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1 Introduction

Suppose a simple AR(1) model yt = µ + ρyt−1 + εt
is used to forecast GDP per capita growth h quar-
ters ahead. This multi-step forecast is evaluated un-
der a quadratic prediction error loss function. Pa-
rameter estimates can be obtained by minimizing∑T
t=1(yt − µ − ρyt−1)2, which corresponds to max-

imum likelihood estimation conditional on the ini-
tial observation if the εt have a Gaussian distri-
bution. Based on µ̂ and ρ̂, multi-step ahead pre-
dictions can be generated iteratively according to
ŷT+h|T = µ̂+ ρ̂ŷT+h−1|T . In a Bayesian framework,
the exact predictor depends on the prior distribution
and takes into account the posterior parameter un-
certainty. Asymptotically, the Bayes predictor and
the maximum likelihood plug-in predictor are equiv-
alent.

Alternatively, an AR(1) model forecast can be ob-
tained by simply minimizing the in-sample h step
ahead prediction errors

∑T
t=h−1(yt − µ̃ − ρ̃yt−h)2.

This loss function estimation approach leads to the
predictor ŷT+h|T = ˆ̃µ+ ˆ̃ρyT . In practice it has to be
decided whether to use the likelihood function or the
loss function to estimate the model parameters. If
GDP growth were correctly represented by an AR(1)
process, then statistical theory implies that the like-
lihood based procedure is preferable to the loss func-
tion estimation. If the AR(1) model, however, is
misspecified then the ranking can change.

In the context of h-step ahead forecasting the loss
function estimators are also called dynamic estima-
tors. The properties of such estimators have been
examined, for instance, by Clements and Hendry
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(1998), Findlay (1983), Findlay et al. (1998), Weiss
and Andersen (1984), Weiss (1991). The existing
literature demonstrates that the benefits of a loss
function estimation approach hinge on the potential
misspecification of the forecasting model, in partic-
ular the expectation of yT+h conditional on time T
information. This paper examines the choice be-
tween likelihood and loss function based predictors
from a Bayesian perspective.

2 A Framework

At time T , an econometrician faces a decision prob-
lem under uncertainty. He observes a time series
YT = {yt}Tt=1 where yt is a n × 1 vector. He has
to make a point prediction ϕ̂ for a random variable
ϕ that takes values in IRm. Here, ϕ is composed of
future observations yt+h, h ≤ s. The predictor ϕ̂ is
a function of the data YT , and is evaluated a loss
function L(ϕ, ϕ̂). The prediction loss is observable
at time T + s for some s > 0 and the sample up to
time T can be used to evaluate hypothetical predic-
tion losses that would have occurred if the predictor
had been used at early times.

A family of parametric probability distributions
{Pθ,T+s : θ ∈ Θ} is considered to characterize the
joint distribution of YT+s. For expository purposes,
it is assumed that Θ ⊆ IRk and that the Pθ distri-
butions and the prior distribution of θ have densi-
ties p(YT+s|θ) and p(θ), respectively. The candidate
probability model defined by likelihood function and
prior is denoted by M. The random variable ϕ has
some distribution conditional on YT with density
p(ϕ|YT , θ,M). The marginal posterior density of ϕ
is

p(ϕ|YT ,M) =
∫
p(ϕ|YT , θ,M)p(θ|YT )dθ (1)

where p(θ|YT ) is the posterior of θ given the sample
information YT .

Since it is assumed that model M is potentially
misspecified, an alternative family of distributions
{Qψ,T+s : ψ ∈ Ψ} with prior distribution p(ψ) is



considered. The Qψ,T+s distributions and a prior
for ψ define the reference model M∗. This refer-
ence model might be of a very general form. The
likelihood of the data under M∗ is denoted by
p(YT |ψ,M∗) and the prior probability ofM∗ is π∗,0.
The mixture of M and M∗ can be regarded as a
model that the econometrician is willing to accept as
“true” for practical purposes. We say, that modelM
is potentially misspecified a priori if the prior prob-
ability of the reference model π∗,0 is strictly greater
than zero. A posteriori, model M is misspecified if
the posterior probability ofM∗ approaches unity in
large samples.

We will assume that the econometrician finds it
too onerous to conduct a full posterior analysis with
the reference model. If the econometrician would
evaluate posterior predictions and model probabil-
ities for the reference model then there would be
no reason to contemplate loss function estimation of
the candidate model. In practical applications, one
often chooses simple candidate models, such as lin-
ear autoregressive specifications, because they can
be easily analyzed and used to compute forecasts.
Thus, only predictions derived from mixtures of the
form ∫

p(ϕ|YT , θ,M)f(θ)dθ (2)

are considered. The function f(θ) is a normalized
weight function with

∫
Θ f(θ)dθ = 1. The corre-

sponding predictor is obtained by

ϕ̂(f(θ)) = argminϕ∈IRm∫
L(ϕ, ϕ̂)p(ϕ|YT , θ,M)f(θ)dθ (3)

Two special cases are of particular interest: (i) The
weight function f(θ) ∈ F is equal to the posterior
density p(θ|YT ). Therefore, the predictor minimizes
the posterior expected loss provided the data stem
from M. (ii) The weight function concentrates its
mass on a finite set of points θ′i ∈ Θ, i = 1, . . . , k.
This will be denoted by f(θ) =

∑k
i=1 λiδ{θ=θ′i}

where λi ≥ 0,
∑
λi = 1, and δ has the properties∫

δ{θ=θ′}dθ = 1 and δ{θ=θ′} = 0 for θ 6= θ′.
The goal is to find a weight function f0(θ), such

that predictions, that are optimal if future observa-
tions conditional on YT were generated from the cor-
responding mixture of Pθ distributions, lead to small
prediction losses if the data actually stem from the
mixture of M and M∗. We will consider two pro-
cedures to estimate appropriate weights f(θ) from
the data. The first procedure simply uses the pos-
terior weights p(θ|YT ) solely based on M, ignoring
the possibility that the data could have been gen-
erated from M∗. In the second procedure, a θ′ is

estimated for a degenerate weight function δ{θ=θ′}
by minimizing hypothetical prediction losses during
the sample period. Both procedures are suboptimal
relative to the full Bayesian procedure that explicitly
takes the contribution ofM∗ to the overall posterior
distribution of ϕ into account.

2.1 Suboptimal Prediction Procedures

Let π∗,T be the posterior probability of the refer-
ence model M∗ conditional on the observations YT .
Under the loss function L(ϕ, ϕ̂), the posterior pre-
diction risk is defined as

R(ϕ̂|YT ) = (1− π∗,T )
∫
L(ϕ, ϕ̂)p(ϕ|YT ,M)dϕ

+π∗,T
∫
L(ϕ, ϕ̂)p(ϕ|YT ,M∗)dϕ (4)

In the standard Bayesian analysis, the posterior dis-
tribution of ϕ under the reference model is evaluated
or at least approximated and the optimal predictor
is

ϕ̂opt = argminϕ̂∈IRm R(ϕ̂|YT ) (5)

In a related paper on the evaluation of dy-
namic stochastic equilibrium models (Schorfheide,
1999b), the weights f(θ) of the predictor defined
in Equation (3) are obtained by minimization of
R(ϕ̂(f(θ))|YT ) over a suitable set of weight func-
tions F . However, this is infeasible without evaluat-
ing p(ϕ|YT ,M∗). In this paper we will consider pre-
dictors based on the observed frequencies of L(ϕ, ϕ̂)
up to time T and judge them according to their in-
tegrated risk.

The integrated risk R(ϕ) is obtained by averaging
the posterior risk over all trajectories YT , that is,

R(ϕ̂) = (1− π∗,T )
∫
R(ϕ̂|YT ,M)p(YT |M)dYT

+π∗,T
∫
R(ϕ̂|YT ,M∗)p(YT |M∗)dYT(6)

It is assumed that the integrated risk exists. This
assumption restricts the shape of the loss function
L(ϕ, ϕ̂) and the prior distributions p(θ) and p(ψ). A
predictor ϕ̂1 is preferable to ϕ̂2 if R(ϕ̂1) < R(ϕ̂2).
Note that the full information Bayes predictor ϕ̂opt
minimizes R(ϕ̂|YT ) on almost all trajectories YT un-
der the mixture of M and M∗. Thus, ϕ̂opt also
minimizes the integrated risk.

Suppose it were known that the data stem from
model M. Conditional on this information it is op-
timal to use the Bayes predictor based solely on the
Pθ distributions, which will be denoted by

ϕ̂b = ϕ̂(p(θ|YT )) (7)



If the data stem from the reference modelM∗, then
it is conceivable to use either the Bayes predictor
ϕ̂b or an alternative predictor, that we regard as
loss function predictor ϕ̂l, obtained from a weight
function f(θ) 6= p(θ|YT ). Conditional on the Qψ,T+s
distribution, it is possible to compare

R(ϕ̂|ψ,M∗) =
∫
R(ϕ̂|YT , ψ,M∗)p(YT |ψ,M∗)dYT

(8)
for the predictors ϕ̂b and ϕ̂l. R(ϕ̂|ψ,M∗) is the fre-
quentist prediction risk conditional on ψ and M∗.
Consider the lower bound of the integrated risk
achieved by the following prediction procedure.

Procedure 1 (Infeasible) If the data are generated
by model M, use the Bayes predictor ϕ̂b. If the data
are generated by the reference model M∗, in partic-
ular, from a distribution Qψ0,T+s, then use ϕ̂l if

R(ϕ̂l|ψ0,M∗) < R(ϕ̂b|ψ0,M∗)

and ϕ̂b otherwise.

Procedure 1 is infeasible because it is unknown
to the forecaster whether the data stem from M or
M∗. Two simple and feasible selection strategies for
ϕ̂b and ϕ̂l are to use either the Bayes predictor or
the loss function predictor on each trajectory YT .

Procedure 2 (Feasible) Always use the Bayes pre-
dictor ϕ̂b.

Procedure 3 (Feasible) Always use the loss func-
tion predictor ϕ̂l.

The Bayes predictor, or the related maximum
likelihood plug-in predictor ϕ̂(δ{θ=θ̂mle}), is usually
justified by low prior probability of distributions
Qψ,T+s that are very different from the Pθ,T+s distri-
bution. Procedure 3 is motivated by a large sample
minimax argument. If the data stem from a partic-
ular Pθ0,T+s distribution then the loss function esti-
mator will converge to θ0 in a large sample so that
the efficiency loss of using ϕ̂l instead of ϕ̂b givenM is
small. However, the potential loss of using ϕ̂b under
M∗ is large if there are parameters ψ in the support
of the prior p(ψ) such that the conditional distribu-
tion of ϕ given YT under Qψ,T+s is very different
from the conditional distribution under Pθ,T+s.

2.2 Loss Function Based Procedures

Loss function estimation procedures are based on the
idea that in a large sample the observed frequencies
of hypothetical prediction losses at times t < T are

a reliable indicator for the frequentist risk associ-
ated with different predictors. Granger (1993), for
instance, proposes that if we believe that a partic-
ular criterion should be used to evaluate forecasts,
then it should also be used at the estimation stage
of the modeling process. This section develops a no-
tion of pseudo-true values that is closely linked to
the prediction problem and discusses the relation-
ship between pseudo-true values and loss function
estimators. Under the reference model M∗, we can
define an optimal predictor ϕ̂ψ conditional on the
parameters ψ and the observations YT as

ϕ̂ψ = argminϕ∈IRm R(ϕ|YT , ψ,M∗) (9)

The additional risk of using any other predictor ϕ̂ is

R(ϕ̂|YT , ψ,M∗) (10)
= R(ϕ̂|YT , ψ,M∗)−R(ϕ̂ψ|YT , ψ,M∗) ≥ 0

Suppose that ϕ̂f = ϕ̂(f(θ)) is derived from a mix-
ture of Pθ,T+s distributions with weights f(θ) ac-
cording to Equation (3). This mixture is denoted
by Pf . The idea of deriving predictions from mix-
tures is an important aspect of the extensive liter-
ature on Bayesian and non-Bayesian approaches of
combining forecasts, for instance, Bates and Granger
(1968), Min and Zellner (1993), and references cited
therein. Rather than interpreting R(ϕ̂|YT , ψ,M∗)
as risk differential it can also be interpreted as dis-
crepancy ∆(Pf |Qψ) between the Pθ mixture and the
Qψ distribution.

Similar to the well-known Kullback-Leibler dis-
tance, the discrepancy ∆(Pf |Qψ) = R(ϕ̂|YT , ψ,M∗)
is not a metric since it is neither symmetric be-
cause ∆(Pf |Qψ) 6= ∆(Qψ|Pf ), nor does it satisfy
the triangle inequality. While the Kullback-Leibler
distance has a very general information-theoretic in-
terpretation that is valid without postulating a spe-
cific decision problem, ∆(Pf |Qψ) provides the rele-
vant measure of discrepancy in situations where the
econometrician does face a specific decision prob-
lem such as forecasting. We can now easily define
pseudo-true parameter values θ0 and more generally,
a pseudo-true f0(θ) mixture.

Definition 1 (i) The pseudo-true parameter θ0 is a
solution to the problem

min
θ′∈Θ

∆(Pθ′,T+s|Qψ,T+s)

where ∆(Pθ′,T+s|Qψ,T+s) = R(ϕ̂(δ{θ=θ′})|ψ,M∗).
(ii) The weight function f0(θ) of the pseudo-true
mixture Pf0 solves the problem

min
f(θ)∈F

∆(Pf(θ),T+s|Qψ,T+s)



This notion of pseudo-true values and mixtures
depends on the prediction problem, the loss func-
tion, and the sample size. The solution to the mini-
mization problems stated in Definition 1 need not be
unique. However, if ∆(Pf |Qψ) = ∆(Pf ′ |Qψ) then
the predictors associated with the two mixtures per-
form equally well conditional on Qψ.

Suppose the set of weight functions F is restricted
to the denegenerate weights δ{θ=θ′}, θ′ ∈ Θ. More-
over, ϕ = yT+h. The loss function estimator is of
the form

θ̂T = argminθ′∈Θ

T−h∑
t=t0

L(yt+h, ŷt+h(δ{θ=θ′})) (11)

If Qψ,T+s and L(ϕ, ϕ̂) satisfy some weak regularity
conditions that guarantee the uniform convergence
of the average hypothetical prediction loss before
time T to the frequentist risk at time T , that is,

R(ŷt+h|ψ,M∗)−
1
T

T−h∑
t=t0

L(yt+h, ŷt+h) −→ 0 (12)

almost surely under Qψ,T+s then the loss function
estimator θ̂T converges to the pseudo-true value.
The estimator belongs to the extensively studied
class of extremum estimators.

Non-degenerate weight functions f(θ) lead to a
combination of forecasts from different Pθ models.
The function f(θ) = p(θ|YT ,M) corresponds to the
Bayesian approach of combining forecasts. Provided
that the Qψ,T+s distributions satisfy some regularity
conditions, the posterior p(θ|YT ,M) will converge to
a point mass under M∗ as the sample size T tends
to infinity. Thus, asymptotically, all forecasts are
derived from a single Pθ model, instead from the
pseudo-true mixture Pf0 . Most non-Bayesian ap-
proaches can be interpreted as attempts to estimate
a weight function that remains non-degenerate as
T →∞. Consider the following class of functions F{

fλ(θ) = λδ{θ=θ1} + (1− λ)δ{θ=θ2} : λ ∈ [0, 1]
}

The parameter space Θ consists of only two param-
eters θ1 and θ2. For h-step ahead forecasting under
quadratic loss, the predictor derived from the λ mix-
ture of Pθ1 and Pθ2 is of the form

ŷt+h(fλ) = λŷt+h(δ{θ=θ1}) + (1− λ)ŷt+h(δ{θ=θ2})

The loss function estimator can be defined as λ̂T =
argminλ∈[0,1] ŷt+h(fλ) which leads to the forecast
combination weights proposed by Bates and Granger
(1969), except that our mixture interpretation re-
quires λ to lie between zero and one.

3 Example: Multi-Step Forecasting
of a Linear Process

The framework can be applied to the forecasting
problem discussed in the Introduction. The Pθ,T+h
distributions are given by the density through a
Gaussian AR(1) process

p(YT+h|ρ, σ, y0) (13)

=
T+h∏
t=1

|σ2|−1/2 exp
{
− 1

2σ2 (yt − ρyt−1)2
}

where θ = (ρ, σ). Moreover, there is some prior
distribution p(ρ, σ). Let ρ̂b denote the maximum
likelihood estimate and ρ̂l the loss function estimate
of ρ.

The econometrician believes that the model M is
potentially misspecified, and places prior probability
one on a linear process as a reference model. Let
ψ = (α, ρ0, σε, σu, σε,u, a0, a1, . . .). The distribution
of yt conditional on ψ is given by the model

yt = xt + αT−1/2zt (14)

where xt =
∑∞
j=0 ρ

j
0εt−j , zt =

∑∞
j=0 ajut−j ,∑∞

j=0 j
2a2
j < ∞, and |ρ0| < 1. The innovations

are distributed according to εt ∼ iid(0, σ2
ε ) and

ut ∼ iid(0, σ2
u) with contemporaneous covariance

σ2
εu. Conditional on a disturbance process zt, the

parameter α controls the severeness of the misspec-
ification. It can be shown that the Bayes predic-
tor is asymptotically of the form ϕ̂b = ρ̂hb + Op(1).
The asymptotic sampling variance of the Bayes esti-
mator, denoted by vb, is smaller than the sampling
variance vl of the loss function estimator under the
Qψ,T+s distributions. Define

R∗ι = lim
T−→∞

TR(ϕ̂(ρT,ι)|α = 1, ψ,M∗) ι = b, l

By definition, the pseudo-true value ρT,l minimizes
R(ϕ̂(ρ)|α = 1, ψ,M∗) with respect to ρ for all T .
Therefore, R∗l ≤ R∗b . The asymptotic frequentist
risk R(ϕ̂ι|ψ,M∗) for ι = b, l is:

R̄(ϕ̂ι|ψ,M∗) = α2R∗ι + γxx(0)v0
ι (15)

Since R∗l ≤ R∗b and v∗l ≥ v∗b there exists a trade-off
between the two predictors. Conditional on the dis-
turbance process zt, the Bayes predictor is preferable
if the misspecification parameter α is small.

3.1 A Pseudo Bayes Prediction Rule

Consider the following approach to select one of the
predictors φ̂b and φ̂l. Define a third modelMl such



that the likelihood function under Ml embeds the
loss function L(ϕ, ϕ̂) and the Bayes predictor un-
der Ml leads to the loss function predictor ϕ̂l. The
posterior odds ratio of M and Ml could then be
used to determine which predictor to choose. We
will argue that this approach is flawed if the data
are, in fact, generated from a mixture of M and
M∗. Let θ̃ = (ρ̃, σ̃). For h-step ahead forecasting
under quadratic loss the alternative model is of the
following form

p(yt|Yt−1, θ̃,Ml) (16)

∝ |σ̃2|−1/2 exp
{
− 1

2σ̃2 (yt − ρ̃hyt−h)2
}

with some prior distribution p(θ̃). It is easily ver-
ified that for model Ml the Bayes predictor under
the loss function L(ϕ, ϕ̂) = (yT+h − ŷT+h)2 behaves
asymptotically like ϕ̂l. The model Ml implies that
conditional on any parameter θ̃ only the autocovari-
ances of order k · h, k = 0, 1, . . . can be non zero.
Thus, the behavior of the time series YT under this
loss function model Ml is quite different from the
behavior under the actual reference modelM∗. De-
fine

s2 =
T∑
t=1

(yt − ρ̂T,byt−1)2, s̃2 =
T∑
t=1

(yt − ρ̂hT,lyt−h)2

Suppose the econometrician selects between ϕ̂b and
ϕ̂l to minimize the posterior expected prediction loss
under a mixture ofM andMl, whereMl has prior
probability πl,T . In this case, it is optimal to choose
the loss function predictor ϕ̂l if the posterior odds
πl,T /(1− πl,T ) favor model Ml. The posterior odds
are obtained as the ratio of the marginal data densi-
ties underM andMl. Asymptotically, the posterior
odds ratio can be represented as

2
T

ln
(
πl,T /(1− πl,T )

)
= ln(s2/s̃2) +Op(T−1) (17)

which suggests the following selection rule as an ap-
proximation.

Procedure 4 (Feasible) Choose the loss function
predictor ϕ̂l if s2 > s̃2 and the Bayes predictor ϕ̂b
otherwise.

Suppose the data were generated under M∗ con-
ditional on parameters ψ. Then

s̃2 − s2 =

( 1
T

∑
ytyt−h

)2
1
T

∑
y2
t−h

−
( 1
T

∑
ytyt−1

)2
1
T

∑
y2
t−1

−→ γxx(h)2 − γxx(1)2

γxx(0)2

= ρ2h
0 − ρ2

0 < 0 (18)

almost surely under Qψ for |ρ0| < 1. Thus, if the
sample size is large, Procedure 4 suggests to almost
always select the Bayes predictor ϕ̂b based on model
M, regardless of the degree of the misspecification α.
It is important to notice that posterior odds can be
misleading if the data stem from neitherM norMl.
The odds implicitly measure the success of ρ̂T,byT to
predict one-step ahead and of ρ̂hT,lyT to forecast h-
steps ahead, rather than comparing the h-step ahead
performance of ϕ̂b and ϕ̂l. Since under the reference
model the expected h-step ahead forecast error is
greater than the one-step ahead forecast error, Pro-
cedure 4 is not helpful in determining whether to use
ϕ̂b or ϕ̂l.

3.2 A Prediction Rule Based on Model
Checking

Box (1980) argued in favor of a sampling approach to
criticize a statistical model in the light of the avail-
able data, say modelM in the context of this paper.
This model criticism then can induce model mod-
ifications. Although conceptually not undisputed,
model checking and sensitivity analysis plays an im-
portant role in applied Bayesian statistics. In the
context of this paper, it is interesting to analyze
whether such a model checking procedure can be
helpful to choose between the Bayes predictor ϕ̂b and
the loss function estimator ϕ̂l. Unlike in many infer-
ential situations, the nature of the decision problem
requires a prediction. It is not possible to simply re-
ject modelM and search for a better representation
of the data.

It is important to distinguish clearly between YT
as a random variable and the observed time series
which we will denote by YT,d. The general idea of
model checking in a Bayesian framework is to eval-
uate the marginal density of the data under the en-
tertained model M, at the observed data YT,d. If
YT,d falls in a region of low density, then model M
is discredited. In practice, this approach is often im-
plemented through the evaluation of tail probabili-
ties for a function of the data g(YT ) ≥ 0. Suppose
the density is of g(YT ) is unimodal. M passes the
model check if∫

I
{
g(YT ) ≥ g(YT,d)

}
p(YT |M)dYT > α (19)

where I{y ≥ z} is the indicator function that is one
if y ≥ z and zero otherwise. If such a rule is em-
bedded in a prediction procedure, the overall risk
properties depend on the checking function g(YT ),
the tail probability threshold level α, and at last,
on the alternative M∗. It is important to keep in



mind that the rejection of a model M does not au-
tomatically imply that the loss function predictor ϕ̂l
is preferable to the Bayes predictor ϕ̂b.

Procedure 5 Use the Bayes predictor ϕ̂b if M
passes the model check at level α. Otherwise use
the loss function predictor ϕ̂l.

In Schorfheide (1999a) we analyze the asymptotic
risk properties of a model check that is based on the
idea of a Hausman (1978) test. The divergence of
ρ̂hT,b and ρ̂hT,l is an indicator for misspecification of
the M model. If the misspecification is severe, it
is preferable to use the loss function predictor ϕ̂l.
Although this type of selection rule does not take
the contribution of the variance terms v0

l and v0
b to

the asymptotic frequentist risk into account, it seems
intuitively reasonable because the gain from choos-
ing ϕ̂l is large if the misspecification is substantial
and the Hausman-type test has a lot of power. The
calibration of the procedure through the rejection
threshold α depends on the prior distribution forM
and M∗. Conditional on a prior distribution it is
possible to minimize R̄(ϕ̂c) with respect to α. In
practice, it is more common to specify a “plausible”
rejection level α. Given α, it is possible to deter-
mine prior distributions for which the choice of α is
indeed sensible.

4 Conclusion

We can now return to the problem posed in the In-
troduction. Should the likelihood or the loss func-
tion estimator be used to compute h-step ahead fore-
casts of output growth with an AR(1) model. The
previous sections demonstrated how the answer to
this question is related to the kind of model that
one is willing to accept as “true” for practical pur-
poses. We provided framework to analyze prediction
procedures for potentially misspecified models from
a Bayesian perspective. The econometrician has a
strong preference for a model M but believes that
with some positive probability, the data stem from
a reference model M∗. He seeks a prediction pro-
cedure based on M that keeps the integrated pre-
diction risk small. It is assumed that the Bayesian
analysis of the reference model is too onerous. The
alternative to the Bayes predictor is a loss function
predictor that is well behaved under M∗. A pseudo
posterior odds selection rule between the two predic-
tors is generally not helpful in reducing the predic-
tion risk in the presence of misspecification. Choos-
ing the predictor based on the outcome of a Bayesian
model check can reduce the integrated risk of the

forecasting procedure. A detailed analysis can be
found in Schorfheide (1999a). Whether or not there
are model checks that dominate other sampling tests
for a large class of priors, and the analysis of the
small sample risk properties of such prediction pro-
cedures through Monte Carlo studies is left for future
research.
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