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Likelihood Function (I)

e Forecast error covariance for vectors of macro variables is typically not rank-deficient.

e In order to explain data, we need a model that delivers a non-degenerate probability

distribution for the observables:

— Include enough structural shocks: e.g. preference shocks. Capture to some extent
aggregation effects.
— Include measurement errors. More precisely, these errors are supposed to capture

the discrepancy between model and reality.

e Generalization of shock structure potentially breaks cross-coefficient restrictions. Might

reduce misspecification but also introduce additional identification problems.

e Endogenous propagation of innovations versus exogenous propagation.
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Likelihood Function (II)

e Likelihood function: joint probability density of the data YZ = {y,..., vy }:

LOYT) =pYT0) = | [ (el Y, 0) (1)

t=1

e Log-linearized DSGE models can be written as state-space models:
measurement : y; = A(0) + B(0)s; (2)
state transition : s; = ®1(0)s;_1 + Dc(0)e;. (3)
e Make distributional assumption: € ~ #dN (0, X(6)).

e [t is only assumed that the y;’s are observable. The vector s; may have unobservable

elements such as conditional expectations or a latent productivity process.

e We obtained the state transition equation when we solved the LRE model.
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Likelihood Function (IIT)

e [f s; is not fully observable we need to use a filter to obtain the likelihood function.

This filter is a recursive algorithm to calculate

p(yt|Y_1, 0), t=1,...,T
e [terations:

— Initialization at time t: p(s;|Y", 0)
— Forecasting t + 1 given t:
1. Transition equation: p(si1|Y",0) = [ p(sepa]se, Y, 0)p(s:| Y, 0)ds;
2. Measurement equation: p(yi1|Y",0) = [ p(yes1lsei1, Y, 0)p(si1|Y?, 0)dsei

— Updating with Bayes theorem. Once y;,.1 becomes available:

(Yr11]5641, Y, 0)p(se4 Y, 6)
p(y1|Y1, 0)

p(stﬂ‘ytﬂa 0) = p(si1|yes1, Y 6) = P
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Likelihood Function (IV)

e Initialization: process s; is stationary we can initialize the filter with the unconditional

distribution of s;, calculated from the transition equation.

E[Stsg] = q)lE[StS;](I)ll + (DGEE(I)Q

e Iterations look difficult because they involve integrations. But:
e If ¢ is normally distributed, all conditional distributions are also normal.
e At each step we only track means and covariance matrices... Kalman filter.

e Kalman filter iterations can be found in standard time series textbooks, e.g., Hamilton

(1994). (see Appendix).
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Kalman Filter

e [ am using slightly different notation now...

e Measurement equation: y;, = A + Bs; + uy,

uy's are innovations (or “measurement errors”) with mean zero and IF;_[uu;] = H.

e Transition equation: s; = $s;_1 + Rey,

where ¢; is a vector of innovations with mean zero and variance ..

e System matrices A, B, ®, R, Y., H are non-stochastic and predetermined, so system is

linear and y; can be expressed as a function of present and past u;’s and €;’s.

e Write [F[sg| = Sy and Var[sy| = Fp.
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Kalman Filter

e Initialization: Start with prior distribution for the initial state so: so ~ N (Sy, By),

e.g., choose Sy and Py to be mean and variance of (stationary) state vector distribution.

e Forecasting: At (¢t — 1)*, that is, after observing y; 1, the belief about the state
vector has the form st_l\Yt_l ~ N(S;_1, P,_1). Thus, the “posterior” from period

t — 1 turns into a prior for (t — 1)".
e Since s;_1 and ¢; are independent multivariate normal random variables, it follows that
s Y7~ N (84-1, Pyji—1) (4)
where

Stit—-1 = DS; 1

Pjii = ®P,@' + RE.R
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Kalman Filter

e The conditional distribution of y;|s;, Y1 is of the form
yils, Y ~ N(A+ Bs;, H) (5)

Since 5|Vt ~ N (8¢¢—1, Byr—1), we can deduce that the marginal distribution of ¥

conditional on Y1 is of the form
ylY' 7~ N (U1, Fijp—1) (6)
where

Yjt—1 = A+ BSyy

Fyj1 = BP_B'+H
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e Updating: To obtain the posterior distribution of s¢|y;, Y~ note that

e and the joint distribution of s; and 1; is given by

St

Yt

Kalman Filter

st = Sy—1 + (St — Sg—1)

Ye = Yepp—1 + B(si — Sy—1) + uy

Yt—l ~ N

St|t—1

Ye|t—1

BP

Pyji—1

t[t—1

Py B’

Fiji—1
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Kalman Filter

e Applying Bayes theorem, i.e., calculating a conditional distribution based on a joint...
St‘yt; Yt_l ~ N(St, Pt) (10)
where

St = Sy—1+ Pt|t_1B’Fﬂ§1_1(yt — A — B3y1)

Py = By — Pt|t—1B/Ftﬁl_13Pt\t—1

The conditional mean and variance g;;_1 and Fy;_; were given above. This completes

one iteration of the algorithm. The posterior s;|Y" is the prior for the next iteration.
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Kalman Filter

e Likelihood Function:

T

p(Y!|parameters) = H p(y|Y'™ !, parameters)
=1

T ~1/2
— (QW)—nT/Q (H |Ftt1\> exp {

t=1

where

Ve = Y — Gip—1 = B(se — Sy—1) +

! T
5 Z VtF;f|t—1V£
t=1

}

11

(11)
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Extensions — Conditioning (I)

e Conditioning: so far we discussed the unconditional likelihood function.

e Other time series models, such as VARs, are commonly estimated based on conditional

likelihood functions, e.g.,

Pyt yrlyo, 0) (12)

e [n order to obtain a conditional likelihood for the DSGE, note that

(Yo, y1, - - ., yr|0) 13)

e ,0) =
P(yl yT’yo ) p(yo\ﬁ)

e The numerator can be obtained by applying the (Kalman) filter to all observations,

including 19, whereas the denominator is obtained by applying the filter to y, only.
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Extensions — Conditioning (II)

e Short-cut: the Kalman filter applied to v, ..., yr generates p(yo) and p(y|Y 1), for

t=1,...,1. Calculate conditional likelihood as

c=1]"plyly "
t=1
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Extensions — Nonstat Levels (I)

e Reference: Chang, Doh, Schorfheide (2005): “Non-stationary Hours in a DSGE Model.”

e Log-linearized DSGE has state space representation of the form:

y = Lo+ Flsl,t + T'gso s +1'at (14)
S14 = @181’75_1 + W€ (15)
Sot = Sop-1+ Waey. (16)

e Trend in (14) captures drift random walk technology Ay.

e Equation (15) represents the law of motion for the variables of the detrended model.

e (16) describes evolution of sq; = In Ay — vt for My and so; = [In Ay — ¢, In By]".
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Extensions — Nonstat Levels (I1)

e Initialization of Kalman filter: factorize the initial distribution as p(si o)p(s2,0)-
e Set the first component equal to the unconditional distribution of s ;.

e Absorb second component, composed of the distribution of In Ay (M) and [In Ay, In By)’

(M), respectively, into the specification of our prior p(@).

e [f DSGE model implies, say, common trend in investment, consumption, and output,
then estimation based on likelihood function in levels, incorporates information about

the ratios investment /output, consumption/output.

e Roughly, likelihood will relate the model implied steady-state ratios to long-run aver-

ages in the data.
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Likelihood Function (V)

e [f DSGE models is solved with nonlinear method then Kalman Filter is not sufficient.
e Alternative: particle filter or sequential Monte Carlo filter.

e Particle has been used to analyze stochastic volatility models: Pitt and Shephard

(1999), and Kim, Shephard, and Chib (1998);

e DSGE models solved with finite elements method: Fernandez-Villaverde and Rubio-

Ramirez (2004).

e DSGE models solved with second-order perturbation methods: An (2005) and An and

Schorfheide (2005).



