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Likelihood Function (I)

• Forecast error covariance for vectors of macro variables is typically not rank-deficient.

• In order to explain data, we need a model that delivers a non-degenerate probability

distribution for the observables:

– Include enough structural shocks: e.g. preference shocks. Capture to some extent

aggregation effects.

– Include measurement errors. More precisely, these errors are supposed to capture

the discrepancy between model and reality.

• Generalization of shock structure potentially breaks cross-coefficient restrictions. Might

reduce misspecification but also introduce additional identification problems.

• Endogenous propagation of innovations versus exogenous propagation.
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Likelihood Function (II)

• Likelihood function: joint probability density of the data Y T = {y1, . . . , yt}:

L(θ|Y T ) = p(Y T |θ) =

T∏
t=1

p(yt|Y t−1, θ) (1)

• Log-linearized DSGE models can be written as state-space models:

measurement : yt = A(θ) + B(θ)st (2)

state transition : st = Φ1(θ)st−1 + Φε(θ)εt. (3)

• Make distributional assumption: εt ∼ iidN (0, Σε(θ)).

• It is only assumed that the yt’s are observable. The vector st may have unobservable

elements such as conditional expectations or a latent productivity process.

• We obtained the state transition equation when we solved the LRE model.
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Likelihood Function (III)

• If st is not fully observable we need to use a filter to obtain the likelihood function.

This filter is a recursive algorithm to calculate

p(yt|Y −1, θ), t = 1, . . . , T

• Iterations:

– Initialization at time t: p(st|Y t, θ)

– Forecasting t + 1 given t:

1. Transition equation: p(st+1|Y t, θ) =
∫

p(st+1|st, Y
t, θ)p(st|Y t, θ)dst

2. Measurement equation: p(yt+1|Y t, θ) =
∫

p(yt+1|st+1, Y
t, θ)p(st+1|Y t, θ)dst+1

– Updating with Bayes theorem. Once yt+1 becomes available:

p(st+1|Y t+1, θ) = p(st+1|yt+1, Y
t, θ) =

p(yt+1|st+1, Y
t, θ)p(st+1|Y t, θ)

p(yt+1|Y t, θ)
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Likelihood Function (IV)

• Initialization: process st is stationary we can initialize the filter with the unconditional

distribution of st, calculated from the transition equation.

IE[sts
′
t] = Φ1IE[sts

′
t]Φ

′
1 + ΦεΣεΦ

′
ε

• Iterations look difficult because they involve integrations. But:

• If εt is normally distributed, all conditional distributions are also normal.

• At each step we only track means and covariance matrices... Kalman filter.

• Kalman filter iterations can be found in standard time series textbooks, e.g., Hamilton

(1994). (see Appendix).



Frank Schorfheide: Estimation and Evaluation of DSGE Models 6

Kalman Filter

• I am using slightly different notation now...

• Measurement equation: yt = A + Bst + ut,

ut’s are innovations (or “measurement errors”) with mean zero and IEt−1[utu
′
t] = H .

• Transition equation: st = Φst−1 + Rεt,

where εt is a vector of innovations with mean zero and variance Σε.

• System matrices A,B, Φ, R, Σε, H are non-stochastic and predetermined, so system is

linear and yt can be expressed as a function of present and past ut’s and εt’s.

• Write IE[s0] = S0 and V ar[s0] = P0.
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Kalman Filter

• Initialization: Start with prior distribution for the initial state s0: s0 ∼ N (S0, P0),

e.g., choose S0 and P0 to be mean and variance of (stationary) state vector distribution.

• Forecasting: At (t − 1)+, that is, after observing yt−1, the belief about the state

vector has the form st−1|Y t−1 ∼ N (St−1, Pt−1). Thus, the “posterior” from period

t− 1 turns into a prior for (t− 1)+.

• Since st−1 and εt are independent multivariate normal random variables, it follows that

st|Y t−1 ∼ N (ŝt|t−1, Pt|t−1) (4)

where

ŝt|t−1 = ΦSt−1

Pt|t−1 = ΦPt−1Φ
′ + RΣεR

′
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Kalman Filter

• The conditional distribution of yt|st, Y
t−1 is of the form

yt|st, Y
t−1 ∼ N (A + Bst, H) (5)

Since st|Y t−1 ∼ N (ŝt|t−1, Pt|t−1), we can deduce that the marginal distribution of yt

conditional on Y t−1 is of the form

yt|Y t−1 ∼ N (ŷt|t−1, Ft|t−1) (6)

where

ŷt|t−1 = A + Bŝt|t−1

Ft|t−1 = BPt|t−1B
′ + H



Frank Schorfheide: Estimation and Evaluation of DSGE Models 9

Kalman Filter

• Updating: To obtain the posterior distribution of st|yt, Y
t−1 note that

st = ŝt|t−1 + (st − ŝt|t−1) (7)

yt = ŷt|t−1 + B(st − ŝt|t−1) + ut (8)

• and the joint distribution of st and yt is given by



st

yt




∣∣∣Y t−1 ∼ N







ŝt|t−1

ŷt|t−1


 ,




Pt|t−1 Pt|t−1B
′

BP ′
t|t−1 Ft|t−1





 (9)
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Kalman Filter

• Applying Bayes theorem, i.e., calculating a conditional distribution based on a joint...

st|yt, Y
t−1 ∼ N (St, Pt) (10)

where

St = ŝt|t−1 + Pt|t−1B
′F−1

t|t−1(yt − A−Bŝt|t−1)

Pt = Pt|t−1 − Pt|t−1B
′F−1

t|t−1BPt|t−1

The conditional mean and variance ŷt|t−1 and Ft|t−1 were given above. This completes

one iteration of the algorithm. The posterior st|Y t is the prior for the next iteration.
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Kalman Filter

• Likelihood Function:

p(Y T |parameters) =

T∏
t=1

p(yt|Y t−1, parameters) (11)

= (2π)−nT/2

(
T∏

t=1

|Ft|t−1|
)−1/2

exp

{
−1

2

T∑
t=1

νtFt|t−1ν
′
t

}

where

νt = yt − ŷt|t−1 = B(st − ŝt|t−1) + ut
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Extensions – Conditioning (I)

• Conditioning: so far we discussed the unconditional likelihood function.

• Other time series models, such as VARs, are commonly estimated based on conditional

likelihood functions, e.g.,

p(y1, . . . , yT |y0, θ) (12)

• In order to obtain a conditional likelihood for the DSGE, note that

p(y1, . . . , yT |y0, θ) =
p(y0, y1, . . . , yT |θ)

p(y0|θ)
(13)

• The numerator can be obtained by applying the (Kalman) filter to all observations,

including y0, whereas the denominator is obtained by applying the filter to y0 only.
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Extensions – Conditioning (II)

• Short-cut: the Kalman filter applied to y0, . . . , yT generates p(y0) and p(yt|Y −1), for

t = 1, . . . , T . Calculate conditional likelihood as

L =
∏
t=1

Tp(yt|Y t−1)
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Extensions – Nonstat Levels (I)

• Reference: Chang, Doh, Schorfheide (2005): “Non-stationary Hours in a DSGE Model.”

• Log-linearized DSGE has state space representation of the form:

yt = Γ0 + Γ1s1,t + Γ2s2,t + Γ3t (14)

s1,t = Φ1s1,t−1 + Ψ1εt (15)

s2,t = s2,t−1 + Ψ2εt. (16)

• Trend in (14) captures drift random walk technology At.

• Equation (15) represents the law of motion for the variables of the detrended model.

• (16) describes evolution of s2,t = ln At − γt for M0 and s2,t = [ln At − γt, ln Bt]
′.
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Extensions – Nonstat Levels (II)

• Initialization of Kalman filter: factorize the initial distribution as p(s1,0)p(s2,0).

• Set the first component equal to the unconditional distribution of s1,t.

• Absorb second component, composed of the distribution of ln A0 (M0) and [ln A0, ln B0]
′

(M1), respectively, into the specification of our prior p(θ).

• If DSGE model implies, say, common trend in investment, consumption, and output,

then estimation based on likelihood function in levels, incorporates information about

the ratios investment/output, consumption/output.

• Roughly, likelihood will relate the model implied steady-state ratios to long-run aver-

ages in the data.
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Likelihood Function (V)

• If DSGE models is solved with nonlinear method then Kalman Filter is not sufficient.

• Alternative: particle filter or sequential Monte Carlo filter.

• Particle has been used to analyze stochastic volatility models: Pitt and Shephard

(1999), and Kim, Shephard, and Chib (1998);

• DSGE models solved with finite elements method: Fernandez-Villaverde and Rubio-

Ramirez (2004).

• DSGE models solved with second-order perturbation methods: An (2005) and An and

Schorfheide (2005).


