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Comparison to VARs: DSGE-VARs

e Compare fit of DSGE model to that of a VAR based on marginal data densities.
Mechanics are non-trivial. Under a very diffuse prior for the VAR coefficients, the

DSGE model is likely to win the comparison.
e Careful construction of VAR prior is crucial, for instance:

— Minnesota-style prior, Sims-Zha priors for identified VARs.

— DSGE-VARs: Del Negro and Schortheide (2004, 2005), Del Negro, Schorfheide,

Smets, and Wouters (2004).

e Compare DSGE model dynamics to (identified) VAR dynamics
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Two Views of DSGE-VARs

e Improve VAR estimates by “restricting” its parameter estimates.

e Improve DSGE model by relaxing its restrictions.
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DSGE-VARs: Improving VARs
e Consider a vector autoregressive specification of the form
v =Po+ Py 1+ ...+ Dy +uy, FEluuy] =X (1)
e Write VAR as Y = X®+U,Y isT xn, XisT X k.

e Difficulty: too many parameters which leads to imprecise estimates.

e Solution: tilt estimates toward a point in the parameter space. Example: Minnesota

prior tilts toward random walks.

e Here: tilt toward DSGE model restrictions.
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Example

e n independent draws of y; from N (u, 1).

e MLE of u:
1 n
HUML = o Z Y-
t=1
e Bayes estimator based on prior p ~ N(0,7%)

A > e
UB = n -+ 1/7_2 Yt = / QIU‘ML n -+ 1/7_2
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Example

e MSE of MLE:

e MSE of Bayes Estimator:

E, [(u - ﬂB)2] .y (i)i ,_n

nt1/72) " (n+ 12
B;E;SZ variance

o If 142 is small, i.e. the discrepancy between the a priori expected value and the “true”

value is small, then the Bayes estimator clearly dominates.
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DSGE-VARs: Improving VARs

e Complication: DSGE model depends on parameters 6.

e Solution: place prior on 6. Use notion of dummy observations to construct priors

conditional on 6. Overall:
p(®,%,0) = p(0)p(P, X]0). (2)

e Let’s look at: p(®, X|0).
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DSGE-VARs: Improving VARs

e Quasi-likelihood function for artificial observations (sample size T* = AT') generated

from DSGE model:
p(Y™(0)|®,%,) o (3)

1 / / / /
12|72 exp {—itr[zul(Y* YV - XY - YVEXD + X X*cb)]} .

e Let IES[] be the expectation under DSGE model and define the autocovariance ma-

trices

Lxx(0) = Ef [z}, Txy(0) = Ef [z,

e Replace sample moments Y*Y* by IEP[Y*Y*] = ATTyy(6), etc.
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DSGE-VARs: Improving VARs

e Define

O*(0) = Dk (0)Txy(0), E*(0) = Tyy(0) — Tyx(0)I 'k (0)Txy(0).

e Prior distribution:

S0 ~ IW(ATZ*(Q),AT—k,n)

DT, 0 ~ N (@*(9),%[21 ® Fxx(e)] ) ,
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DSGE-VARs: Relaxing DSGE Restrictions

e Alternative motivation...

10
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®"(0 ): Cross-equation

A o : )
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DSGE-VARs: Relaxing DSGE Restrictions

e There is a vector # and matrices ®* and ¥ such that the data are generated from
the VAR in Eq. (1)

O = d*(h) + D2, ¥ =X + . (6)
e We will construct a prior for ®* and ¥

e For now assume Y2 = 0.
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DSGE-VARs: Relaxing DSGE Restrictions

e Our prior for ®» has the property that its density is proportional to the expected

likelihood ratio of ®* + ®2 versus ®*.

e Likelihood ratio:

L(D*, X |V,, X) (7)

1 / / /
= ——t{r [z;—l (@A X' X, 02 — 20" X! X, 02 — 2(* + DAY XY, + 20 X;Y*)] .

| [E(CI)* + OB THY,, X*)]
n

2

e Taking expectations yields

L(D* + 2 XF|Y,, X,) 1 B :
EP|1 Tulm o T e [ OANT T 2 ) | 8
9“ L@, SY., X, 2! [ X 8
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DSGE-VARs: Relaxing DSGE Restrictions

e We now choose a prior density that is proportional (o) to the expected likelihood ratio:
1 /
p(OR|EF) o< exp { -5t [ATzzl (@A FXXCDA)] } (9)
e Transform this prior into a prior for ® = ®*(§) + &=

|2*, 0 ~ N (cb*(@), ALT [2*1 ® Fxx(e)] _1> : (10)

e Relax the assumption that ¥2 = 0.
e Again, we obtain:
Y0 ~ IW ()\TE*(Q), AT — k,n) (11)

DL, 0 ~ N <¢*(9),ALT[2—1 ® FXX(Q)]1> :
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DSGE-VARs: Local Misspecification

e If we re-scale the misspecification as follows: ®» = T-V QCI/DK, then the prior density

becomes independent of the actual sample size:
p(PA[X",0) o exp { — 5757“ [)\Z*l (CDA FXX(H)Q)A)] } (12)
e Large values of A mean small misspecifications.

o A is “ocal” misspecification. DSGE model provides good albeit not perfect approx-

imation to reality.
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DSGE-VARs: Posteriors

e The joint posterior density of VAR and DSGE model parameters can be factorized:
PA(D, 2, 0Y) = pA(D, X|Y, 0)pr(0]Y). (13)

The A-subscript indicates the dependence of the posterior on the hyperparameter.
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DSGE-VARs: Posteriors

e The posterior distribution of ® and X is also of the Inverted Wishart — Normal form:
XY, 0 ~ IW((l + )\)Tib(Q), (1+MT —k, n) (14)

OIY,%,0 ~ N(cﬁb(@), ¥ © (AT yx(0) + X’X)—l),
e where ®y(6) and () are the given by

dp(0) = MTxx(0) + X' X) M AN TTxy + X'Y)

A 1 X'X\ "'/ A 1 XY
— (2 Tev(0 SIANN
(1+>\ xO)+ 775 T) (1+)\ XN T)

n 1
Yp(0) = T+ NT

X (MNTTxx(0) + X' X)) H(ATTxy (0) + X’Y)] .

[()\TFYY(Q) +Y'Y) — (MTyx(0) + Y'X)
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DSGE-VARs: Posteriors

e The marginal posterior density of 6 can be obtained by evaluating the marginal likeli-

hood
n(Y]0) = AT xx(0) + X'X|73|(1+ NTY, Q)I_W
INTTxx (6)] 2 IATS(0) =
(27T) nT/22 1+/\T k) H" 1 F[((l + )\)T k41— Z)/Q]

X

2T T TAT — ki +1—14)/2
and the prior density p(6).

e We can also compute the marginal data density

pA(Y) = / PA(B]Y)p(6)de. (15)
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DSGE-VARs: Posteriors

MCMC Algorithm for DSGE-VAR:

1. Use the RWM Algorithm to generate draws 6(®) from the marginal posterior distribu-

tion p)(0]Y).

2. Use Geweke’s modified harmonic mean estimator to obtain a numerical approximation

of pA(Y).

3. For each draw 8®) generate a pair ), ¥(*), by sampling from the ZW—N distribution.



Frank Schortheide, University of Pennsylvania: Bayesian Methods 20

DSGE-VARs: Posterior of 6

e Where does the information about 8 come from? Rewrite posterior as
p(®,%,0]Y) = p(®, X[Y)p(0], X). (16)
Projection of VAR estimates on DSGE model restriction.

e Consider quasi-likelihood function:
1 _
p*(Y|0) x \Z*(Q)\‘Tﬂ exp {—5757” [Z* 1(0)(Y — XP*(0))(Y — X@*(@))] } . (17)

e Maximizing quasi-likelihood function with respect to € is equivalent to minimizing the

discrepancy between ®, ;. and 3, ;. and the restriction functions O*(6), X*(6).

A

T . . .
Inp*(Y]0) = —Evech(zzmle —340) DX @ Spe) D'vech(Sm. — S5(0))

mle

A

1 A A
—svec(bpie — O (0)(S,), @ X' X Jvec( by, — 0(0))

mle

+const + small. (18)
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DSGE-VARs: Posterior of 6

e Proposition 1: As A — oo (weight of the prior tends to infinity), our procedure
becomes equivalent to making inference based on the quasi-likelihood function p*(Y'|9).

Information accumulates at rate 7'

e Proposition 2: As A — 0, T' — oo, and AT — oo (moderate weight of the
prior, large sample), the marginal log-posterior density of 6 is approximately quadratic
in the discrepancy between ®,.. and 3, and the restriction functions O*(0), 3*(0).

Information accumulates at rate AT
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DSGE-VARs: Marginal Likelihood of A

e We will study the fit of the DSGE model by examining the marginal likelihood function

of the hyperparameter A:
PV = [ BlYI0.Z B)pa(6,%. 916, %, ). (19

e Maximum / mode:

A = argmax, ., p(Y|\).

e [t is common in the literature to use marginal data densities to document the fit of
DSGE models relative to VARs with diffuse priors. In our framework this corresponds

to comparing

p(Y|A =small) and p(Y|\ = o0)
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Prior

8

Likelihood A




Frank Schortheide, University of Pennsylvania: Bayesian Methods

Likelihood

24
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Marginal Likelihood of A\: Example
e Suppose the VAR takes the special form of an AR(1) model:
Y = QY1 + uy,  uy ~ 15dN(0, 1) (20)
and the DSGE model restricts ¢ to be equal to ¢*.
e Denote the DSGE model implied autocovariances by ~yy and ;.

e Let 4y and 7; be sample autocovariances.

e Prior simplifies to

1
¢~N(ﬁﬁ%) 1)
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Marginal Likelihood of A\: Example

e Marginal likelihood of A takes the following form

Inp(Y|\, 6%) = —T/21n(2r) — %52@, b*) — %C(A, ). (22)

e The term 6%()\, ¢*) measures the in-sample one-step-ahead forecast error:

i 6% ) = 2 3 (e~ Gy T 656 = >~ 6,

—0Q0

e The third term in (22) can be interpreted as a penalty for model complexity and is of

the form

c(A, ¢*) =In (1 + j—%) :

e If an interior maximum of marginal likelihood exists, it is given by

Yoi

A= — ! _
T(%% — 7071)2 - (70)270

(23)
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Marginal Likelihood of A\: Example

e As )\ approaches zero, the marginal log likelihood function tends to minus infinity.
e Consider the comparison of two models M (¢f;)) and M (¢7)).

— For small values of A the goodness-of-fit terms are essentially identical. Marginal

likelihoods differentials are due to differences in the penalty terms.

— For large values of A, marginal likelihood comparison is driven by the relative

in-sample fit of the two restricted specifications.
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DSGE-VARs: Posterior of )\

e Numerical [llustration in An and Schorfheide (2005):

Specification Data Set 1 Data Set 2

DSGE Model -196.66 -279.38
DSGE-VAR A\ = o0 -196.88 -277.49
DSGE-VAR A =5.00 -198.87 -270.46
DSGE-VAR A =1.00 -206.57 -208.25
DSGE-VAR A =0.75  -209.53 -257.53
DSGE-VAR A =0.50  -215.06 -258.73

DSGE-VAR A =0.25  -231.20 -269.66




Frank Schortheide, University of Pennsylvania: Bayesian Methods 29

DSGE-VARs: Comparison of DSGE and VAR

e Goal of IRF comparisons is to document in which dimensions the DSGE model dy-

namics are (in)consistent with the data.

e To what extent does the VAR satisfy key structural equations implied by the DSGE?

E.g.. is the Phillips curve equation misspecified?

e Examples: Cogley and Nason (1994), Rotemberg and Woodford (1997), Schorfheide
(2000), Boivin and Giannoni (2003), and Christiano, Eichenbaum, and Evans (2004),

to name a few.

e Important issue: estimation and the identification of the VAR that serves as a bench-

mark. Problems: many parameters to estimate, many shocks to identify.
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DSGE-VARs: Comparison of DSGE and VAR

A

e In our framework: compare (i) DSGE-VAR(co0) and DSGE-VAR(A) IRFs; (i) DSGE-

A

VAR(A) and DSGE IRFs.
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DSGE-VARs: Identification

e So far the DSGE-VAR is reduced form. For most applications we would like a mapping

from VAR innovations into structural shocks.

e An (exactly) identified VAR is a triplet: (P33, 2), where €2 is orthonormal:

(%) 5.0
5’62 VAR

e The DSGE model is identified: there is a matrix Q*(0) that maps the variance-

covariance matrix of innovations into the portion attributed to each shock:

ayt)
— = 2*7, 6 2" (9).
(362 DSGE t( ) ( )

o Identified DSGE-VAR: (@, 3, Q*()).
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DSGE-VARs: Identification

MCMC Algorithm for DSGE-VAR:

1. Use the RWM Algorithm to generate draws 6(®) from the marginal posterior distribu-

tion p)\(9|Y>

2. Use Geweke’s modified harmonic mean estimator to obtain a numerical approximation

of pA(Y).

3. For each draw 8®) generate a pair ), ¥(*), by sampling from the ZW—N distribution.

Moreover, compute the orthonormal matrix Q) as described above.
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DSGE-VARs: IRF Comparisons

e How well is the state-space representation of the linearized DSGE model approximated

by the finite-order VAR?

e For each 6 draw compare responses of the state-space version of the DSGE to the

DSGE-VAR(A = o0) version.

(insert figures here)
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Figure 11: IMPULSE RESPONSES, DSGE AND DSGE-VAR(\A = o) — MODEL M;(L),
Data D5(L)
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DSGE-VARs: IRF Comparisons

e How different are the IRFs of the VAR that is estimated subject to the DSGE model

restrictions from the IRFs of the VAR in which restrictions are relaxed?

e For each (®,3,0) draw compare responses of the state-space version of the DSGE to

the DSGE-VAR(A = o0) version.
e We plot posterior mean responses of DSGE-VAR(A = 00).

e Moreover, for each draw we compute the difference between DSGE-VAR(A) and DSGE-
VAR(A = 00). We use these differences to compute a posterior mean and 90% proba-

bility bands.

(insert figures here)
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Figure 12: IMPULSE RESPONSES, DSGE-VAR(A = o) AND DSGE-VAR(A = 1) —

MODEL M (L), DATA D5(L)
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DSGE-VARs: IRF Comparisons

e Suppose we rewrite the structural equations as follows:

A R - . .
Yt — Yey1 T+ ;[Rt - EtWHl] = (1 - Pg)gt + IEZi

Ty — ﬁlEt[ﬁtJrl] — Ky = —KG
Ry — prBi—1 — (1 — pr)nfr + (1 — pr)totn = —(1 — pr)tods + €y

e For instance, in response to a monetary policy shock, the right-hand-side of the Euler

equation and the Phillips curve equation has to be zero.
e We can check these conditions for the DSGE-VAR(A) response.

e We overlay the right-hand-side for DSGE and DSGE-VAR.

(insert figures here)
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Figure 13: IMPULSE RESPONSES, DSGE-VAR(A = o) AND DSGE-VAR(A = 1) —
MODEL M (L), DATA D5(L)
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DSGE-VARs: Some Empirical Results

e Based on Del Negro, Schorfheide, Smets, and Wouters (2006)...

e U.S. data; unless noted otherwise thirty years of observations (7" = 120), starting in

QII:1974 and ending in QI:2004. Lag length p = 4.

e Forecasting exercise: beginning from QIII:1954 we construct 58 rolling samples of 120

observations.
e Four parts of the analysis:

— Parameters: priors and posteriors
— Marginal likelihood function
— Model comparison: baseline versus No Habit and No Indezxation.

— Some pseudo-out-of-sample forecast error statistics.
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DSGE-VARs: Some Empirical Results

A

Prior DSGE-VECM(A) Post. DSGE Post.
Mean Interval Mean Interval Mean Interval
¢ 060 [029,093] 079 [0.72,086] 083 [0.79,0.87]
t,, 050 [0.08,095] 075 [053,1.00] 076 [0.57,0.97]
Cow 060 [029,094] 079 [070,087] 089 [0.84,0.93]
Ly 050 [005,093] 045 [0.04,080] 070 [047,0.96]
h 070 [062,078] 075 [0.70,081] 081 [0.77,0.85]
Yy 150 [0.99,209] 1.80 [142,219] 221 [1.79,263]
Yo 020 [0.05,035] 0.16 [0.09,022] 0.07 [0.03,0.10 ]
pr 050 [0.18,083] 0.76 [0.70,083] 082 [0.78,0.86 ]

37
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DSGE-VARs: Some Empirical Results

e Roughly: A = oo dogmatically imposes DSGE model restrictions; A = 0 completely

ignores the restrictions.

e Best fit in terms of Bayesian marginal likelihood and out-of-sample forecasting perfor-

mance is obtained for intermediate values of A — indicating some disagreement between

DSGE and data.
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Marginal Likelihood of A: 30-Year Sample: QII:1974 to QI:2004
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Marginal Likelihood of A: 30-Year Sample: QII:1970 to QI:2000
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A

Technology Shock IRFs: DSGE-VAR(A) vs. DSGE-VAR (00)
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Comparing Different DSGE Model Specifications
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No Habit Specification: Technology Shock IRF's
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No Indexation Specification: Monetary Policy Shock IRFs
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No Indexation Specification: Technology Shock IRF's

=

=

o000

C |
.6 1 g4 0.6
4 L
0.8 3t 0.4+t
2r ~
—_—— - ~
| 0.6 —- 2t . 0.2 '~ E
1 ~ -~
\ .
. ~ .
8r - 0.4}, 1t o}
ol | .
/ 0.2} Or —0.2
a
2 (@] —1 —0.4
12 16 8 12 16 8 12 12 16
Inflation R
1 0.2 0.3
O.1+¢ o0.2r¢
8 L
Or 1 O.1¢t
L =— ]
6 _ . .1 —o.aat Lo o} - T
al —0.2} —0.1}
: —0.3 ¢ —0.2 |
2F .
—0.4} —0.3
(0} —0.5 —0.4
12 16 8 12 16 8 12



Frank Schortheide, University of Pennsylvania: Bayesian Methods 48

Discussion

Question: If we did not have the baseline model at hand, but only the alternative specifi-

cation, can we learn something from our procedure about what is missing?

e No Habit: For money shock (but also technology), clearly something is amiss! Con-

A

sumption (Y, and H) responds to quickly in DSGE-VAR(oc0) relative to DSGE-VAR(A

A

e ... however DSGE-VAR(A)’s IRFs are close to those of the Baseline model: Even if

the DSGE model w/o Habit is grossly misspecified, the DSGE-VAR()) is not too bad

as a benchmark.

e No Indezation: No clear evidence from Money and/or Tech IRFs that a feature that

can lead to improved fit is missing.
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Forecasting Performance: One-period Ahead Root Mean Square Error Summary
12 T T T T T T T T T

Basell 3
No Indexation 3
_2 — _I
No Habit
_4 1 1 1 1 1 1 1 1 1
(@) 0.33 0.5 0.75 1 1.25 1.5 2 5 INf DSGE
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Discussion

e Roughly: DSGE model and unrestricted VAR are comparable. DSGE-VAR improves.
e This suggests:

— Unrestricted VARs are not a good benchmark for DSGE evaluations.

— DSGE-VARs are useful tools for central banks
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DSGE-VARs: Extensions

e Start from DSGE with interest-rate feedback rule, allow for deviations from cross-

coeflicient restrictions while maintain form of policy rule — leads to a collection of

identified VARs.

e Observables y;: Interest Rate, Inflation, Output Gap.

o Let 2p = [y; 1, .., ¥, 1]. Rewrite policy rule in general terms:
i, = 2 M1 S1(0) + o, Ma () + €14 (24)

Interest Rate

e Define U*(0) = (IE ExA) _1Eé) [21Y,] and write remainder of system:

yé,t = CU;\D*(Q) + U/Q,t' (25)
—~
Inflation, OutputGap
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e VAR approximation (25) is in general not exact yet quite accurate with four lags in

our application.

e (24) and (25) comprise a partially identified (based on exclusion restrictions) VAR.
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DSGE-VARs: Extensions

e Rewrite Interest Rate equation
Y1t = o M1 G1(0) + 2, U (0) Mofa(0) + ua g, (26)
e and create restricted VAR for y;
v, = 2,0 +uy,  Euuy] =2 (27)

with

O = d*(0) = Bi(60) + U (0)Ba(6), T = X*(0).
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DSGE-VARs: Extensions

e There is a vector  and matrices U2 and ¥ such that the data are generated from
the VAR in Eq. (27)

O = B1(0) + (V) + T2)By(6), ¥ =X%(6)+ X2, (28)

e (Assume X2 = () Construct a prior with property that its density is proportional to

the expected likelihood ratio of W evaluated at its (misspecified) restricted value U*(8)

versus the “true” value U = U*(0) + U2,

e Same analysis as before... MCMC is a bit more complicated.
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DSGE-VARs: Extensions

e The forecast error ug, is a function of the structural shocks: uh, = €1, 41 + €, , As.

e After some matrix algebra we can determine A; and A} As, which identifies monetary

policy shocks, but does not separate technology from demand shocks.

e We follow the idea in Del Negro and Schorfheide (2004) and decompose the DSGE

model response AD'(9) = A%T(Q)Q*(H).
e And then let: Ay = chol(ALA2)2*(6).

e Now we have a collection of identified VARs. Del Negro and Schorfheide (2005) study

effects of changes in the policy rule in this framework.
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Conclusions and Outlook

e Large body of empirical work on the Bayesian estimation / evaluation of DSGE models.
e An and Schorfheide (2005) paper illustrates techniques based on New Keynesian model.
e Model size / dimensionality of the parameter space pose challenge for MCMC methods.

e Lack of identification of structural parameters is often difficult to detect; creates a

challenge for scientific reporting.

e Model misspecification is and will remain a concern in empirical work with DSGE mod-

els despite continuous efforts by macroeconomists to develop more adequate models.

e Hence it is important to develop methods that incorporate potential model misspecifi-
cation in the measures of uncertainty constructed for forecasts and policy recommen-

dations.



