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Preliminaries

e Suppose that the random matrix ® has density

PO|Z, X'X) x [ @ (X' X) T 2exp {—%tr[El(QD — )Y X'X (D — cﬁ)]} (1)
o Let 3 = vec(®) and 3 = vec(d).
e Then
BIS, X'X ~ N ([3, > ® (X’X>—1) . (2)

e Note: to generate a draw Z from a multivariate N (u, X3), decompose ¥ = C'C’, where

C'is the lower triangular Cholesky decomposition matrix. Then let Z = u+CN(0,7).
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Preliminaries

e The multivariate version of the inverted Gamma distribution is called Wishart Distri-

bution.

e Let X be anxn positive definite random matrix. 3 has the inverted Wishart TW (.S, v)

distribution if its density is of the form
1
PSS, ) o SISl 2 exp - Sorfs s 3)

e To sample a ¥ from an inverted Wishart ITW (.S, v) distribution, draw n x 1 vectors

Z1,...,Z, from a multivariate normal A(0, S™!) and let

y -1
> 2.7
1=1

Z:
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Preliminaries

e Recall:

A

1 1 .
p(Y|D, 5, Yy) o< |27 T2 exp {—§tr[215]} exp {—5757»[21(@ —PYX'X (D — cb)]}
e Let’s interpret the likelihood as density:

p(®, %S, &, X'X)

< [S]72 exp {—%tr[Z_lS]} exp {—%tr[Z_l(Cb _hYXX (D — @)]}

1
x |28 @ (X' X) Y2 exp {—étr[zlS]}

2m) "D @ (X'X) 7Y Y2 exp {—%tr[zl(cb — )Y X'X (D — @)]}
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Preliminaries

e We now integrate out ® (Note: |¥ ® (X'X)~H/2 = |SF2| X/ X|7/?);

. 1
p(2]S, &, X'X) o ||~ TR2 X X |72 exp {—itr[le]}

e Hence,

NS, 0, X'X ~ IW(S, T —k—n—1),

D%, 8, P, X'X ~ N(cb,z@(X’X)—l)
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Dummy Observation Priors

e Suppose we have T dummy observations (Y*, X*).

e The likelihood function for the dummy observations is of the form

p(Y7[®, %) = (4)

* * ]_ / / / /
2m) "8 2 exp {—§tr[21(y* YV — XY — Y XD+ DX X*CD)]} .

e Combining (4) with the improper prior p(®, ) o [L|~("*+1/2 yields

p(®, X[Y7) (5)

T*4+n+1

1 ! ! ! /
= 6*_1‘2’_ 2 exp {_itr[21<Y* Y* . CD/X* Y* . Y* X*q) 4 CD/X* X*q))]} :

e which can be interpreted as a prior density for ¢ and ..
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Dummy Observation Priors
e Define
CD* _ (X*/X*)—lX*ly*
S = (V¥ = X' (Y* — X*d%).

e It can be verified that the prior p(®, ¥|Y™) is of the Inverted Wishart-Normal ZW — N

form
Yo~ IW(S*,T* — k) (6)

DT ~ /\/'(CD*,Z ® (X*’X*)—l). (7)
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Dummy Observation Priors

e The appropriate normalization constant for the prior density is given by

T*—k
2

e = (2m)F XY X ES

n(T* k) n(n-1) T~
2T T[T - k41— 4)/2)
i=1
k is the dimension of x; and I'[] denotes the gamma function.

e The implementation of priors through dummy variables is often called mixed estimation

and dates back to Theil and Goldberger (1961).
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Dummy Observation Priors

e Now let’s calculate the posterior ...

e Notice that

P(®,,Y) oc p(Y [0, Dp(Y[®, £) ()

e Define:

¢ = (X'X + X'X) XY+ X'Y) (10)

S = Y'Y 4+YY)— (XY + XV (XX + X' X)UXTY + X'Y)|(11)
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Dummy Observation Priors

e Since prior and likelihood function are conjugate, it is straightforward to show, that

the posterior distribution of ® and X is also of the Inverted Wishart — Normal form:

Y ~ IW(S,T*+T—k) (12)
T, Y ~ N(cﬁ, Y (XY X"+ X’X)l). (13)
e Draws s = 1, ..., ngy, from the posterior can be generated as follows:

(i) Draw () from the ZW distribution;

(i) draw @) from the normal distribution of ®|%*) Y.
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Dummy Observation Priors

e Finally, we can compute the marginal data density ...

e Suppose that we are using a prior constructed from dummy observations. Then the

marginal data density is given by

[ p(Y,Y*|®, 2)|2|~(D/2qddy
[ p(Y*]|®, 2)|S|-0+1/2dddy

p(YY") = (14)

e The integrals in the numerator and denominator are given by the appropriate modifi-

cation of ¢, defined above:

/ p(Y |, T[T~ 24dds = 7T | XX |S | Hr (T—k+1—i) /2],
1=1

(15)
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where
d = (X'X)'X'Y

S = (Y - X0)(Y — X).

12
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Dummy Observation Priors — Examples

e Minnesota Prior

e Training Sample Prior

e DSGE Model Prior: DSGE-VAR

13
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Minnesota Prior

e Reference: Doan, Litterman, and Sims (1984). The version below is described in the

Appendix of Lubik and Schorfheide (Macro Annual, 2005).

e Consider the following Gaussian bivariate VAR(2).

Y1t aq B P2 Yit—1 Y11 712 Yi,t—2 (5N,
— + + + (16)

Yot &% Ba1 P Y2.t—1 Y21 Y22 Y2.t—2 Ug ¢

e Define vy = [y1.4, youl', @1 = [Yi_1, Yo, 1|, and u; = [u1y, ug,)" and
B11 Ba
B2 Doz
=1 (17)

Y12 Y22

a1p Qo
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Minnesota Prior

e The VAR can be rewritten as follows
v, =@ +u, t=1,...,T, u ~itdN(0,%) (18)

or in matrix form

Y =Xo+U. (19)

e Based on a short pre-sample Yy (typically the observations used to initialized the lags

of the VAR) one calculates: s = std(Yy) and y = mean(Yy).
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Minnesota Prior

e In addition there are a number of tuning parameters for the prior
— 7 is the overall tightness of the prior. Large values imply a small prior covariance
matrix.
— d: the variance for the coefficients of lag h is scaled down by the factor {27,

— w: determines the weight for the prior on 3. Suppose that Z; = N(0,0%). Then
an estimator for o2 is 62 = 2> | Z2. The larger w, the more informative the

estimator, and in the context of the VAR, the tighter the prior.

— A and p: additional tuning parameters.
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Minnesota Prior

The dummy observations can be classified as follows:

e Dummies for the 5 coefficients:

Y= XU
7s1 O 7s7 0 00 O
0 789 0 789 000

The first observation implies, for instance, that

Ui
7S] = TS1f1tun = Pu=1——
TS

Ui2

0 = 751091+ Uy = (o= e

1

O +

Uil Ui2

U21 U2

611 ~ N (17

521~N(

2

Z22
07 2 2
T=59

211

D)
S

)

)



Frank Schorfheide: Estimation and Evaluation of DSGE Models

Minnesota Prior

The dummy observations can be classified as follows (continued...):

e Dummies for the v coefficients:

00

00

e The prior for the covariance matrix is implemented by

00 7s2¢ 0 0
S+ U

00 0 78290

00000
= S+ U

00000

18
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Minnesota Prior

19

The dummy observations can be classified as follows (continued...):

e Co-persistence prior dummy observations, reflecting the belief that when data on all

y’s are stable at their initial levels, thy will tend to persist at that level:

[)\yl )\92] = [Ayl M M1 Mg A | @+HU

e Own-persistence prior dummy observations, reflecting the belief that when v; has been

stable at its initial level, it will tend to persist at that level, regardless of the value of

other variables:

0 pys 0 nys

pyr 0 pyr 0 pyr 00

0 py2 O

O+ U
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Dummy Observation Priors — Examples

e Training Sample Prior: replace dummy observations by actual observations from a pre-

or training sample.

e DSGE Model Prior: use artificial observations generated by a DSGE model. Details

will follow later.
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Implementation of Structural VAR Analysis

e Consider a simple VAR of the form 3 = &1y + ws, up = AQ(p)er, ¢ = P). For

s=1,...,Ngim:

1. Generate a draw from the posterior distribution of (®,Y), e.g., using sampling

techniques for the ZW — N distribution. Let A = chol(X).

2. Compute moving average representation y = » =0 Ci(D)uy.

3. Short-run and long-run identification schemes: determine ¢ as function of A and
the C(P)’s.
Sign Restrictions: conditional on ® and A assign a prior distribution to the set of

©’s for which the sign restrictions are satisfied. Generate a draw ¢ from this prior.

Note: the sample has no information about ¢ given ®, A. Hence prior equals

posterior. | NOTE: SAMPLING IS MORE DELICATE DUE TO VARYING
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NORMALIZATION OF p(i|®, %)

4. Once ¢ is determined, compute impulse responses and variance decompositions.

e This algorithm leaves you with ng;,, draws from the posterior of the impulse responses
and variance decompositions. You can now compute summary statistics for this pos-

terior, such as means, medians, standard deviations, and (pointwise) confidence sets.



