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Comparison to VARs: DSGE-VARs

• Compare fit of DSGE model to that of a VAR based on marginal data densities.

Mechanics are non-trivial. Under a very diffuse prior for the VAR coefficients, the

DSGE model is likely to win the comparison.

• Careful construction of VAR prior is crucial, for instance:

– Minnesota-style prior, Sims-Zha priors for identified VARs.

– DSGE-VARs: Del Negro and Schorfheide (2004, 2005), Del Negro, Schorfheide,

Smets, and Wouters (2004).

• Compare DSGE model dynamics to (identified) VAR dynamics
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Two Views of DSGE-VARs

• Improve VAR estimates by “restricting” its parameter estimates.

• Improve DSGE model by relaxing its restrictions.
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DSGE-VARs: Improving VARs

• Consider a vector autoregressive specification of the form

yt = Φ0 + Φ1yt−1 + . . . + Φpyt−p + ut, IE[utu
′
t] = Σ. (1)

• Write VAR as Y = XΦ + U , Y is T × n, X is T × k.

• Difficulty: too many parameters which leads to imprecise estimates.

• Solution: tilt estimates toward a point in the parameter space. Example: Minnesota

prior tilts toward random walks.

• Here: tilt toward DSGE model restrictions.
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Example

• n independent draws of yt from N (µ, 1).

• MLE of µ:

µ̂ML =
1

n

n∑
t=1

yt.

• Bayes estimator based on prior µ ∼ N (0, τ 2)

µ̂B =
1

n + 1/τ 2

n∑
t=1

yt =
n

n + 1/τ 2
µ̂ML +

1/τ 2

n + 1/τ 2
0



Frank Schorfheide, University of Pennsylvania: Bayesian Methods 6

Example

• MSE of MLE:

IEµ

[
(µ− µ̂ML)2

]
= 02︸︷︷︸

Bias2

+
1

n︸︷︷︸
Variance

.

• MSE of Bayes Estimator:

IEµ

[
(µ− µ̂B)2

]
= µ2

(
1/τ 2

n + 1/τ 2

)2

︸ ︷︷ ︸
Bias2

+
n

(n + 1/τ 2)2︸ ︷︷ ︸
variance

.

• If µ2 is small, i.e. the discrepancy between the a priori expected value and the “true”

value is small, then the Bayes estimator clearly dominates.
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DSGE-VARs: Improving VARs

• Complication: DSGE model depends on parameters θ.

• Solution: place prior on θ. Use notion of dummy observations to construct priors

conditional on θ. Overall:

p(Φ, Σ, θ) = p(θ)p(Φ, Σ|θ). (2)

• Let’s look at: p(Φ, Σ|θ).
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DSGE-VARs: Improving VARs

• Quasi-likelihood function for artificial observations (sample size T ∗ = λT ) generated

from DSGE model:

p(Y ∗(θ)|Φ, Σu) ∝ (3)

|Σu|−λT/2 exp

{
−1

2
tr[Σ−1

u (Y ∗′Y ∗ − Φ′X∗′Y ∗ − Y ∗′X∗Φ + Φ′X∗′X∗Φ)]

}
.

• Let IED
θ [·] be the expectation under DSGE model and define the autocovariance ma-

trices

ΓXX(θ) = IED
θ [xtx

′
t], ΓXY (θ) = IED

θ [xty
′
t].

• Replace sample moments Y ∗′Y ∗ by IED
θ [Y ∗′Y ∗] = λTΓY Y (θ), etc.
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DSGE-VARs: Improving VARs

• Define

Φ∗(θ) = Γ−1
XX(θ)ΓXY (θ), Σ∗(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1

XX(θ)ΓXY (θ). (4)

• Prior distribution:

Σ|θ ∼ IW
(

λTΣ∗(θ), λT − k, n

)
(5)

Φ|Σ, θ ∼ N
(

Φ∗(θ),
1

λT

[
Σ−1 ⊗ ΓXX(θ)

]−1
)

,
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DSGE-VARs: Relaxing DSGE Restrictions

• Alternative motivation...
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DSGE-VARs: Relaxing DSGE Restrictions

• There is a vector θ and matrices Φ∆ and Σ∆ such that the data are generated from

the VAR in Eq. (1)

Φ = Φ∗(θ) + Φ∆, Σ = Σ∗(θ) + Σ∆. (6)

• We will construct a prior for Φ∆ and Σ∆

• For now assume Σ∆ = 0.
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DSGE-VARs: Relaxing DSGE Restrictions

• Our prior for Φ∆ has the property that its density is proportional to the expected

likelihood ratio of Φ∗ + Φ∆ versus Φ∗.

• Likelihood ratio:

ln

[L(Φ∗ + Φ∆, Σ∗u|Y∗, X∗)
L(Φ∗, Σ∗u|Y∗, X)

]
(7)

= −1

2
tr

[
Σ∗−1

u

(
Φ∆′

X ′
∗X∗Φ∆ − 2Φ∗

′
X ′
∗X∗Φ∆ − 2(Φ∗ + Φ∆)′X ′

∗Y∗ + 2Φ∗
′
X ′
∗Y∗

)]
.

• Taking expectations yields

IED
θ

[
ln

[L(Φ∗ + Φ∆, Σ∗u|Y∗, X∗)
L(Φ∗, Σ∗u|Y∗, X∗)

] ]
= −1

2
tr

[
Σ∗−1

u

(
Φ∆′

λTΓXXΦ∆

)]
. (8)
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DSGE-VARs: Relaxing DSGE Restrictions

• We now choose a prior density that is proportional (∝) to the expected likelihood ratio:

p(Φ∆|Σ∗u) ∝ exp

{
− 1

2
tr

[
λTΣ∗−1

u

(
Φ∆′

ΓXXΦ∆

)]}
. (9)

• Transform this prior into a prior for Φ = Φ∗(θ) + Φ∆:

Φ|Σ∗, θ ∼ N
(

Φ∗(θ),
1

λT

[
Σ∗−1 ⊗ ΓXX(θ)

]−1
)

. (10)

• Relax the assumption that Σ∆ = 0.

• Again, we obtain:

Σ|θ ∼ IW
(

λTΣ∗(θ), λT − k, n

)
(11)

Φ|Σ, θ ∼ N
(

Φ∗(θ),
1

λT

[
Σ−1 ⊗ ΓXX(θ)

]−1
)

,
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DSGE-VARs: Local Misspecification

• If we re-scale the misspecification as follows: Φ∆ = T−1/2Φ̃∆, then the prior density

becomes independent of the actual sample size:

p(Φ̃∆|Σ∗, θ) ∝ exp

{
− 1

2
tr

[
λΣ∗−1

(
Φ̃∆′ΓXX(θ)Φ̃∆

)]}
(12)

• Large values of λ mean small misspecifications.

• Φ̃∆ is “local” misspecification. DSGE model provides good albeit not perfect approx-

imation to reality.



Frank Schorfheide, University of Pennsylvania: Bayesian Methods 16

DSGE-VARs: Posteriors

• The joint posterior density of VAR and DSGE model parameters can be factorized:

pλ(Φ, Σ, θ|Y ) = pλ(Φ, Σ|Y, θ)pλ(θ|Y ). (13)

The λ-subscript indicates the dependence of the posterior on the hyperparameter.
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DSGE-VARs: Posteriors

• The posterior distribution of Φ and Σ is also of the Inverted Wishart – Normal form:

Σ|Y, θ ∼ IW
(

(1 + λ)T Σ̂b(θ), (1 + λ)T − k, n

)
(14)

Φ|Y, Σ, θ ∼ N
(

Φ̂b(θ), Σ⊗ (λTΓXX(θ) + X ′X)−1

)
,

• where Φ̂b(θ) and Σ̂b(θ) are the given by

Φ̂b(θ) = (λTΓXX(θ) + X ′X)−1(λTΓXY + X ′Y )

=

(
λ

1 + λ
ΓXX(θ) +

1

1 + λ

X ′X
T

)−1 (
λ

1 + λ
ΓXY +

1

1 + λ

X ′Y
T

)

Σ̂b(θ) =
1

(1 + λ)T

[
(λTΓY Y (θ) + Y ′Y )− (λTΓY X(θ) + Y ′X)

×(λTΓXX(θ) + X ′X)−1(λTΓXY (θ) + X ′Y )

]
.



Frank Schorfheide, University of Pennsylvania: Bayesian Methods 18

DSGE-VARs: Posteriors

• The marginal posterior density of θ can be obtained by evaluating the marginal likeli-

hood

pλ(Y |θ) =
|λTΓXX(θ) + X ′X|−n

2 |(1 + λ)T Σ̂b(θ)|− (1+λ)T−k
2

|λTΓXX(θ)|−n
2 |λTΣ∗(θ)|−λT−k

2

×(2π)−nT/22
n((1+λ)T−k)

2
∏n

i=1 Γ[((1 + λ)T − k + 1− i)/2]

2
n(λT−k)

2
∏n

i=1 Γ[(λT − k + 1− i)/2]
.

and the prior density p(θ).

• We can also compute the marginal data density

pλ(Y ) =

∫
pλ(θ|Y )p(θ)dθ. (15)
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DSGE-VARs: Posteriors

MCMC Algorithm for DSGE-VAR:

1. Use the RWM Algorithm to generate draws θ(s) from the marginal posterior distribu-

tion pλ(θ|Y ).

2. Use Geweke’s modified harmonic mean estimator to obtain a numerical approximation

of p̂λ(Y ).

3. For each draw θ(s) generate a pair Φ(s), Σ(s), by sampling from the IW−N distribution.
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DSGE-VARs: Posterior of θ

• Where does the information about θ come from? Rewrite posterior as

p(Φ, Σ, θ|Y ) = p(Φ, Σ|Y )p(θ|Φ, Σ). (16)

Projection of VAR estimates on DSGE model restriction.

• Consider quasi-likelihood function:

p∗(Y |θ) ∝ |Σ∗(θ)|−T/2 exp

{
−1

2
tr

[
Σ∗

−1
(θ)(Y −XΦ∗(θ))′(Y −XΦ∗(θ))

]}
. (17)

• Maximizing quasi-likelihood function with respect to θ is equivalent to minimizing the

discrepancy between Φ̂mle and Σ̂mle and the restriction functions Φ∗(θ), Σ∗(θ).

ln p∗(Y |θ) = −T

2
vech(Σ̂mle − Σ∗(θ))′D(Σ̂−1

mle ⊗ Σ̂mle)D
′vech(Σ̂mle − Σ∗(θ))′

−1

2
vec(Φ̂mle − Φ∗(θ))′(Σ̂−1

mle ⊗X ′X)vec(Φ̂mle − Φ∗(θ))

+const + small. (18)
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DSGE-VARs: Posterior of θ

• Proposition 1: As λ −→ ∞ (weight of the prior tends to infinity), our procedure

becomes equivalent to making inference based on the quasi-likelihood function p∗(Y |θ).

Information accumulates at rate T .

• Proposition 2: As λ −→ 0, T −→ ∞, and λT −→ ∞ (moderate weight of the

prior, large sample), the marginal log-posterior density of θ is approximately quadratic

in the discrepancy between Φ̂mle and Σ̂mle and the restriction functions Φ∗(θ), Σ∗(θ).

Information accumulates at rate λT .
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DSGE-VARs: Marginal Likelihood of λ

• We will study the fit of the DSGE model by examining the marginal likelihood function

of the hyperparameter λ:

p(Y |λ) =

∫
p(Y |θ, Σ, Φ)pλ(θ, Σ, Φ)d(θ, Σ, Φ). (19)

• Maximum / mode:

λ̂ = argmaxλ∈Λ p(Y |λ).

• It is common in the literature to use marginal data densities to document the fit of

DSGE models relative to VARs with diffuse priors. In our framework this corresponds

to comparing

p(Y |λ = small) and p(Y |λ = ∞)
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Φ*Φ

Prior

λ = ∞Likelihood
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Φ*Φ

Prior

λ = ∞Likelihood

λ → 0
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Marginal Likelihood of λ: Example

• Suppose the VAR takes the special form of an AR(1) model:

yt = φyt−1 + ut, ut ∼ iidN (0, 1) (20)

and the DSGE model restricts φ to be equal to φ∗.

• Denote the DSGE model implied autocovariances by γ0 and γ1.

• Let γ̂0 and γ̂1 be sample autocovariances.

• Prior simplifies to

φ ∼ N
(

φ∗,
1

λTγ0

)
. (21)
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Marginal Likelihood of λ: Example

• Marginal likelihood of λ takes the following form

ln p(Y |λ, φ∗) = −T/2 ln(2π)− T

2
σ̃2(λ, φ∗)− 1

2
c(λ, φ∗). (22)

• The term σ̃2(λ, φ∗) measures the in-sample one-step-ahead forecast error:

lim
λ−→0

σ̃2(λ, φ∗) =
1

T

∑
(yt − φ̂yt−1)

2, lim
λ−→∞

σ̃2(λ, φ∗) =
1

T

∑
(yt − φ∗yt−1)

2,

• The third term in (22) can be interpreted as a penalty for model complexity and is of

the form

c(λ, φ∗) = ln

(
1 +

γ̂0

λγ0

)
.

• If an interior maximum of marginal likelihood exists, it is given by

λ̂ =
γ0γ̂

2
0

T (γ̂0γ1 − γ0γ̂1)2 − (γ0)2γ̂0
. (23)
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Marginal Likelihood of λ: Example

• As λ approaches zero, the marginal log likelihood function tends to minus infinity.

• Consider the comparison of two models M1 (φ∗(1)) and M2 (φ∗(2)).

– For small values of λ the goodness-of-fit terms are essentially identical. Marginal

likelihoods differentials are due to differences in the penalty terms.

– For large values of λ, marginal likelihood comparison is driven by the relative

in-sample fit of the two restricted specifications.
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DSGE-VARs: Posterior of λ

• Numerical Illustration in An and Schorfheide (2005):

Specification Data Set 1 Data Set 2

DSGE Model -196.66 -279.38

DSGE-VAR λ = ∞ -196.88 -277.49

DSGE-VAR λ = 5.00 -198.87 -270.46

DSGE-VAR λ = 1.00 -206.57 -258.25

DSGE-VAR λ = 0.75 -209.53 -257.53

DSGE-VAR λ = 0.50 -215.06 -258.73

DSGE-VAR λ = 0.25 -231.20 -269.66
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DSGE-VARs: Comparison of DSGE and VAR

• Goal of IRF comparisons is to document in which dimensions the DSGE model dy-

namics are (in)consistent with the data.

• To what extent does the VAR satisfy key structural equations implied by the DSGE?

E.g., is the Phillips curve equation misspecified?

• Examples: Cogley and Nason (1994), Rotemberg and Woodford (1997), Schorfheide

(2000), Boivin and Giannoni (2003), and Christiano, Eichenbaum, and Evans (2004),

to name a few.

• Important issue: estimation and the identification of the VAR that serves as a bench-

mark. Problems: many parameters to estimate, many shocks to identify.
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DSGE-VARs: Comparison of DSGE and VAR

• In our framework: compare (i) DSGE-VAR(∞) and DSGE-VAR(λ̂) IRFs; (ii) DSGE-

VAR(λ̂) and DSGE IRFs.
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DSGE-VARs: Identification

• So far the DSGE-VAR is reduced form. For most applications we would like a mapping

from VAR innovations into structural shocks.

• An (exactly) identified VAR is a triplet: (Φ, Σ, Ω), where Ω is orthonormal:

(
∂yt

∂ε′t

)

V AR

= ΣtrΩ.

• The DSGE model is identified: there is a matrix Ω∗(θ) that maps the variance-

covariance matrix of innovations into the portion attributed to each shock:

(
∂yt

∂ε′t

)

DSGE

= Σ∗tr(θ)Ω∗(θ).

• Identified DSGE-VAR: (Φ, Σ, Ω∗(θ)).
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DSGE-VARs: Identification

MCMC Algorithm for DSGE-VAR:

1. Use the RWM Algorithm to generate draws θ(s) from the marginal posterior distribu-

tion pλ(θ|Y ).

2. Use Geweke’s modified harmonic mean estimator to obtain a numerical approximation

of p̂λ(Y ).

3. For each draw θ(s) generate a pair Φ(s), Σ(s), by sampling from the IW−N distribution.

Moreover, compute the orthonormal matrix Ω(s) as described above.
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DSGE-VARs: IRF Comparisons

• How well is the state-space representation of the linearized DSGE model approximated

by the finite-order VAR?

• For each θ draw compare responses of the state-space version of the DSGE to the

DSGE-VAR(λ = ∞) version.

(insert figures here)
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Figure 11: Impulse Responses, DSGE and DSGE-VAR(λ = ∞) – Model M1(L),

Data D5(L)

Notes: DSGE model responses computed from state-space representation: posterior mean

(solid); DSGE-VAR(λ =∞) responses: posterior mean (dashed) and pointwise 90% proba-

bility bands (dotted).
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DSGE-VARs: IRF Comparisons

• How different are the IRFs of the VAR that is estimated subject to the DSGE model

restrictions from the IRFs of the VAR in which restrictions are relaxed?

• For each (Φ, Σ, θ) draw compare responses of the state-space version of the DSGE to

the DSGE-VAR(λ = ∞) version.

• We plot posterior mean responses of DSGE-VAR(λ = ∞).

• Moreover, for each draw we compute the difference between DSGE-VAR(λ) and DSGE-

VAR(λ = ∞). We use these differences to compute a posterior mean and 90% proba-

bility bands.

(insert figures here)
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Figure 12: Impulse Responses, DSGE-VAR(λ = ∞) and DSGE-VAR(λ = 1) –

Model M1(L), Data D5(L)

Notes: DSGE-VAR(λ =∞) posterior mean responses (solid), DSGE-VAR(λ = 1) posterior

mean responses (long dashes). Pointwise 90% probability bands (short dashes) signify shifted

probability intervals for the difference between λ =∞ and λ = 1 responses.
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DSGE-VARs: IRF Comparisons

• Suppose we rewrite the structural equations as follows:

ŷt − ŷt+1 +
1

τ
[R̂t − ÎEtπt+1] = (1− ρg)ĝt + IEtẑt+1

π̂t − βIEt[π̂t+1]− κŷt = −κĝt

R̂t − ρRR̂t−1 − (1− ρR)ψ1π̂t + (1− ρR)ψ2ŷt = −(1− ρR)ψ2ĝt + εR,t

• For instance, in response to a monetary policy shock, the right-hand-side of the Euler

equation and the Phillips curve equation has to be zero.

• We can check these conditions for the DSGE-VAR(λ) response.

• We overlay the right-hand-side for DSGE and DSGE-VAR.

(insert figures here)
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Figure 13: Impulse Responses, DSGE-VAR(λ = ∞) and DSGE-VAR(λ = 1) –

Model M1(L), Data D5(L)

Notes: DSGE model responses: posterior mean (solid); DSGE-VAR responses: posterior

mean (dashed) and pointwise 90% probability bands (dotted).
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DSGE-VARs: Some Empirical Results

• Based on Del Negro, Schorfheide, Smets, and Wouters (2006)...

• U.S. data; unless noted otherwise thirty years of observations (T = 120), starting in

QII:1974 and ending in QI:2004. Lag length p = 4.

• Forecasting exercise: beginning from QIII:1954 we construct 58 rolling samples of 120

observations.

• Four parts of the analysis:

– Parameters: priors and posteriors

– Marginal likelihood function

– Model comparison: baseline versus No Habit and No Indexation.

– Some pseudo-out-of-sample forecast error statistics.
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DSGE-VARs: Some Empirical Results

Prior DSGE-VECM(λ̂) Post. DSGE Post.

Mean Interval Mean Interval Mean Interval

ζp 0.60 [ 0.29 , 0.93 ] 0.79 [ 0.72 , 0.86 ] 0.83 [ 0.79 , 0.87 ]

ιp 0.50 [ 0.08 , 0.95 ] 0.75 [ 0.53 , 1.00 ] 0.76 [ 0.57 , 0.97 ]

ζw 0.60 [ 0.29 , 0.94 ] 0.79 [ 0.70 , 0.87 ] 0.89 [ 0.84 , 0.93 ]

ιw 0.50 [ 0.05 , 0.93 ] 0.45 [ 0.04 , 0.80 ] 0.70 [ 0.47 , 0.96 ]

h 0.70 [ 0.62 , 0.78 ] 0.75 [ 0.70 , 0.81 ] 0.81 [ 0.77 , 0.85 ]

ψ1 1.50 [ 0.99 , 2.09 ] 1.80 [ 1.42 , 2.19 ] 2.21 [ 1.79 , 2.63 ]

ψ2 0.20 [ 0.05 , 0.35 ] 0.16 [ 0.09 , 0.22 ] 0.07 [ 0.03 , 0.10 ]

ρr 0.50 [ 0.18 , 0.83 ] 0.76 [ 0.70 , 0.83 ] 0.82 [ 0.78 , 0.86 ]
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DSGE-VARs: Some Empirical Results

• Roughly: λ = ∞ dogmatically imposes DSGE model restrictions; λ = 0 completely

ignores the restrictions.

• Best fit in terms of Bayesian marginal likelihood and out-of-sample forecasting perfor-

mance is obtained for intermediate values of λ – indicating some disagreement between

DSGE and data.
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Marginal Likelihood of λ: 30-Year Sample: QII:1974 to QI:2004
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Marginal Likelihood of λ: 30-Year Sample: QII:1970 to QI:2000
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Monetary Policy Shock IRFs: DSGE-VAR(λ̂) vs. DSGE-VAR(∞)
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Technology Shock IRFs: DSGE-VAR(λ̂) vs. DSGE-VAR(∞)
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Comparing Different DSGE Model Specifications
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No Habit Specification: Monetary Policy Shock IRFs
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No Habit Specification: Technology Shock IRFs
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No Indexation Specification: Monetary Policy Shock IRFs
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No Indexation Specification: Technology Shock IRFs
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Discussion

Question: If we did not have the baseline model at hand, but only the alternative specifi-

cation, can we learn something from our procedure about what is missing?

• No Habit: For money shock (but also technology), clearly something is amiss! Con-

sumption (Y , and H) responds to quickly in DSGE-VAR(∞) relative to DSGE-VAR(λ̂

• . . . however DSGE-VAR(λ̂)’s IRFs are close to those of the Baseline model: Even if

the DSGE model w/o Habit is grossly misspecified, the DSGE-VAR(λ̂) is not too bad

as a benchmark.

• No Indexation: No clear evidence from Money and/or Tech IRFs that a feature that

can lead to improved fit is missing.
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Forecasting Performance: One-period Ahead Root Mean Square Error Summary
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Discussion

• Roughly: DSGE model and unrestricted VAR are comparable. DSGE-VAR improves.

• This suggests:

– Unrestricted VARs are not a good benchmark for DSGE evaluations.

– DSGE-VARs are useful tools for central banks
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DSGE-VARs: Extensions

• Start from DSGE with interest-rate feedback rule, allow for deviations from cross-

coefficient restrictions while maintain form of policy rule – leads to a collection of

identified VARs.

• Observables yt: Interest Rate, Inflation, Output Gap.

• Let x′t = [y′t−1, . . . , y
′
t−p, 1]. Rewrite policy rule in general terms:

y1,t︸︷︷︸
Interest Rate

= x′tM1β1(θ) + y′2,tM2β2(θ) + ε1,t. (24)

• Define Ψ∗(θ) =
(
IED

θ [xtx
′
t]
)−1

IED
θ [xty

′
2,t] and write remainder of system:

y′2,t︸︷︷︸
Inflation, OutputGap

= x′tΨ
∗(θ) + u′2,t. (25)
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• VAR approximation (25) is in general not exact yet quite accurate with four lags in

our application.

• (24) and (25) comprise a partially identified (based on exclusion restrictions) VAR.



Frank Schorfheide, University of Pennsylvania: Bayesian Methods 53

DSGE-VARs: Extensions

• Rewrite Interest Rate equation

y1,t = x′tM1β1(θ) + x′tΨ
∗(θ)M2β2(θ) + u1,t, (26)

• and create restricted VAR for yt

y′t = x′tΦ + u′t, IE[utu
′
t] = Σ (27)

with

Φ = Φ∗(θ) = B1(θ) + Ψ∗(θ)B2(θ), Σ = Σ∗(θ).
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DSGE-VARs: Extensions

• There is a vector θ and matrices Ψ∆ and Σ∆ such that the data are generated from

the VAR in Eq. (27)

Φ = B1(θ) + (Ψ∗(θ) + Ψ∆)B2(θ), Σ = Σ∗(θ) + Σ∆. (28)

• (Assume Σ∆ = 0) Construct a prior with property that its density is proportional to

the expected likelihood ratio of Ψ evaluated at its (misspecified) restricted value Ψ∗(θ)

versus the “true” value Ψ = Ψ∗(θ) + Ψ∆.

• Same analysis as before... MCMC is a bit more complicated.
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DSGE-VARs: Extensions

• The forecast error u2,t is a function of the structural shocks: u′2,t = ε1,tA1 + ε′2,tA2.

• After some matrix algebra we can determine A1 and A′
2A2, which identifies monetary

policy shocks, but does not separate technology from demand shocks.

• We follow the idea in Del Negro and Schorfheide (2004) and decompose the DSGE

model response AD′
2 (θ) = AD′

2,tr(θ)Ω∗(θ).

• And then let: A2 = chol(A′
2A2)Ω

∗(θ).

• Now we have a collection of identified VARs. Del Negro and Schorfheide (2005) study

effects of changes in the policy rule in this framework.



Frank Schorfheide, University of Pennsylvania: Bayesian Methods 56

Conclusions and Outlook

• Large body of empirical work on the Bayesian estimation / evaluation of DSGE models.

• An and Schorfheide (2005) paper illustrates techniques based on New Keynesian model.

• Model size / dimensionality of the parameter space pose challenge for MCMC methods.

• Lack of identification of structural parameters is often difficult to detect; creates a

challenge for scientific reporting.

• Model misspecification is and will remain a concern in empirical work with DSGE mod-

els despite continuous efforts by macroeconomists to develop more adequate models.

• Hence it is important to develop methods that incorporate potential model misspecifi-

cation in the measures of uncertainty constructed for forecasts and policy recommen-

dations.


