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Posterior Odds and Marginal Data Densities

• Posterior model probabilities can be computed as follows:

πi,T =
πi,0p(Y |Mi)∑
j πj,0p(Y |Mj)

, j = 1, . . . , 4, (1)

• where

p(Y |M) =

∫
L(θ|Y,M)p(θ|M)dθ (2)

• Posterior odds and Bayes Factor

π1,T

π2,T
=

π1,0

π2,0︸︷︷︸
Prior Odds

× p(Y |M1)

p(Y |M2)︸ ︷︷ ︸
Bayes Factor

(3)
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Example: Linear Regression

• Simple example: compare

M0 : yt = x
(0)′
t θ(0) + u

(0)
t (4)

M1 : yt = x
(1)′
t θ(1) + u

(1)
t (5)

• Prior probabilities: πi,0.

• Posterior probabilities:

πi,T =
πi,0p(Y T |Mi)∑

i=0,1 πi,0p(Y T |Mi)
. (6)

where marginal data density is

p(Y T |Mi) =

∫
L(θ(i)|Y T ,Mi)p(θ(i)|Mi)dθ(i) (7)
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Example: Linear Regression

• Here calculation is relatively simple:

p(Y |X) =
L(θ|Y, X)p(θ)

p(θ|Y, X)
. (8)

• Since, we previously showed that the posterior p(θ|Y,X) is multivariate normal all the

terms on the right-hand-side are known:

p(Y |X) =
(2π)−T/2(2π)−k/2τ−k exp

{−1
2[(Y −Xθ)′(Y −Xθ) + θ′θ/τ 2]

}

(2π)−k/2|Ṽ |−1/2 exp
{
−1

2[(θ − θ̃)′Ṽ −1(θ − θ̃)]
} (9)

= (2π)−T/2τ−k|X ′X + τ−2I|−1/2

× exp

{
−1

2
[Y ′Y − Y ′X(X ′X + τ−2I)−1X ′Y ]

}
.

using the definition of θ̃ and Ṽ :

θ̃T = (X ′X + τ−2I)−1X ′Y, ṼT = (X ′X + τ−2I)−1.
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Example: Linear Regression

• Schwarz Criterion: The terms of the marginal data density that asymptotically domi-

nate are

ln p(Y |X) = −T

2
ln(2π)− 1

2
(Y ′Y − Y ′X(X ′X)−1X ′Y )− k

2
ln T + small

= ln p(Y |X, θ̂mle)︸ ︷︷ ︸
max likelihood

− k

2
ln T

︸ ︷︷ ︸
penalty

+small (10)

• Notice that

ln |X ′X + τ−2I|−1/2 = −1

2
ln

∣∣∣∣T
(

1

T
X ′X +

1

Tτ 2
I
)∣∣∣∣ (11)

= −k

2
ln T

︸ ︷︷ ︸
O(ln(T ))

− 1

2
ln

∣∣∣∣
1

T
X ′X +

1

Tτ 2
I
∣∣∣∣

︸ ︷︷ ︸
Op(1)
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Consistency

• If data are generated from model Mi then as T −→ ∞ the posterior probability of

model Mi converges to one for almost all data sets.

If the models are nested, then the posterior prob of the smaller model will converge to

one (because the penalty is smaller).

• If data are not generated from any of the models under consideration, then, roughly

speaking, the posterior probability of the model that is closest in the Kullback-Leibler

sense to the “truth” converges to one.

What happens if there are ties? Is this a very useful result?
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Example: Linear Regression

• Suppose we compare: M0 yt = ut versus M1 yt = x′tθ + ut, θ ∼ N (0, τ 2I).

• Under M0:

ln p(Y |X) = −T

2
ln(2π)− 1

2
Y ′Y

whereas under M1:

ln p(Y |X) = −T

2
ln(2π)− 1

2
(Y ′Y − Y ′X(X ′X + τ−2I)−1X ′Y )− k

2
ln T + small
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Example: Linear Regression

• Assume that data were generated from the model yt = x′tθ0 + ut.

Y ′X(X ′X + τ−2)−1X ′Y

= θ′0X
′X(X ′X + τ−2)−1X ′Xθ0 + U ′X(X ′X + τ−2)−1X ′U (12)

+U ′X(X ′X + τ−2)−1X ′Xθ0 + θ′0X(X ′X + τ−2)−1X ′U

= Tθ′0

(
1

T

∑
xtx

′
t

)−1

θ0 +
√

T2

(
1√
T

∑
xtut

)′
θ0

+

(
1√
T

∑
xtut

)′(
1

T

∑
xtx

′
t

)−1(
1√
T

∑
xtut

)
+ Op(1).

• If θ0 = 0 then

ln

[
p(Y |X,M0)

p(Y |X,M1)

]
=

k

2
ln T + small −→ +∞. (13)

• If θ0 6= 0 then

ln

[
p(Y |X,M0)

p(Y |X,M1)

]
= −T

2
θ′0

(
1

T

∑
xtx

′
t

)−1

θ0 + small −→ −∞. (14)
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Finite-Sample Challenges: Lindley’s Paradox

• Test H0 : θ = 0:

ln

[
p(Y |X,M0)

p(Y |X,M1)

]
= τ k|X ′X + τ−2|1/2 exp

{
−1

2
[Y ′X(X ′X + τ−2I)−1X ′Y ]

}
(15)

• Lindley’s Paradox: suppose Y is fixed, as prior on alternative becomes more diffuse

(τ −→∞)

ln

[
p(Y |X,M0)

p(Y |X,M1)

]
−→∞ (16)

regardless of Y .

• Important for non-nested model comparisons. Changing prior variance can have small

effect on posterior distribution of parameters yet large effect on posterior model prob-

abilities.
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Example: Model Selection vs Likelihood Ratio
Test

• Comparison of Bayesian test to LR test.

• In the regression example: (H0 : θ = 0)

LR = 2 ln

[
p(Y |X, θ̂mle)

p(Y |X, θ = 0)

]
(17)

= Y ′X(X ′X)−1X ′Y. (18)

• If H0 is true, then

LR =

(
1√
T

∑
xtut

)′(
1

T

∑
xtx

′
t

)−1(
1√
T

∑
xtut

)
=⇒ χ2

k (19)
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Example: Model Selection vs. Likelihood Ratio
Tests

• Frequentist decision rule: accept / don’t reject θ = 0 if

Y ′X(X ′X)−1X ′Y < χ2
k,crit (20)

• Bayesian decision rule: accept θ = 0 if

Y ′X(X ′X)−1X ′Y < k ln T + small (21)

• Note: the implied Bayesian critical value tends to infinity at logarithmic rate. Con-

sequently, the size of the test converges to zero asymptotically and the Type 1 error

vanishes.
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In General...

• Laplace approximation (θ̃ is mode, Σ̃ is inv Hessian)

p̂(Y |M) = (2π)d/2 p(Y |θ̃,M)p(θ̃|M)︸ ︷︷ ︸
In− sample F it

× |Σ̃|1/2︸ ︷︷ ︸
Dimensionality Penalty

(22)

• In “regular” models T · Σ̃ = Op(1). Thus,

1

2
ln |Σ̃| = −d

2
ln T (23)

The larger the dimensionality d, the larger the penalty.

• ln p(Y |M) can be interpreted as predictive score (Good, 1952)

T∑
t=1

ln p(yt|Y t−1,M) =

T∑
t=1

ln

[∫
p(yt|Y t−1, θ,M)p(θ|Y t−1,M)dθ

]
, (24)

Model comparison based on posterior odds captures the relative one-step-ahead pre-

dictive performance.
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Numerical Approximations

• Naive approach: draw θ(s) from prior p(θ) and use

ln p(Y ) ≈ 1

nsim

nsim∑
s=1

p(Y |θ(s))

• Why does this not work?

• Refinement:

ln p(Y ) =

T∏
t=1

p(yt|Y t−1) ≈
T∏

t=1

1

nsim

nsim∑
s=1

p(yt|Y t−1, θ
(s)
t−1),

where θ
(s)
t−1) is drawn from p(θ|Y t−1).

• We will now discuss Geweke’s modified harmonic mean estimator and the Chib and

Jeliazkov method.
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Numerical Approximations: Harmonic Mean

• Harmonic mean estimators are based on the following identity

1

p(Y )
=

∫
f (θ)

L(θ|Y )p(θ)
p(θ|Y )dθ, (25)

where
∫

f (θ)dθ = 1.

• Conditional on the choice of f (θ) an obvious estimator is

p̂G(Y ) =

[
1

nsim

nsim∑
s=1

f (θ(s))

L(θ(s)|Y )p(θ(s))

]−1

, (26)

where θ(s) is drawn from the posterior p(θ|Y ).

• Geweke (1999):

f (θ) = τ−1(2π)−d/2|Vθ|−1/2 exp
[−0.5(θ − θ̄)′V −1

θ (θ − θ̄)
]

(27)

×
{

(θ − θ̄)′V −1
θ (θ − θ̄) ≤ F−1

χ2
d

(τ )
}

.
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Numerical Approximations: Chib and Jeliazkov (I)

• Rewrite Bayes Theorem:

p(Y ) =
L(θ|Y )p(θ)

p(θ|Y )
. (28)

• Thus,

p̂CS(Y ) =
L(θ̃|Y )p(θ̃)

p̂(θ̃|Y )
, (29)

where we replaced the generic θ in (28) by the posterior mode θ̃.

• Within the RWM Algorithm denote the probability of moving from θ to ϑ by

α(θ, ϑ|Y ) = min {1, r(θ, ϑ|Y )} , (30)

where r(θ, ϑ|Y ) was in the description of the algorithm. Moreover, let q(θ, θ̃|Y ) be

the proposal density for the transition from θ to θ̃.
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Numerical Approximations: Chib and Jeliazkov
(II)

• Then the posterior density at the mode can be approximated as follows

p̂(θ̃|Y ) =

1
nsim

∑nsim
s=1 α(θ(s), θ̃|Y )q(θ(s), θ̃|Y )

J−1
∑J

j=1 α(θ̃, θ(j)|Y )
, (31)

where {θ(s)} are sampled draws from the posterior distribution with the RWM Algo-

rithm and {θ(j)} are draws from q(θ̃, θ|Y ) given the fixed posterior mode value θ̃.

(insert figures here)
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Figure 9: Log Marginal Data Densities from Multiple Chains

Notes: Output gap rule specification (top panel) and output growth rule specification (bot-

tom panel), Data Sets 1-M1 and 1-M2, respectively. For each Markov chain, log marginal

data densities are computed recursively with Geweke’s modified harmonic mean estimator

and plotted as a function of the number of draws.
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Figure 10: Log Marginal Data Densities – Geweke vs. Chib-Jeliazkov

Notes: Output gap rule specification M1, Data Set 1-M1. Log marginal data densities

are computed recursively with Geweke’s modified harmonic mean estimator as well as the

Chib-Jeliazkov estimator and plotted as a function of the number of draws.
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Bayes Factors / Posterior Odds: Example

• Two alternative specifications: M3 prices are nearly flexible (κ = 5); M4 central bank

does not respond to output (ψ2 = 0).

• Marginal data densities are -196.7 for M1, -245.6 for M3, and -201.9 for M4.

• Bayes factors:

– M1 versus M3 is approximately e49;

– M1 versus M4 is approximately e4.


