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Posterior Odds and Marginal Data Densities

e Posterior model probabilities can be computed as follows:

mi.op(Y| M,
e where
p(Y1M) = [ LY Miplol M) 2)
e Posterior odds and Bayes Factor
T T Y M
i i ¥

Prior Odds Bayes Factor
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Example: Linear Regression

e Simple example: compare

e Prior probabilities: m; g.

e Posterior probabilities:
S — miop(Y! M)
T Yo mop(YT|IM;)

where marginal data density is

pYTIM0) = [ 2601y Mop(60 M) a8
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Example: Linear Regression

e Here calculation is relatively simple:

LY, X)p(0)

p(Y|X) = P01V X)

(8)

e Since, we previously showed that the posterior p(6|Y, X)) is multivariate normal all the

terms on the right-hand-side are known:

(2m)~T2(2m) k2= F exp {—3(Y = X0)(Y — X0)+0'0/7°}
(2m)H2V |12 exp { ~3[(0 — By V(0 — )]}

= (27T)_T/27'_k\X/X + T_QI\_1/2

p(Y|X) =

1
X exp {—ﬁ[Y’Y ~Y'X(X'X + T_QI)_lX’Y]} :
using the definition of 6 and V:

Or = (X'X +7720)7'XY, Vp=(X'X+72T)"
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Example: Linear Regression

e Schwarz Criterion

nate are

Inp(Y[X)

e Notice that

. The terms of the marginal data density that asymptotically domi-

T 1 k
_gln(gﬁ) _ §(Y’Y —Y'X(X'X)'XY) - §1nT + small

Inp(Y[X,0,) —

max hf{relihood

(10)

k
5 InT +small

—
penalty

1 1 1
m|X'X +77277Y2 = —ZIn|\T(=X'X+—T 11
XX+ 2P\ T T (1)
k 1 |1 1
— & -~ T 1,
O(In(T")) 0,(1)
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Consistency

e If data are generated from model M; then as T' — oo the posterior probability of

model M, converges to one for almost all data sets.
[f the models are nested, then the posterior prob of the smaller model will converge to

one (because the penalty is smaller).

e If data are not generated from any of the models under consideration, then, roughly
speaking, the posterior probability of the model that is closest in the Kullback-Leibler

sense to the “truth” converges to one.

What happens if there are ties? Is this a very useful result?



Frank Schorfheide: Estimation and Evaluation of DSGE Models

Example: Linear Regression

e Suppose we compare: Mg y; = u; versus My y; = 240 + uz, 0 ~ N(0,7°T).

e Under M:

T 1
Inp(Y|X) = —gln(27r) — §Y’Y

whereas under M;:

T 1

k
np(Y|X) = -5 In(27) — 5(Y’Y —Y'X(X'X +72T)7'X'Y) - 5 T+ small
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Example: Linear Regression

e Assume that data were generated from the model y; = 216y + uy.
YV'X(X'X +72)7'XY
= X' X(X'X +77)'X' X0+ UXX'X +7 )7 XU (12)
+UX(X'X +77)7' X' X0+ 00X (X' X +77°)7'X'U

— T6, <% > xt:c;) _190 +VT?2 <% > :ctut) /90
(o) (23 wat) (o= Xr) + 0,00

p(Y|X, MO) . E
In [p(Y]X,/\/ll) =35 InT + small +00. (13)

o [f 0y = 0 then

o If 0y # 0 then

p(Y|X, M T, (1 AN
In [pEY}X,Mg] = ——0, (szt$t> 0y + small — —o0. (14)
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Finite-Sample Challenges: Lindley’s Paradox

e Test Hy:60=0:

2

_ ket —211/2 / / —27\—1 v~/
n =7 X'X+71 ex Y'X(X'X+7°7L)"' XY 15

e Lindley’s Paradox: suppose Y is fixed, as prior on alternative becomes more diffuse

(T — 0)

o [0

SVX M) (16)

regardless of Y.

e Important for non-nested model comparisons. Changing prior variance can have small
effect on posterior distribution of parameters yet large effect on posterior model prob-

abilities.
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Example: Model Selection vs Likelihood Ratio
Test

e Comparison of Bayesian test to LR test.

e In the regression example: (Hy: 60 = 0)

p(Y|Xaémle)
LR = 21 17
B X0 = 0) )
= YX(X'X)'X'Y. (18)

e If Hy is true, then
~1

= (=3 ww) (3500t) (=Xe) =3 (9
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Example: Model Selection vs. Likelihood Ratio
Tests

e Frequentist decision rule: accept / don’t reject 6 = 0 if
VXXX XY <\ (20)
e Bayesian decision rule: accept 8 = 0 if
Y'X(X'X)'X'Y < kInT + small (21)

e Note: the implied Bayesian critical value tends to infinity at logarithmic rate. Con-
sequently, the size of the test converges to zero asymptotically and the Type 1 error

vanishes.
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In General...

e Laplace approximation (6 is mode, 3 is inv Hessian)

pY | M) = (2m)"2 p(Y' |6, M)p(§] M) x 512

In — Sa?nple Fit Dimensionality Penalty

e In “regular” models T'- 3 = O,(1). Thus,

1
2

In|¥| = —glnT

The larger the dimensionality d, the larger the penalty:.

e Inp(Y | M) can be interpreted as predictive score (Good, 1952)

T T
Zlnp(yt]Yt_l,M) = Zln [/p(yt]Yt1,€,M)p(9\Yt1,/\/l)d9 :
t=1 t=1

12

(22)

(23)

(24)

Model comparison based on posterior odds captures the relative one-step-ahead pre-

dictive performance.
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Numerical Approximations

e Naive approach: draw §®) from prior p(#) and use

1 Nsim
> p(Y]e©)

stm
s=1

np(Y) ~

e Why does this not work?

e Refinement:

Nsim

T T
1np(Y):H (] Y %H Zpyth ! 915 )1)
t=1

t=1 m =1

where 6*)) is drawn from p(6]Y*~1).

13

e We will now discuss Geweke’s modified harmonic mean estimator and the Chib and

Jeliazkov method.
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Numerical Approximations: Harmonic Mean

e Harmonic mean estimators are based on the following identity

L)
7~ | ZEva e (25)

where [ f(6)df = 1.

e Conditional on the choice of f(#) an obvious estimator is

L ey 10 (26)
Naim = LOOY )p(6F) |

pa(Y) =

where 6¢*) is drawn from the posterior p(6|Y").

e Geweke (1999):

FO) = 77 @m) Ve exp [0.5(0 — BV, (6 — 6)] (27)

x{m—awﬂw—Qgpgu&.
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Numerical Approximations: Chib and Jeliazkov (I)

e Rewrite Bayes Theorem:

_ L))

pY) = 28
=" )
e Thus,

. L(0]Y)p(6)

pes(Y) = —=——, (29)

p(o]Y)
where we replaced the generic 6 in (28) by the posterior mode 0.
e Within the RWM Algorithm denote the probability of moving from 6 to 9 by
a0, 9]Y) = min {1,r(0,9]Y)}, (30

where 7(0,7|Y") was in the description of the algorithm. Moreover, let ¢(60,0]Y") be

the proposal density for the transition from 6 to 0.



Frank Schorfheide: Estimation and Evaluation of DSGE Models 16

Numerical Approximations: Chib and Jeliazkov

(IT)

e Then the posterior density at the mode can be approximated as follows
iy = T et a0, 1 )0, 1)
P = ——
TS al0,00]Y)

: (31)

where {6} are sampled draws from the posterior distribution with the RWM Algo-

rithm and {§U)} are draws from ¢(, ]Y") given the fixed posterior mode value 6.

(insert figures here)
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Figure 9: LOG MARGINAL DATA DENSITIES FROM MULTIPLE CHAINS

Output Gap Rule
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Notes: Output gap rule specification (top panel) and output growth rule specification (bot-
tom panel), Data Sets 1-M; and 1-Ma, respectively. For each Markov chain, log marginal
data densities are computed recursively with Geweke’s modified harmonic mean estimator

and plotted as a function of the number of draws.
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Figure 10: LoG MARGINAL DATA DENSITIES — GEWEKE VS. CHIB-JELIAZKOV

Log Marginal Data Densities
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Notes: Output gap rule specification M;, Data Set 1-M;. Log marginal data densities
are computed recursively with Geweke’s modified harmonic mean estimator as well as the

Chib-Jeliazkov estimator and plotted as a function of the number of draws.
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Bayes Factors / Posterior Odds: Example

e Two alternative specifications: M3 prices are nearly flexible (k = 5); M, central bank

does not respond to output (1, = 0).
e Marginal data densities are -196.7 for M, -245.6 for M3, and -201.9 for M.
e Bayes factors:

: : 19.
— M versus M3 is approximately e*”;

— M versus M, is approximately e*.



