 
1990. However, the conclusions are also supported when the 
measures of distribution shape are the traditional ones, based 
on central moments. Appendices provide an introduction 
to L-moments, and demonstrate their superiority to central 
moments with respect to bias and outlier sensitivity.

The accuracies of the estimates produced by the four 
combination methods are found to differ greatly, and 
to favor the two new methods. Indeed, the estimates 

Table 4   100 × Euclidean distances between estimated and true shape differences

Method 36 Pairs 21 Pairs 3 Pairs

Mean Min Max Mean Min Max Mean Min Max

Bin-Means Histogram (15 bins) 4.97 0.46 13.64 2.97 0.46 6.91 2.63 1.22 3.92
Bin-Means Histogram (30 bins) 3.68 0.31 10.31 2.17 0.31 5.19 1.88 0.83 2.79
Quantile Average 1.22 0.18 3.48 0.65 0.18 1.47 0.63 0.29 0.90
Mean Shape 1.51 0.65 5.07 0.63 0.07 1.69 0.44 0.20 0.56
Linear-Transform Pooling 1.07 0.42 2.96 0.45 0.04 0.93 0.45 0.39 0.52
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combination methods (bin-means averaging with five and ten bins, 
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produced by bin-means histograms are sufficiently 
biased so that published conclusions based on that 
method should probably be revisited. With five or ten 
bins, the bin-means averages, themselves, can be use-
ful, but no more useful than linear-transform pooling. To 
determine an approximation to the shape of a distribution 
of observed RTs, or to select a theoretical distribution 
that is approximately consistent with it, we should use 
either linear-transform pooling, or shape averaging. R 
code to implement these methods is provided in Appen-
dix H. To estimate shape differences, linear-transform 
pooling should be used.

Appendix A: definitions and properties 
of L‑moments

The first six L-moments are defined as follows: Let Xm:n be 
the mth order-statistic in a sample of size n, and E denote 
expectation.29

To understand these L-moments, it helps to rewrite the 
expressions inside the parentheses as follows:

For λ3 ,

Thus, λ3 will be zero if the distribution is symmetric, 
such that the mean separation between the middle and 

�1 = E(X)

�2 = E(X2∶2 − X1∶2)∕2

�3 = E(X3∶3 − 2X2∶3 + X
1∶3)∕3

�4 = E(X4∶4 − 3X3∶4 + 3X2∶4 − X
1∶4)∕4

�5 = E(X5∶5 − 4X4∶5 + 6X3∶5 − 42∶5 + X
1∶5)∕5

�6 = E(X6∶6 − 5X5∶6 + 10X4∶6 − 10X3∶6 + 5X
2∶6 − X1∶6)∕6

(

X3∶3 − X2∶3

)

− (X2∶3 − X1∶3).

third order-statistic is equal to the that between the mid-
dle and first order-statistic; if it is larger (smaller), it will 
be positive (negative).

For λ4 ,

If the means of the four order-statistics are equally 
spaced, the separation between the means of the two mid-
dle ones will be one third of the that between the first 
and fourth, and we will have λ4 = 0. If the separation is 
less (more) than one third, e.g., if either or both tails are 
heavy (light) relative to the middle of the distribution, λ4 
will be positive (negative).30

For λ5 ,

The value of λ5 indicates how much of the asymmetry 
measured by λ3 is due to the tails (large first term) rather 
than the middle region of the distribution (large second 
term).

For  λ6 ,

This will be large if either tail and/or the peak (first term) 
is large relative to the "shoulders" (second term) of the dis-
tribution. Thus, unlike λ4, and supplementing it, λ6 distin-
guishes the shoulders from other parts of the distribution.

For k ≥ 3, the L-moments are usually standardized: 
λsk = λk / λ2, which defines L-skewness (λs3) and L-kur-
tosis (λs4).

The standardized L-moments are constrained by 
several inequalities, including |λsk| < 1, (k ≥ 3); λs4 ≥ 
-1/4; λs6 ≥ – 1/6; and 4λs4 ≥ 5(λs3)2 – 1 (Hosking, 1996; 
Jones, 2004). Given the limited ranges of λsk when k 
≥ 3, small differences in their values matter greatly.

(

X4∶4 − X1∶4

)

− 3(X3∶4 − X2∶4).

[(

X5∶5 − X4∶5

)

− (X2∶5 − X1∶5)
]

− 3
[(

X4∶5 − X3∶5

)

− (X3∶5 − X2∶5)
]

.

[(

X6∶6 − X1∶6

)

− 5(X4∶6 − X3∶6)
]

− 5
[(

X5∶6 − X4∶6

)

+ 5(X3∶6 − X2∶6)
]

.

29  The order statistics of a sample are the sample values in ascending 
order. One approach to computing the nth L-moment, λn, of a sample 
would be to determine the mean of each of the mth order statistics (m 
= 1, 2,.., n) of all possible combinations of n values of the sample, 
and then to combine these means as in the equation for λn below. See 
Wang (1996). For example, suppose a sample of size n = 5 with val-
ues 1, 2, 3, 4, and 5, and we want to calculate λ3 for that sample. The 
set of all possible combinations of size 3 is: [ (1,2,3), (1,2,4), (1,2,5), 
(1,3,4), (1,3,5), (1,4,5), (2,3,4), (2,3,5), (2,4,5), and (3,4,5)]. (These 
would appear with equal probability in a random sample.) The sec-
ond order-statistics of this set are 2, 2, 2, 3, 3, 4, 3, 3, 4, and 4. Their 
mean, E(X2:3) = 3. 0. Similarly, E(X1:3) = 1. 5, and E(X3:3) = 4. 5. 
Thus, λ3 = [1. 5 −(2 × 3. 0) + 4. 5] = 0, as expected, given that the 
sample, thought of as a distribution, is symmetric.

30  Thus, unlike the measure of kurtosis, β2, based on the standardized 
fourth central moment, the meaning of L-kurtosis is clear.
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Appendix B: bias of shape measures based 
on L‑moments and C‑moments

Among the advantages of measures of distribution shape 
based on L-moments over those based on C-moments is 

that the former are less biased, especially for small sam-
ples. This difference is demonstrated by the findings pic-
tured below (Fig. B1 and B2).
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Fig. B1   Bias versus Sample Size of Two Pairs of Shape Measures for 
Seven Ex - Gaussian Distributions. Plotted values are based on means 
of 5000 replications. Estimates of the same shape based on different 
sample sizes are connected by line segments. Panel A: Shape meas-
ures β1 and β2, based on central moments. Panel B: Shape measures 
λs3 and λs4 based on L-moments. Centers of the large open circles 

represent the "true values" of these measures (based on samples of 
size 10,000). Panel A shows that even for sample sizes as large as 
100 and 200 (triangles), the estimated shape values based on central 
moments are far from the true values, especially for more skewed dis-
tributions, whereas the corresponding estimates in Panel B, based on 
L-moments, have relatively little bias
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Appendix C: outlier effects on shape 
measures based on L‑moments 
and C‑moments

Among the advantages of measures of distribution shape 
based on L-moments over those based on C-moments is 

that the former are less influenced by outliers. This dif-
ference is demonstrated by the findings pictured below, 
which show the effects on mean shape measures of 
introducing one high outlier among 200 RTs, for seven 
ex-Gaussian distributions (Fig. C1) and seven inverse-
Gaussian (Wald) distributions (Fig. C2).
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Fig. C1   Effects on mean shape measures of introducing one high outlier 
among 200 RTs, for seven ex-Gaussian distributions. Plotted values are 
based on means of 10,000 replications. For each distribution and each 
replication, the outlier was introduced by adding 3 × SD to the largest 
observation among 200 sampled observations. Shape measures based on 
L-moments (λs3 and λs4) and based on C-moments (β1 and β2) were deter-

mined for each sample with and without the outlier. Panel A: Means of the 
two skewness measures with and without the outlier, after linear normali-
zation such that without the outlier, measures for seven different distribu-
tions increase linearly from zero to one. Small filled circles and large open 
circles represent values of λs3 and β1, respectively. Panel B: Means of the 
two kurtosis measures with and without the outlier, represented similarly
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Fig. C2   The same analysis as in Fig. C1, but with samples drawn from seven inverse-Gaussian (Wald) distributions
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Appendix D: density functions of nine basic 
distributions
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Fig. D1   Density Functions of the Nine Basic Distributions. Panel A: 
Generalized logistic distributions. From the distribution with high-
est to lowest peak, values of L-skewness are 0.400, 0.250, 0.100, and 
values of L-kurtosis are 0.300, 0.219, 0.175, respectively. Panel B: 
Shifted inverse Gaussian (Wald) distributions. From the distribution 
with highest to lowest peak, values of L-skewness are 0.400, 0.249, 

and 0.100, and values of L-kurtosis are 0.232, 0.162, and 0.129, 
respectively. Panel C: Ex-Gaussian distributions. From the distribu-
tion with highest to lowest peak, values of L-skewness are 0.264, 
0.172, and 0.050, and values of L-kurtosis are 0.181, 0.172, and 
0.138, respectively. All distributions were adjusted to have means of 
400 units and standard deviations of 45 units
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Appendix E: choice among variants 
of linear‑transform pooling

Tables E1, E2, E3, E4, E5 and E6 show the mean estimation 
error (Tables E1A and E2A, etc.) and the mean bias (Tables E1B 
and E2B, etc.) for each of the thirty variants of the linear-trans-
form pooling method, defined by combining five measures of 
location: the mean, the 20% winsorized mean (winmn), the 20% 
trimmed mean (trimmn), the mean of the 0.25 and 0.75 quan-
tiles (quartmn), and the median, with six measures of scale: Qn 
(Rousseeuw & Croux, 1993), the second L-moment (lm2), the 
square root of the 20% winsorized variance (swv, Wilcox, 2017), 
the median absolute deviation (mad), the interquartile range 
(iqr), and the standard deviation (sdev). The values in each table 
are the means from two independent simulations, each involving 
500 replications, and averaged over the nine basic distributions. 

Sample sizes of 60 and 100 were chosen because they seemed 
to approximate the sizes most likely to be used.

When ten samples from the same parent distributions 
were combined (Tables E1 and E2) the mean estimation 
error was smallest for the mean + Qn variant. When 
four samples from the same parent distributions were 
combined (Tables E3 and E4) the mean estimation error 
was smallest for the mean + lm2 variant. However, all 
six tables show that the mean bias associated with the 
mean + lm2 variant is considerably greater than with the 
mean + Qn variant, while their mean estimation errors 
do not differ greatly. I therefore selected the mean+Qn 
variant of the linear-transform method for comparison 
with the other methods.

It is worth noting, however, that relative to the differences 
in mean estimation error produced by the various methods 
(Fig. 2), the range of values of the mean estimation error 

Table E1   Ten samples, same-shape parents, N = 60

A. 100× Mean Estimation Error B. 100× Mean Bias

Qn lm2 swv mad iqr sdev Mean Qn lm2 swv mad iqr sdev Mean

mean 3.687 3.863 3.888 3.914 3.961 4.424 3.956 mean 1.599 7.425 2.695 2.760 3.023 15.498 5.501

winmn 3.737 3.888 3.955 4.013 4.042 4.509 4.024 winmn 0.682 7.889 1.561 1.876 1.939 16.794 5.124

trimmn 3.732 3.890 3.977 4.031 4.062 4.494 4.031 trimmn 0.609 7.729 1.796 2.099 2.165 16.150 5.091

quartmn 3.763 3.917 3.976 4.040 4.052 4.549 4.050 quartmn 0.872 8.256 1.612 1.926 1.870 17.520 5.343

median 3.751 3.999 4.040 4.063 4.122 4.611 4.098 median 0.627 8.448 2.304 2.391 2.664 16.621 5.509

Mean 3.734 3.911 3.967 4.012 4.048 4.517 4.032 Mean 0.878 7.950 1.994 2.211 2.332 16.517 5.314

Table E2   Ten samples, same-shape parents, N = 100

A. 100 × Mean Estimation Error B. 100 × Mean Bias

Qn lm2 swv mad iqr sdev Mean Qn lm2 swv mad iqr sdev Mean

mean 2.836 2.915 2.918 2.940 2.962 3.286 2.976 mean 0.749 3.210 1.171 1.243 1.353 7.650 2.562 ‘

winmn 2.868 2.930 2.947 2.991 2.997 3.337 3.012 winmn 0.412 3.404 0.792 0.959 0.983 8.110 2.443

trimmn 2.866 2.931 2.958 3.002 3.008 3.319 3.014 trimmn 0.385 3.340 0.853 1.038 1.051 7.727 2.399

quartmn 2.876 2.945 2.957 3.003 3.002 3.362 3.024 quartmn 0.483 3.559 0.833 0.985 0.982 8.443 2.548

median 2.873 2.984 2.990 3.017 3.039 3.373 3.046 median 0.382 3.647 0.984 1.091 1.182 7.832 2.520

Mean 2.864 2.941 2.954 2.991 3.002 3.336 3.015 Mean 0.483 3.431 0.926 1.063 1.110 7.952 2.494

Table E3   Four samples, same-shape parents, N = 60

A. 100× Mean Estimation Error B. 100× Mean Bias

Qn lm2 swv mad iqr sdev Mean Qn lm2 swv mad iqr sdev Mean

mean 5.569 5.538 5.671 5.700 5.721 5.744 5.657 mean 1.571 5.835 2.271 2.320 2.502 11.689 4.364

winmn 5.662 5.545 5.770 5.842 5.841 5.802 5.744 winmn 0.782 6.127 1.403 1.627 1.677 12.562 4.030

trimmn 5.666 5.554 5.785 5.864 5.856 5.803 5.755 trimmn 0.722 6.020 1.566 1.743 1.824 12.089 3.994

quartmn 5.671 5.553 5.777 5.853 5.846 5.817 5.753 quartmn 0.939 6.377 1.459 1.699 1.626 13.038 4.189

median 5.682 5.620 5.830 5.893 5.899 5.885 5.801 median 0.778 6.572 1.939 1.915 2.181 12.438 4.304

Mean 5.650 5.562 5.767 5.830 5.833 5.810 5.742 Mean 0.958 6.186 1.728 1.860 1.962 12.364 4.176
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produced by the thirty variants of the linear-transform pool-
ing method is small. For example, the range when four sam-
ples are combined and N = 100 (Table E4) is (4.35, 4.55), a 
difference of 0.20, while the range of means across all meth-
ods for this case (Fig. 2B) is (4.45, 8.95), a difference of 4.50.

Appendix F: why are bin‑means histograms 
so bad?

A hint as to the reasons for the large bias of the results of 
bin means averaging is provided by noting how the bin-
means histogram represents the tails of a distribution. 
Recall that to represent a distribution, a set of m bins 
between m +1 equally spaced proportions is defined, and 

the means {Xk•}, (k = 1, 2, . . . , m), of the values in each 
bin determined. The bin-means histogram contains m 
equal-area rectangles bounded by the successive pairs of 
these means. As noted by van Zandt (2000, p. 430), such 
histograms exclude the data below the smallest and above 
the greatest of the m means. To demonstrate this, I created 
a distribution by combining a uniformly distributed center 
with low and high tails. A standard histogram of this dis-
tribution together with its density function are shown in 
Panel A of Fig. F1. The same data are represented as 
bin-means histograms with 6 and 15 bins, respectively, 
in Panels B and C of Fig. F1. Note how much area under 
the density function is outside the range of the bin-means 
histograms.

Table E4   Four samples, same-shape parents, N = 100

A. 100 × Mean Estimation Error B. 100× Mean Bias

Qn lm2 swv mad iqr sdev Mean Qn lm2 swv mad iqr sdev Mean

mean 4.394 4.348 4.445 4.445 4.470 4.479 4.430 mean 0.577 2.454 0.863 0.845 0.970 5.779 1.915

winmn 4.455 4.352 4.506 4.524 4.537 4.516 4.482 winmn 0.288 2.575 0.607 0.655 0.726 6.069 1.820

trimmn 4.453 4.355 4.513 4.529 4.543 4.508 4.483 trimmn 0.254 2.544 0.645 0.655 0.754 5.788 1.773

quartmn 4.459 4.358 4.510 4.531 4.539 4.528 4.488 quartmn 0.355 2.652 0.658 0.704 0.726 6.284 1.896

median 4.458 4.391 4.536 4.540 4.567 4.547 4.506 median 0.302 2.789 0.739 0.639 0.840 5.855 1.860

Mean 4.444 4.361 4.502 4.514 4.531 4.515 4.478 Mean 0.355 2.602 0.703 0.700 0.803 5.955 1.853

Table E5   Four samples, different-shape parents, N = 60

A. 100× Mean Estimation Error B. 100× Mean Bias

Qn lm2 swv mad iqr sdev Mean Qn lm2 swv mad iqr sdev Mean

mean 5.749 5.559 5.850 5.890 5.906 5.767 5.787 mean 0.648 1.670 0.993 1.148 1.127 2.714 1.383

winmn 5.972 5.608 6.073 6.200 6.164 5.894 5.985 winmn 1.025 1.721 1.332 1.693 1.522 2.890 1.697

trimmn 5.995 5.637 6.102 6.252 6.200 5.934 6.020 trimmn 1.089 1.746 1.406 1.817 1.602 2.912 1.762

quartmn 5.975 5.610 6.078 6.203 6.175 5.896 5.990 quartmn 1.056 1.767 1.358 1.682 1.541 2.921 1.721

median 6.017 5.732 6.157 6.300 6.255 6.066 6.088 median 1.130 1.945 1.502 1.886 1.678 3.094 1.872

Mean 5.942 5.629 6.052 6.169 6.140 5.911 5.974 Mean 0.990 1.770 1.318 1.645 1.494 2.906 1.687

Table E6   Four samples, different-shape parents, N = 100

A. 100 × Mean Estimation Error B. 100× Mean Bias

Qn lm2 swv mad iqr sdev Mean Qn lm2 swv mad iqr sdev Mean

mean 4.467 4.318 4.496 4.540 4.527 4.497 4.474 mean 0.677 1.171 0.761 0.879 0.849 1.993 1.055

winmn 4.631 4.373 4.646 4.753 4.701 4.624 4.621 winmn 0.868 1.273 0.939 1.203 1.072 2.186 1.257

trimmn 4.647 4.393 4.670 4.789 4.728 4.650 4.646 trimmn 0.912 1.310 1.002 1.289 1.137 2.213 1.310

quartmn 4.633 4.379 4.651 4.756 4.705 4.632 4.626 quartmn 0.885 1.304 0.958 1.202 1.084 2.214 1.274

median 4.663 4.457 4.713 4.822 4.771 4.733 4.693 median 0.930 1.444 1.081 1.340 1.201 2.330 1.388

Mean 4.608 4.384 4.635 4.732 4.686 4.627 4.612 Mean 0.854 1.300 0.948 1.183 1.069 2.187 1.257
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The L-moments associated with the sample values and 
with the two bin-means histograms are shown in Table 
F1. Consistent with the bias shown in Figs. 4, 5, and 
6, we see that the values associated with the bin-means 
histograms are underestimates.
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Fig. F1   Standard and Bin − Means Histograms. Representations of a dis-
tribution by standard and bin-means histograms. Panel A. Standard histo-
gram of a distribution composed of a central uniformly distributed portion 
together with low and high tails. Also shown is a density function for the 
distribution. Panel B. Bin-means histogram of the same data with 6 bins. 

The same density function is shown. The red regions under the x-axis 
indicate values in the distribution that are excluded from the binmeans his-
togram. Panel C. Bin-means histogram of the same data with 15 bins. The 
same density function is shown. The red regions under the x-axis indicate 
values in the distribution that are excluded from the bin-means histogram

Table F1   L-moments of sample and bin-means histogram representations

Source λs3 λs4 λs5 λs6

Sample 0.127 0.119 0.057 0.052
6 Bins 0.087 0.068 0.031 0.011
15 Bins 0.102 0.089 0.050 0.035
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Appendix G: R code for selected functions

The following function starts with a sample, and generates bin 
means ("Vincentiles") with nbin bins.

vincentize <- function(data,nbins){
datalen <- length(data)
data.aug <- sort(rep(data,nbins))
data.augmat <- matrix(data.aug,nrow=datalen,ncol=nbins)
binmeans <- apply(data.augmat,2,mean)
return(binmeans)
}

quantile(sample, prob=seq(0,1,.01), type=8).

distrib.from.quantiles <- function(nobs,quantiles){
len <- length(quantiles)
interval.minima <- quantiles[1:(len-1)]
interval.maxima <- quantiles[2:len]
values <- 999999
for(kinterval in 1:(len-2)){
new.values <- seq(interval.minima[kinterval],interval.maxima[kinterval],

length.out=nobs)
#remove largest, which will be repeated as first among next set of new.values
#for all except last set of new values
new.values.adj <- new.values[1:(nobs-1)]
values <- c(values,new.values.adj)
}
kinterval <- len-1
last.new.values <- seq(interval.minima[kinterval],interval.maxima[kinterval],

length.out=nobs)
#for last interval, last new value is not removed
values <- c(values,last.new.values)
values <- values[-1]
return(values)
}

quantiles were generated using the type-8 quantile function:

Given averaged quantiles, a sample was generated using 
the following function (a deterministic version of inverse 
transform sampling), which distributes nobs observations 

uniformly in each interval, thus creating total obsns = 
nobs*(length(quantiles)-1).

The same function was used to generate a sample from 
bin-means averaging, replacing quantiles by bin means.

Appendix H: R code to implement linear‑transform 
pooling and shape averaging

Each sample of reaction-time data is a vector. The input to 
the program, called "sample.list" is a list of these vectors. 
The program outputs are "pool" and "meanshape".
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#############################################
#Generate data for this toy example
samp1 <- c(428,480,508,388,485,488,450,451,450,439,453,435,443,472)
samp2 <- c(444,417,407,397,399,480,423,408,409,431,403,384,434,394,420,397,448)
samp3 <- c(436,429,435,401,415,385,410,441,436,493,418,424,442,420,421,417,412,434,435)

sample.list <- list(samp1,samp2,samp3)

len <- length(sample.list)
#############################################
#required packages
library(lmom)
library(robustbase)
#############################################
###### Linear-Transform Pooling ###########
#############################################
#define adjustment function
adjust <- function(sample,targetlocation,targetscale){
xadj <- targetlocation + (sample - samplelocation)*(targetscale/samplescale)
return(xadj)
}
#############################################
#Use mean location and mean scale as targets (targets are arbitrary)

samplocations <- rep(NA,len)
sampscales <- rep(NA,len)

for(ksamp in 1:len){
sample <- sample.list[[ksamp]]
samplocations[ksamp] <- mean(sample)
sampscales[ksamp] <- Qn(sample)
}

targetlocation <- round(mean(samplocations))
targetscale <- round(mean(sampscales))
#############################################
#adjust samples and combine them

adjusted.list <- vector("list",len)

for(ksamp in 1:len){
sample <- sample.list[[ksamp]]
samplelocation <- mean(sample)
samplescale <- Qn(sample)
adjusted.list[[ksamp]] <- adjust(sample,targetlocation=targetlocation,

targetscale=targetscale)
}

pool <- unlist(adjusted.list)
#############################################
#############################################
###### Shape Averaging ######
#############################################
#define function to compute shape values
get.shape <- function(x){
values <- samlmu(x,nmom=6)[3:6]
names(values) <- c("lskew","lkurt","lmom.s5","lmom.s6")
return(values)
}
#############################################
shape.mat <- matrix(nrow=len,ncol=4)
rnames <- paste("samp.",1:len,sep="")
cnames <- c("lskew","lkurt","lmom.s5","lmom.s6")
dimnames(shape.mat) <- list(rnames,cnames)

for(ksamp in 1:len){
sample <- sample.list[[ksamp]]
shape.mat[ksamp,] <- get.shape(sample)
}

mean.shape <- apply(shape.mat,2,mean)
#############################################
#############################################
#it may be of interest to compare shape values for the pooled adjusted samples
#using get.shape(pool) to the values in shape.mat and to mean.shape.

R%%>shape.mat
lskew lkurt lmom.s5 lmom.s6

samp.1 -0.013496 0.21974 -0.177904 0.14647
samp.2 0.236601 0.16091 0.061505 0.13365
samp.3 0.094148 0.31192 0.138105 0.34671

R%%>mean.shape
lskew lkurt lmom.s5 lmom.s6

0.1057511 0.2308541 0.0072356 0.2089434

R%%>get.shape(pool)
lskew lkurt lmom.s5 lmom.s6

0.103178 0.221170 0.034115 0.171407
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