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Challenges for DSGE Model Estimation

• Misspecification: potentially invalid cross-coefficient restrictions on moving-average

representations may lead to

– inferior fit compared to (good!) VARs, e.g., Del Negro, Schorfheide, Smets, and

Wouters (2004);

– “dilemma of absurd parameter estimates.”

• Identification: “(...) A lot of your posteriors look exactly like the priors (...)”

Richard Blundell, when awarding Frank Smets and Raf Wouters with the Hicks-

Tinbergen Medal at the 2004 EEA Meetings.

• Size: GEM (IMF) and SIGMA (Federal Reserve Board) provide computational chal-

lenges for estimation procedures.
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Misspecification (I)

• Objects of interest: (i) parameter values; (ii) MA representations of time series in terms

of structural shocks; (iii) effects of parameter changes on law of motion for data Y ?

• Under misspecification there is no single value of θ that delivers the best answers to

all three questions. Loss functions matter, see Schorfheide (JAE 2000).

• Likelihood-based estimates tend to minimize the Kullback-Leibler distance between

the “truth” and the model, White (Ecta, 1982). It’s an important metric as it relates

to time series fit of the model, but not always the best to answer (ii) and (iii).
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Misspecification (II)

• Suppose we have additional information X , e.g., micro-level data on price-setting be-

havior, that is informative about θ but no joint likelihood function for Y and X .

• Information in X might be at odds with information in Y -likelihood function: “dilemma

of absurd parameter estimates.”
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Identification (I)

• Some identification issues are fairly obvious...

• If we linearize our DSGE model, the Phillips curve is given by

π̂t = βIEt[π̂t+1] + κ(ŷt − ĝt) (1)

where

κ = τ
1− ν

νπ2ϕ
. (2)

• Others are more subtle...
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Identification (II)

• M1 has serially correlated ut’s:

yt =
1

α
IEt[yt+1] + ut, ut = ρut−1 + εt, εt ∼ iid

(
0, (1− ρα)2

)
. (3)

• M2 has backward-looking term:

yt =
1

α
IEt[yt+1] + φyt−1 + ut, ut = εt, εt ∼ iid

(
0,

[
α +

√
α2 − 4φα

2α

]2)
. (4)

• For both specifications, the law of motion of yt is

yt = ψyt−1 + ηt, ηt ∼ iid(0, 1). (5)

• Imposing determinacy we obtain:

M1 : ψ = ρ, M2 : ψ =
1

2
(α−

√
α2 − 4φα).
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Identification (III)

• Strong auxiliary assumptions on the distribution of error terms are needed to dis-

tinguish between classes of models. Some references: Sims (Ecta, 1980), Lubik and

Schorfheide (AER, 2004), Beyer and Farmer (2004), Canova and Sala (2005).

• Limited information approaches that try to avoid these assumptions are often unable

to identify the structural parameters they claim to identify. They only recover reduced

form parameters.

• Likelihood-based approaches make auxiliary assumptions transparent. Still likelihood

might be flat in some dimensions. Difficult to summarize information in likelihood.


