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Introduction to Bayesian Statistics

• Ingredients of Bayesian Analysis:

– Likelihood function L(θ|Y T ) = p(Y T |θ)

– Prior density p(θ)

– Marginal data density p(Y T ) =
∫

p(Y T |θ)p(θ)dθ

• Bayes Theorem:

p(θ|Y T ) =
L(θ|Y T )p(θ)

p(Y T )
(1)
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Linear Regression

• Consider linear regression model:

yt = x′tθ + ut, ut ∼ iidN (0, 1), (2)

or

Y = Xθ + U.

Assume θ is k × 1.

• Notice: we treat the variance of the errors as know. The generalization to unknown

variance is straightforward but tedious.

• Likelihood function:

L(θ|Y, X) = (2π)−T/2 exp

{
−1

2
(Y −Xθ)′(Y −Xθ)

}
. (3)
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A Convenient Prior

• Prior:

θ ∼ N
(

0k×1, τ
2Ik×k

)
, p(θ) = (2πτ 2)−k/2 exp

{
− 1

2τ 2
θ′θ

}
(4)

• Large τ means diffuse prior.

• Small τ means tight prior.
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Deriving the Posterior (I)

• Bayes Theorem:

p(θ|Y, X) ∝ p(θ)L(θ|Y, X). (5)

• Right-hand-side is given by

p(θ)L(θ|Y, X)

∝ (2π)−
T+k

2 τ−k exp

{
−1

2
[Y ′Y − θ′X ′Y − Y ′Xθ + θ′X ′Xθ + τ−2θ′θ]

}
. (6)

• Rewrite exponential term

Y ′Y − θ′X ′Y − Y ′Xθ + θ′X ′Xθ + τ−2θ′θ

= Y ′Y − θ′X ′Y − Y ′Xθ + θ′(X ′X + τ−2I)θ (7)

=

(
θ − (X ′X + τ−2I)−1X ′Y

)′(
X ′X + τ−2I

)(
θ − (X ′X + τ−2I)−1X ′Y

)

+Y ′Y − Y ′X(X ′X + τ−2I)−1X ′Y.
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Deriving the Posterior (II)

• Exponential term is a quadratic function of θ.

• Deduce: posterior distribution of θ must be a multivariate normal distribution

θ|Y,X ∼ N (θ̃T , ṼT ) (8)

with

θ̃T = (X ′X + τ−2I)−1X ′Y

ṼT = (X ′X + τ−2I)−1.

• τ −→∞:

θ|Y,X
approx∼ N

(
θ̂mle, (X

′X)−1

)
. (9)

• τ −→ 0:

θ|Y, X
approx∼ Pointmass at 0 (10)
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Point Estimation (I)

• Interpret point estimation as decision problem.

• Consider quadratic loss:

L(θ, δ) = (θ − δ)2 (11)

• Optimal decision rule is obtained by minimizing

min
δ∈D

IE[(θ − δ)2|Y,X ] (12)

• Solution: δ = IE[θ|Y, X ], i.e., posterior mean.

(Figure)





Frank Schorfheide: Estimation and Evaluation of DSGE Models 8

Point Estimation (II)

• Consistency: Suppose data are generated from the model yt = x′tθ0 + ut. Asymptoti-

cally the Bayes estimator converges to the “true” parameter θ0.

• Consider

θ̃T = (X ′X + τ−2I)−1X ′Y (13)

= θ0 +

(
1

T
X ′X +

1

τ 2T
I
)−1(

1

T
X ′U

)

p−→ θ0

• Disagreement between two Bayesians who have different priors will asymptotically

vanish.
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Confidence Sets

• Bayesian: CY ⊆ Θ is 1− α credible if

IP Y { θ︸︷︷︸
r.v.

∈ CY } ≥ 1− α (14)

• Bayesian: a highest posterior density region (HPD) is of the form

CY = {θ : p(θ|Y ) ≥ kα} (15)

where kα is the largest bound such that

IP Y {θ ∈ CY } ≥ 1− α

HPD regions have the smallest volume among all α credible regions of the parameter

space Θ.

(Figure)
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Testing (I)

• H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

• Decision space is 0 (“reject”) and 1 (“accept”).

• Loss function

L(θ, δ) =





0 δ = {θ ∈ Θ0} correct decision

a0 δ = 0, θ ∈ Θ0 Type 1 error

a1 δ = 1, θ ∈ Θ1 Type 2 error

(16)

Note that the parameters a1 and a2 are part of the econometricians preferences.

• Optimal decision:

δ(Y T ) =





1 IP Y {θ ∈ Θ0} ≥ a1
a0+a1

0 otherwise

(17)
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Testing (II)

• Posterior odds:

IP Y {θ ∈ Θ0}
IP Y {θ ∈ Θ1}

• Often, hypotheses are evaluated according to Bayes factors:

B(Y T ) =
Posterior Odds

Prior Odds
=

IP Y {θ ∈ Θ0}/IP Y {θ ∈ Θ1}
IP{θ ∈ Θ0}/IP{θ ∈ Θ1} (18)

• How do we test θ = 0? We’ll come back to that later...


