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Consequences of phonological variation for algorithmic word segmentation 
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A B S T R A C T   

Over the first year, infants begin to learn the words of their language. Previous work suggests that certain sta-
tistical regularities in speech could help infants segment the speech stream into words, thereby forming a proto- 
lexicon that could support learning of the eventual vocabulary. However, computational models of word seg-
mentation have typically been tested using language input that is much less variable than actual speech is. We 
show that using actual, transcribed pronunciations rather than dictionary pronunciations of the same speech 
leads to worse segmentation performance across models. We also find that phonologically variable input poses 
serious problems for lexicon building, because even correctly segmented word forms exhibit a complex, many-to- 
many relationship with speakers' intended words. Many phonologically distinct word forms were actually the 
same intended word, and many identical transcriptions came from different intended words. The fact that 
previous models appear to have substantially overestimated the utility of simple statistical heuristics suggests a 
need to consider the formation of the lexicon in infancy differently.   

1. Introduction 

Although infants are born knowing little about their native language, 
they quickly learn a great deal from the speech they hear. Within 
months, they become familiar with their native language's sound cate-
gories (Werker & Tees, 1984), as well as the relative frequency of 
different sequences of speech sounds (Archer, Czarnecki, & Curtin, 
2021; Jusczyk, Friederici, Wessels, Svenkerud, & Jusczyk, 1993). 
Beyond learning about their language's phonology, infants also begin to 
learn words. Months before their first birthday, they recognize the 
meanings of some common words, including both concrete nouns 
(Bergelson & Swingley, 2012) and a little later, more abstract words 
(Bergelson & Swingley, 2013), and by the second half of the first year, 
they recognize the spoken form of a variety of words familiar from home 
experience or laboratory exposure (e.g., Hallé & Boysson-Bardies, 1994; 
Jusczyk & Aslin, 1995; Jusczyk & Hohne, 1997; Schreiner, Altvater- 
Mackensen, & Mani, 2016; Swingley, 2005a; Vihman, Nakai, DePaolis, 
& Hallé, 2004). 

An important step in the process of language learning is word seg-
mentation, or pulling out words from the continuous stream of speech. It 
is easy to understand that this is a difficult problem—one only needs to 
listen to a parent speaking to an infant in an unfamiliar language to 
recognize that it is quite hard to infer where one word ends and the next 
begins. This problem is difficult for infants too, which is why infants 

learn words more easily when they are presented in one-word utterances 
than when they are embedded in longer utterances (Brent & Siskind, 
2001; Keren-Portnoy, Vihman, & Fisher, 2019; Swingley & Humphrey, 
2018). Yet infants do manage to break utterances into parts. Laboratory 
studies demonstrate that infants can extract words from their phonetic 
contexts (e.g., Jusczyk & Aslin, 1995), and infants have some knowledge 
of grammatical words that never appear in isolation (e.g., Shi & Lepage, 
2008). 

Research into infants' early discovery of words has taken two forms: 
experiments that present continuous speech to infants and test which 
elements they retain, and computational models that evaluate what 
infants might learn were they to parse and retain speech sequences ac-
cording to a particular set of computable heuristics. The present paper 
continues the latter line, but differs from most prior work in examining 
the consequences of normal phonological variability. When words are 
realized in more than one way, does the phonological structure of the 
lexicon still permit simple probabilistic heuristics to succeed in pro-
ducing the foundation of the early vocabulary? 

In principle, there are several cues that could be helpful in word 
segmentation, once the infant has some familiarity with phonological 
regularities present in the lexicon. For example, in English, strong syl-
lables tend to coincide with word onsets, suggesting that English 
speakers could learn to use stress patterns or vowel-reduction patterns to 
detect where an unknown word begins (Cutler & Norris, 1988). 
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Experiments have shown that infants do respond to such prosodic cues 
(Jusczyk, Houston, & Newsome, 1999; Nishibayashi, Goyet, & Nazzi, 
2015; Seidl, 2007; Seidl & Johnson, 2006; Sundara & Mateu, 2018). 
Some consonantal sequences are much more common at word bound-
aries than within words in English, and infants respond to these pho-
notactic probabilities too (Mattys & Jusczyk, 2001; Mattys, Jusczyk, 
Luce, & Morgan, 1999). These studies suggest that infants use the 
phonetic characteristics of a preliminary stock of words to form gener-
alizations that they then apply in interpreting novel speech sequences. 

Much of the laboratory research on word segmentation has focused 
on investigating how the initial stock of words is identified by infants, 
and what generalizations might follow. In principle, tabulating fre-
quencies of occurrence, and relative frequencies of adjacent units, could 
be informative about word boundaries. Sequences of units (such as 
phones or syllables) within words are expected to co-occur more often 
than sequences occurring across word boundaries (Harris, 1955). If in-
fants could track this kind of information, they might be able to pull out 
candidate word forms from the speech stream (e.g., Aslin, Saffran, & 
Newport, 1998; Saffran, Aslin, & Newport, 1996). 

Many laboratory experiments have confirmed that infants are sen-
sitive to the statistical cohesiveness of sub-word units. Most of these 
studies involve familiarizing infants with an unknown, usually artificial, 
language, whose words are defined as the consistent phonological 
strings that were concatenated to create the listening sequence. Differ-
ences in infants' subsequent listening times to isolated words and non-
words show that infants must have computed, in some form, the 
probability differences among phone or syllable transitions between 
words and nonwords. The original findings by Saffran et al. (1996) have 
since been extended to other language learning populations (e.g., Mer-
sad & Nazzi, 2012) and to infants as young as 5 months (Johnson & 
Tyler, 2010). In general, these experimental designs are well equipped to 
demonstrate which information sources are theoretically accessible to 
infants, and to reveal whether infants' strategies appear to have been 
shaped by the characteristics of the language they are learning. 

However, laboratory experiments are not well equipped to show 
whether a particular cue is sufficient to support language acquisition 
given its actual availability in the language environment. For example, 
even if co-occurrence frequencies are sufficient to segment the small 
artificial languages that are typically used in experiments (though see 
Pelucchi, Hay, & Saffran, 2009), it is not necessarily the case that they 
can be used to successfully segment spontaneous natural language (e.g., 
Gambell & Yang, 2005; Swingley, 2005b; Yang, 2004). As a result, as a 
complement to experimental work, computational models can be 
deployed over language corpora to test whether a proposed cognitive 
ability would be sufficient to account for the documented behavioral 
accomplishments of infants (e.g., Ludusan, Cristia, Mazuka, & Dupoux, 
2022). 

Computational models of word segmentation illustrate which word 
forms could be learned given different assumptions about the algorithm 
at work and the language input that the learner receives. Broadly 
speaking, a model is provided with a textual representation of speech 
without word boundaries, and returns as output the same text with the 
hypothesized word boundaries inserted, for example, in places where 
the transitional probability or conditional probability of two units 
(phones or syllables) occurring next to each other is relatively low (e.g., 
Saksida, Langus, & Nespor, 2017). This segmentation output can then be 
compared to the actual (gold-standard) words, to assess the model's 
performance. To make these comparisons, previous modeling work has 
typically focused on information retrieval metrics that compare the 
number of correct and incorrect segmentations, or, less commonly, on 
how psychologically plausible the errors seem (e.g., Daland & Pierre-
humbert, 2011; Lignos, 2011). Relatively few studies have examined in 
detail what sort of language-learning foothold the output of a segmen-
tation procedure would grant the infant. 

Regardless of the particular model in question, most previous studies 
have made similar assumptions about the nature of the input to word 

segmentation. Specifically, the input to the model has typically been 
generated by taking an orthographic transcription of speech and 
replacing each word with its pronunciation according to a dictionary (e. 
g., Brent & Cartwright, 1996; see, for example, Börschinger, Johnson, & 
Demuth, 2013; Elsner, Goldwater, Feldman, & Wood, 2013 for excep-
tions). This procedure tacitly assumes that any given orthographic word 
is always pronounced in the same canonical way. In real speech, how-
ever, this is not the case. Whole phones and even syllables can be 
dropped or added, or changed to incorporate features of nearby sounds 
(e.g., Ernestus & Baayen, 2011; Johnson, 2004; Warner, 2019). It is well 
known that speech can vary in “non-contrastive” acoustic and phonetic 
dimensions (like pitch, amplitude, and creakiness, in English) where 
differences are usually not relevant to word identity. Here we highlight a 
different kind of variability—in the phones that are present or absent in 
a word form—which infants cannot reasonably disregard in trying to 
learn and recognize words. Providing computational models with dic-
tionary pronunciations instead of a direct phonological transcription 
ignores this kind of variability and thus overestimates the clarity of the 
language input. 

To address this potential limitation, the present study tested several 
existing models of word segmentation using two different phonological 
transcriptions of the same speech: a “dictionary pronunciations” version, 
derived using an orthographic transcription and a pronunciation dic-
tionary, and a more realistic “transcribed pronunciations” version, or 
direct phonological transcription of the speech. This served two pur-
poses. First, we wanted to assess how the performance of existing models 
would be affected by using more realistic input that incorporated 
phonological variation. If the models' previous successes relied on 
certain unrealistic features of dictionary-derived phonological tran-
scriptions, then we would expect to see a substantial decrease in per-
formance on the transcribed pronunciations version of the corpus. 
Similar performance on both versions of the corpus, on the other hand, 
would suggest that the models are robust to phonological variation, in 
line with infants' own learning, which proceeds despite the phonological 
variation present in actual speech. (We acknowledge that such a result 
would still leave open the question of whether infants' representation of 
spoken language resembles that of hand-transcribed corpora, a point we 
will return to later.) 

Second, in addition to quantifying numerical differences in perfor-
mance, we wanted to investigate what concrete effects more realistic 
input might have on the learner's developing lexicon. Given input in 
which the same word can be pronounced in multiple ways, what kind of 
word knowledge could the learner achieve according to current pro-
posed solutions to word segmentation? The typical view of word 
learning supposes that the output of word segmentation serves as the 
input to the process by which children map meanings to words (e.g., 
Graf Estes, Evans, Alibali, & Saffran, 2007), but the present work 
highlights the fact that even when segmentation is successful, the 
resulting word forms can be difficult to link to word types. 

We will begin by reviewing several recent models of statistically 
driven word segmentation. Next, we describe the corpus that we used as 
input to test how robust these models are to phonological variability, 
and present the performance results. Finally, we explore the nature of 
the segmented word forms under conditions of phonologically variable 
input and its broader implications for word learning. 

1.1. Segmentation algorithms 

Building on experimental work using transitional-probability-based 
stimuli (Aslin et al., 1998; Saffran et al., 1996), several authors have 
implemented transitional-probability-based computational models of 
word segmentation (e.g., Gervain & Guevara Erra, 2012; Saksida et al., 
2017; Yang, 2004). These models compute the transitional probability of 
each pair of units XY, which can be defined as the probability of XY 
divided by either the probability of X (forward probability), the proba-
bility of Y (backward probability), or their product (mutual information; 
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in this case, the resulting fraction is also log-transformed). Then, the 
models insert word boundaries either wherever the transitional proba-
bility is lower than the transitional probability of the pairs around it 
(relative threshold) or wherever the transitional probability is lower 
than the corpus average (or some other absolute threshold). Work by 
Saksida et al. (2017) suggests that different variations of this transitional 
probabilities (TP) model may be more effective in different languages, 
although overall performance was relatively high across languages and 
model variations. 

The diphone-based segmentation model (DiBS) of Daland and Pier-
rehumbert (2011) also tracks the co-occurrence frequencies of sub-word 
units, in order to explicitly estimate the probability of a word boundary 
given a particular diphone. The key insight is that infants might detect 
through observation that some sounds are unusually common at the 
beginnings and ends of utterances (compared to their overall co- 
occurrence frequency). In the absence of any word boundary informa-
tion, infants could use the utterance boundaries instead and treat these 
sounds as especially likely beginnings and ends of words. This is what 
DiBS does in its unsupervised instantiation. More specifically, DiBS es-
timates the probability of a word boundary occurring between two 
phones using the observed frequencies with which the first phone ends 
utterances and the second phone begins utterances, along with their co- 
occurrence frequency. If the estimated probability is >0.5, a word 
boundary is deterministically inserted. Daland and Pierrehumbert 
(2011) found that DiBS was somewhat robust to phonological variation, 
although their focus was on the relative rates of different types of seg-
mentation errors rather than absolute performance metrics. 

As in the DiBS model, units that occur at the beginning and end of 
utterances play an important role in the PUDDLE (Phonotactics from 
Utterances Determine Distributional Lexical Elements) model of Mon-
aghan and Christiansen (2010). PUDDLE is a subtractive algorithm that 
pulls out known chunks (previous utterances, to start) from new utter-
ances, creating new chunks. However, this segmentation only occurs if 
the resulting new chunks start and end with n-grams (diphones by 
default) that the model has already learned as legal onsets and offsets. 
Thus, n-grams that occur next to utterance boundaries, which always get 
stored as legal onsets and offsets, greatly inform the model's subsequent 
decisions. Monaghan and Christiansen (2010) tested the PUDDLE model 
on a phonological corpus derived by passing an orthographic corpus 
through a speech synthesizer. As they point out, this phonologization 
process is more realistic than most pronunciation dictionaries, since the 
speech synthesizer allows the same orthographic word to be pronounced 
differently in different part-of-speech contexts (e.g., “uses” as a verb 
versus “uses” as a noun). Still, this model does not incorporate all of the 
phonological variation present in actual speech. 

These three models of word segmentation, along with a number of 
other models, continue to be used to investigate questions about chil-
dren's early word learning. While such models are not necessarily seen as 
mechanistic explanations of what infants actually do, they are at least 
taken to demonstrate what information is potentially available to infants 
in different kinds of language input. Recent studies (Cristia, Dupoux, 
Ratner, & Soderstrom, 2019; Fibla, Sebastian-Galles, & Cristia, 2021) 
highlight that a range of models can be used in parallel to better identify 
results that are stable across models. To facilitate this kind of multiple- 
model investigation, Bernard et al. (2020) developed the WordSeg 
software package, a coordinated collection of several different word 
segmentation algorithms, including TP, DiBS, and PUDDLE. So far, the 
WordSeg implementations have been used to compare the segment-
ability of adult-directed and child-directed speech (Cristia et al., 2019), 
to assess the segmentability of bilingual language input (Fibla et al., 
2021), to test the value of prosodic breaks (Ludusan et al., 2022), and to 
measure the effects of morphological complexity on word segmentation 
(Loukatou, Stoll, Blasi, & Cristia, 2022). Given the importance of these 
and other questions to which these models can be applied, it seems 
especially crucial to investigate the consequences of the assumptions 
that such modeling efforts usually make about phonological variation. 

2. Materials and methods 

2.1. Corpus 

We used the Buckeye corpus (Pitt et al., 2007) because it is a large 
corpus that already has both a direct phonological transcription and also 
a phonological transcription derived via lookup of orthographic words 
in a pronunciation dictionary. The Buckeye corpus contains spontaneous 
speech from 40 American English-speaking adults living in Columbus, 
Ohio. Speech was recorded during one-on-one interviews about a vari-
ety of local issues, and then orthographically and phonologically tran-
scribed. In the present study, we analyzed a subset of the Buckeye corpus 
composed of speech from four female talkers under 40 years of age. 
These speakers were selected so as to better approximate infant-directed 
speech, an issue taken up in more detail in the Discussion. In total, the 
smaller corpus used in this study included 30,910 words from 1425 
conversational turns. (Our rationale for collapsing across these four 
speakers when constructing the corpus can be found in the Supple-
mentary Materials.) 

During pre-processing, we removed all non-speech codes (e.g., 
VOCNOISE for non-speech vocalizations) and words containing non- 
speech codes from the corpus. We also replaced instances of syllabic 
consonants with a schwa vowel followed by that consonant. Before 
running the segmentation algorithms, we modified the corpus to include 
more frequent utterance boundary codes. The Buckeye corpus only 
marks conversational turn boundaries and not other utterance bound-
aries, so we probabilistically inserted additional utterance boundaries 
between words according to the rate observed in child-directed speech 
(the Brown (1973) files in the CHILDES database (MacWhinney, 2000)). 
Scripts used for pre-processing, syllabification, and segmentation are 
available online on the Open Science Framework. 

2.2. Syllabification 

Some of the segmentation algorithms that we tested use syllables as 
the basic unit. To prepare the corpora for these algorithms, we used the 
program tsylb2 developed at the National Institute of Standards and 
Technology (Fisher, 1996). This program syllabifies words using infor-
mation about which consonant clusters can begin and end words in 
English, in combination with the principle of maximal onset (intervo-
calic consonants are maximally assigned to syllable onsets). 

2.3. Segmentation 

We employed three proposed segmentation algorithms, TP, DiBS, 
and PUDDLE (described above), on both versions of the corpus using the 
WordSeg software package (Bernard & Cristia, 2018). (See the Supple-
mentary Materials for a description of the parameters.) Since which unit, 
the phone or the syllable, is more appropriate to consider as the basic 
unit has been debated in the literature (e.g., Gambell & Yang, 2005; 
Swingley, 2005b), we tested both phone-based and syllable-based ver-
sions of each algorithm, with the exception of DiBS, for which we only 
tested the unsupervised phone-based version. Note that providing syl-
lable boundaries rather than phone boundaries is much closer to 
providing the true word boundaries already, because English has many 
monosyllabic words. As a result, it is not meaningful to compare the 
performance of the phone-based algorithms to the performance of the 
syllable-based algorithms. 

Instead, their performance can be compared to the performance of 
two different baseline algorithms. As the syllable-based baseline, we 
used the WordSeg (Bernard & Cristia, 2018) baseline algorithm, which 
identifies every syllable as a word. As the phone-based baseline, we 
coded an implementation of the Possible Word Constraint (Norris, 
McQueen, Cutler, & Butterfield, 1997), according to which all seg-
mentations should contain at least one vowel. To achieve this constraint, 
this baseline algorithm considers each pair of consecutive vowels in each 
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utterance in the corpus and inserts a word boundary somewhere be-
tween them (with the location chosen at random) according to the oracle 
probability of a word boundary occurring between two consecutive 
vowels within an utterance, across the corpus. 

2.4. Performance evaluation 

To quantitatively evaluate the performance of each algorithm, we 
computed the standard information-theoretic measures of (token) pre-
cision, recall, and F-score. In the context of word segmentation, precision 
measures how many of the segmented words were correctly segmented 
(matched the gold text, i.e. [correct segmentations] / [all segmenta-
tions]), while recall measures how many of the words in the gold text 
were successfully extracted ([correct segmentations] / [all word tokens 
in the gold text]). In line with previous work (e.g., Cristia et al., 2019), 
we focus on token F-score, which is the harmonic mean of precision and 
recall. Results of analyses considering precision and recall separately are 
provided in the Supplementary Materials. 

3. Results 

3.1. Model performance 

Fig. 1 shows the relative performance of each algorithm on the dic-
tionary pronunciations versus the transcribed pronunciations version of 
the corpus. The error bars represent two standard deviations across ten 
different runs of the procedure that probabilistically inserted additional 
utterance boundaries into the corpus. These pseudo-confidence intervals 
provide an estimate of the within-corpus noise introduced by different 
utterance boundary randomizations. 

Across algorithms, performance on the transcribed pronunciations 
version of the corpus was lower than performance on the dictionary 
pronunciations version (as evidenced by the downward slope of the lines 
in Fig. 1), with the exception of the baseline algorithms. The average 
decrement in token F-score for the non-baseline algorithms was 12%, 
ranging from 3.65% to 22.5%. Using transcribed pronunciations also 
changed how performance varied between algorithms, practically 
eliminating the differences observed on the dictionary pronunciations 

version of the corpus (phone-based algorithms) or even reversing the 
previous pattern (syllable-based algorithms). 

The observed decrease in performance on the transcribed pro-
nunciations can be explained by the underlying statistics of this version 
of the corpus. Let us consider the phone-based algorithms for simplicity. 
In the dictionary pronunciations version of the corpus, there are some 
pairs of phones that are extremely reliable cues to the presence or 
absence of word boundary. For example, when /h/ is followed by any 
other phone, the probability of a word boundary occurring between 
them is 0, since /h/ cannot end words in English. Conversely, any phone 
followed by /h/ is a fairly reliable cue to the presence of a word 
boundary (P(word boundary) = 0.887), since these can only belong to 
the same word if that word is multisyllabic (e.g., “clubhouse”). How-
ever, because /h/ is often deleted in conversational speech (e.g., “im” 
instead of “him”), these helpful cues are less frequent in the transcribed 
pronunciations version of the corpus (1358 instead of 1635 occur-
rences). As another example, /u/, which never starts words in the dic-
tionary pronunciations version of the corpus and so always attaches to 
the phone before it, occurs 2622 times in the dictionary pronunciations 
but less than half that often (1196 times) in the transcribed pro-
nunciations because of frequent vowel reduction. 

In addition to cases like these, some phone pairs that are reliable cues 
in the dictionary pronunciations become less reliable in the transcribed 
pronunciations. For instance, /ɪ/, /ε/, and /ʌ/ never directly precede 
word boundaries in the dictionary pronunciations but do so about 10% 
of the time in the transcribed pronunciations due to final consonant 
deletion. On the whole then, the statistical landmarks that help in the 
dictionary pronunciations version of the corpus have been eroded in the 
transcribed pronunciations, leading to worse segmentation performance 
across models. 

Despite the decrease we observed moving from dictionary pro-
nunciations to transcribed pronunciations, the algorithms' absolute 
performance on the transcribed pronunciations version of the corpus 
was still relatively high in the case of the syllable-based algorithms and 
well above the relevant baseline for the phone-based algorithms (Fig. 1). 
This suggests that at least in terms of numerical performance, these 
models of word segmentation are somewhat robust to the phonological 
variation present in actual speech, though of course they leave open the 

Fig. 1. Segmentation performance on dictionary pronunciations versus transcribed pronunciations of the same speech. Each connected pair of points represents a 
particular word segmentation algorithm, and error bars show empirical 95% confidence intervals over different utterance boundary randomizations. 
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question of how infants identify the phones or locate the syllable 
boundaries. 

3.2. Proto-lexicon of word forms 

In addition to calculating the standard performance metrics, we also 
examined the nature of the word forms that appeared in the segmen-
tation output when the models were given phonologically variable 
input. Since the typical view assumes that the output of word segmen-
tation gives rise to a proto-lexicon of word forms whose meanings are 
discovered during word learning, we wanted to assess the correspon-
dence between segmented word forms and orthographic words, using 
orthographic words as a proxy for word meanings. 

To visualize the relationship between correctly segmented phono-
logical word forms and orthographic words, we can think of phono-
logical word forms and orthographic words as the two kinds of nodes in a 
bipartite (or bimodal) network. In this network, an edge exists between two 
nodes A and B if that phonological word form A was ever correctly 
segmented when B was the speaker's intended orthographic word. With 
dictionary pronunciations as input, this network is guaranteed to consist 
of one-to-one links, or pairs of nodes that are only connected to each 
other (with the exception of homophones, where two phonological word 
forms would be linked to the same orthographic word). With phono-
logically variable input, however, such one-to-one correspondences are 
not guaranteed. Instead of one-to-one links where the meaning of each 
phonological word form is well defined, we could instead see a complex 
many-to-many relationship, where each orthographic word has several 
different pronunciations and these pronunciations overlap with the 
pronunciations of other orthographic words. In this case, learning which 
meaning to attach to a phonological word form would pose a problem 
with no clear solution. 

For example, consider an English-learning child who has isolated 
[sɪd] (“sid”) as a potential word, based on its statistical cohesiveness. 
The child might observe that this word's contexts of use are compatible 
with notions conveyed by “sit” and “said.” Given this evidence, the child 
might suppose that these two meanings are, in fact, both members of 
some larger semantic category than previously hypothesized (e.g., 
LaTourrette & Waxman, 2020); or might guess that [sɪd] is a homo-
phone. Similarly, a child who has isolated [kɔl] (“call”) and [kɔ] (“caw”) 
as two separate forms whose contexts of use (instances of the intended 
orthographic word “call”) seem identical might suppose that “call” has 
more than one pronunciation, or that the phonological categories of 
[kɔl] and [kɔ] should actually be collapsed into one. Resolving these 
possible errors, even if multiplied over many items in the lexicon, seems 
tractable. But there are also many-to-many cases where any solutions 
would seem to be overwhelmed with ambiguity. Imagine, for instance, a 
child who has isolated [kɪd] as a potential word. While canonically this 
is simply the single pronunciation of the word “kid”, in actual speech, 
“kid” and “could” are both frequently pronounced as [kɪd]. Further-
more, “kid” can also be pronounced [kɪ], as can “could”, and other 
pronunciations of each word overlap with yet more orthographic words 
(e.g., “kit”, “good”, “can”, etc.). This scenario is clearly much less trac-
table, even given perfect knowledge of each word form's context of use. 
(For a visual example of a small, many-to-many mapping, see Fig. 2). 

With these possibilities in mind, we turn to our results. We observed 
a variety of outcomes, including both unambiguous one-to-one links and 
larger many-to-many components. For simplicity, we focus here on the 
correct segmentations under the phone-based transitional probabilities 
model, but the overall pattern of results was similar using other models 
(see Supplementary Materials). As Fig. 3 shows, most of the phonolog-
ical nodes or postulated word types (65%; 86% of tokens) ended up in a 

single giant component of phonological and lexical overlaps. By 
contrast, only 21% (7% of tokens) belonged to a one-to-one link.1 Many 
of the one-to-one links were of extremely low frequency (just two or 
three occurrences), making it hard to say how many of these perfect 
correspondences would persist given a larger corpus. 

This network of orthographic words and phonological word forms 
was very different from the equivalent network generated under the 
unrealistic simplifying assumption of no phonological variation from the 
dictionary pronunciations. The network generated from transcribed real 
pronunciations had a higher density (number of observed edges / total 
possible edges given the number of nodes). This increase in density was 
expected because when the dictionary pronunciations version of the 
corpus is used as input, the number of observed edges is bounded by the 
number of (correctly segmented) orthographic word types (i.e., each 
orthographic word has no more than one pronunciation). This is not true 
when the transcribed pronunciations are used. However, in addition to 
an increase in density, we also observed a giant component composed of 
overlaps, including a large number of many-to-many connections, and 
encompassing the majority of the postulated word types. In other words, 
it is not merely the case that each orthographic word had a few different 
pronunciations that would need to be grouped together by the learner. A 
given phonological word form was also ambiguous as to the intended 
orthographic word, indicating much more widespread homophony than 
is typically assumed. 

It is possible that our use of a binary edge condition, in which we ask 
whether the phonological word form A either was ever, or was never, an 
instance of the orthographic word B, overestimates the messiness of the 
input by weighting very infrequent pronunciation variants as strongly as 
frequent ones. If, for example, 9/10 instances of “rain” were segmented 
as [ɹeɪn] and 1/10 as [ɹeɪ] (which could also be “ray”), the child might 
be in a different position than if the proportions were 5/10 and 5/10. To 
incorporate frequency information, let us consider a weighted network, 
where each edge in the network has a weight representing how many 
times each orthographic word was realized as a particular phonological 
word form. Then, a phonological word form and an orthographic word 
can be said to be in a close to one-to-one relationship if the weight of the 

Fig. 2. Example many-to-many mapping. Edges between phonological word 
forms (shaded) and orthographic words (white) represent attested pro-
nunciations. In this network, the same orthographic word (“he'll”) can have 
multiple pronunciations ([hil] and [hɪl]), and a single phonological word form 
can map onto multiple orthographic words and thus meanings (e.g., [hil] maps 
onto both “heel” and “he'll”). 

1 These estimates excluded segmentations that occurred only once (5% of the 
tokens). If these hapax legomena are included, the analogous proportions are 
53% of types (84% of tokens) and 24% of types (6% of tokens). 
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edge between them is high relative to the weighted degree (total fre-
quency = sum of weights of direct edges) of either node. Borrowing a 
measure from information theory, this is equivalent to saying that the 
(pointwise) mutual information (PMI) of the two nodes A and B (i.e., log 
[freq(A and B) / (freq(A)*freq(B)]) is high, or that the normalized 
pointwise mutual information (NPMI = PMI / -log[freq(A and B)]) is 
close to 1, where 1 indicates perfect correlation. In Fig. 4, we show what 
happens to the giant component from the original network when edges 
between nodes with NPMI close to 0 (where 0 indicates statistical in-
dependence) and edges with a weight of 1 (correspondences that 
occurred only once) have been pruned using oracle knowledge of the 
intended orthographic word. Taking frequency information into account 
in this way resolves some of the ambiguities, creating some one-to-one 
links and intermediate-size components where before there was only a 
single, densely connected component. 

The sparser network formed by pruning links with less tight an 
evidential connection shows that if children could identify and ignore 
infrequent phonological and lexical correspondences, or simply forget 
them, this would reduce the number of words involved in intractable 
many-to-many overlaps. Nevertheless, even after this pruning, some 
large connected components remained. For example, “as”, “has”, “his”, 
“just”, “is”, “it's”, “that's”, “this”, “was”, and “us” all belonged to the 
same connected component. Such many-to-many relationships chal-
lenge the assumption that statistically driven word segmentation pro-
vides the learner with a strong lexicon-building foundation. In other 
words, considering word types and phonological word forms separately 
reveals a hidden learning challenge that unsupervised statistics 
computed over a phonological transcription cannot untangle. 

Pruning infrequent edges from the network provides a more nuanced 
characterization of the input but is probably unrealistic as a model of the 
learner, since infants do not have oracle knowledge of the intended 
orthographic word. Without this knowledge, the frequency of each 
correspondence is unlikely to be available. Thus, taking a more 

psychologically plausible approach, we modeled what would happen if 
phonological word forms below a certain overall frequency were 
excluded or forgotten. If we exclude word forms that happened only few 
times in the corpus, does this help reduce the number of many-to-many 
mappings? As Fig. 5 shows, filtering by frequency does reduce the ab-
solute number of orthographic words involved in many-to-many re-
lationships, but their proportion in the proto-lexicon actually increases. 
In general, the phonological word forms involved in many-to-many re-
lationships are high in overall frequency. As a result, excluding low- 
frequency word forms hurts the ideal, one-to-one links substantially 
more than it helps resolve the many-to-many entanglements. 

So far, the networks we have considered have assumed that the 
learner tries to link up every (correctly) statistically derived word form 
with a meaning. Even with perfect access to the word's semantic context 
(implemented here by identifying it with the corpus' orthographic 
transcription), our results demonstrate that this is an extremely hard 
problem to solve. As an alternative to this exhaustive processing of the 
input, infants might instead only consider as candidate word forms for 
their initial proto-lexicon those word forms that seem to have concrete 
referents. To investigate this possibility, we filtered the network by 
removing orthographic nodes with concreteness ratings (Brysbaert, 
Warriner, & Kuperman, 2014) below the median, and also removing any 
edges connected to them. Fig. 6 shows the result.2 This exclusion of less 
concrete words significantly reduced the density of the network 
(0.0028) compared to removing the same number of orthographic nodes 
chosen at random (bootstrap 95% CI = [0.0033, 0.0043]). This happens 
because more concrete words tend to be phonologically heavier in their 

Fig. 3. Network visualization of the correctly segmented words under the TP model. Each shaded node represents a segmented word or phonological word form, 
which is linked to one or more intended orthographic words (white squares). Node size represents frequency, though any segmentations that occurred only once were 
excluded. For simplicity, only a few representative examples are plotted for the smaller components (“intermediate links” and “one-to-one links”). The bar graph 
shows the percentage of phonological word forms that ended up in each kind of component. 

2 As a complement to this simulation, we also used regression analyses to 
describe whether some kinds of words (e.g., content versus function words) 
were more likely to end up in one-to-one or close to one-to-one relationships in 
the original network. See the Supplementary Materials for details. 

C. Beech and D. Swingley                                                                                                                                                                                                                     



Cognition 235 (2023) 105401

7

specification in the lexicon, and also less affected by reduction processes 
that would alter their transcription. Therefore, temporarily leaving aside 
words with less concrete meanings early in the learning process could 
make the mapping problem more tractable. This solution does not 
entirely rescue the learner, however, because some many-to-many 
components persisted after filtering, and because knowledge of the 

semantic context is not in fact given. In the real world, infants have to 
contend with variation both in the referential world and in words' pro-
nunciations. Although some word use instances in parent-infant inter-
action are semantically transparent (Trueswell et al., 2016) and some 
demonstrate careful, relatively unambiguous phonetic presentations 
(Cychosz, Edwards, Bernstein Ratner, Torrington Eaton, & Newman, 

Fig. 4. Giant component after pruning. Edges linking phonological word forms (shaded circles) and intended orthographic words (white squares) were removed if 
the two were only weakly informative about each other (NPMI ≤0.25) or if the correspondence occurred only once among the correct segmentations. For the 
components at the top of the figure, the orthographic nodes are labeled in gray (e.g., “his”), and the phonological nodes in black (e.g., ihz ([ɪz] in IPA)). For clarity, 
labels are not presented for the smaller components at the bottom of the figure. 

Fig. 5. Composition of the proto-lexicon assuming low-frequency word forms are forgotten. For each frequency threshold, a pie chart shows which orthographic 
words remain when the phonological word forms at or below that frequency are excluded. One-to-many refers to pronunciation variants (one word, many pro-
nunciations), and many-to-one refers to homophones (many words, one pronunciation). (Note that because the corpus is a sample of the listener's experience, a 
frequency of 1 in the corpus does not necessarily correspond to a frequency of 1 in the listener's experience.) Including only higher frequency word forms reduces the 
absolute number of words involved in many-to-many entanglements (i.e., the absolute area of the dark red region decreases from left to right), but their proportion 
increases. By contrast, both the number (labeled) and the proportion of the ideal, one-to-one words (green, outlined) decrease dramatically as the frequency threshold 
increases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2021), these learning opportunities may not be the same ones (Beech & 
Swingley, 2022). 

4. Discussion 

In this study we investigated the effects of phonological variation on 
models of statistically driven word segmentation. We found that using 
transcribed pronunciations rather than canonical pronunciations led to 
consistently lower numerical performance across algorithms. In addi-
tion, we showed that phonological variability poses substantial prob-
lems for lexicon building. Most of the extracted phonological word forms 
ended up in a dense web of phonological and lexical overlaps, where 
phonological identities and differences were not consistent cues to word 
identity. This finding could explain why toddlers have sometimes failed 
to apply a mature phonological criterion in word learning experiments 
(Dautriche, Swingley, & Christophe, 2015; Stager & Werker, 1997; 
Swingley & Aslin, 2007). Perhaps they have learned that in real speech, 
a small phonological difference often does not imply a difference in 
meaning. 

Traditionally, the fact that infants and toddlers often recognize 
words less well when the words are realized with phonologically deviant 
pronunciations has been interpreted as evidence that young children do 
use a phonological criterion for lexical differentiation, in line with 

textbook definitions of the function of a formal phonology. For example, 
two-year-old children learning Catalan, but not two-year-old children 
learning Spanish, find words harder to identify if their vowel /e/ is 
realized as /ε/—phonetically the same change in the two stimulus sets, 
but phonologically quite different in the two languages (Ramon-Casas, 
Swingley, Sebastián-Gallés, & Bosch, 2009). This is consistent with the 
idea that “mispronunciation effects” derive from a mismatch signal 
triggered by the deviant phone, which is much stronger for phonological 
distinctions. Dietrich, Swingley, and Werker (2007) obtained a similar 
result in a word teaching context, with younger children. But, does this 
strong mismatch signal, which we measure in experiments, prevail in 
children's interpretation of novel words? The answer, at least in the 
laboratory word-learning contexts we have tested, is no. Swingley and 
Aslin (2007) tried to teach 19-month-olds novel object labels that were 
phonologically distinct from familiar words (like “tog” vs. “dog”), and 
children failed again and again. Children of this age can hear the dif-
ference, but it does not make them posit a new lexical item. Swingley 
(2016) showed a similar result and eye-tracked the same children. From 
children's own eye movement data, it was clear that they noticed deviant 
realizations of words, but they did not interpret those differences as 
corresponding to novel words for unfamiliar objects. Why not? Why do 
children seem so skeptical, when they are confronted with a novel 
neighbor? Perhaps because their linguistic experience has been replete 

Fig. 6. Entire network with less concrete words excluded. Concreteness norms were used to exclude orthographic words (white squares) of below average 
concreteness (2.64 out of 5) and any edges connecting them to phonological word forms (shaded circles). Despite the significant reduction in density compared to 
random orthographic node removal, some complex, many-to-many components persisted. 
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with tokens of words that often stray beyond their own phonological 
bounds. Children need to learn the canonical forms of words, but they 
also need to learn the phonetic transform that connects reduced forms to 
one or more distinct canonical forms. 

One limitation of the present work is the use of a corpus of adult- 
directed rather than infant-directed speech. Adult-directed and infant- 
directed speech clearly differ in their content, and a body of work sug-
gests that infant-directed speech may be tailored to promote learning (e. 
g., Eaves, Feldman, Griffiths, & Shafto, 2016; Kuhl et al., 1997; though 
see Ludusan, Mazuka, & Dupoux, 2021). However, it is also clearly not 
the case that parents speak like dictionaries, producing only canonical 
forms, when conversing with their children (e.g., Bard & Anderson, 
1983; Buckler, Goy, & Johnson, 2018; Lahey & Ernestus, 2014). In 
addition, infant-directed speech appears to have only a small and 
inconsistent advantage in segmentability, at least when the recording 
contexts for infant-directed and adult-directed speech are similar 
(Cristia et al., 2019). 

Although this work introduced more realism in one way (by incor-
porating phonological variability), it still made simplifying assumptions. 
For instance, in considering the problem of attaching meanings to 
words, the orthographic word served both as the linguistic target and as 
a stand-in for the semantic context. Future investigations could model 
the semantic context separately, possibly by using a corpus with asso-
ciated video data. 

In addition, we have assumed that the statistical word segmentation 
algorithms operate over phonological categories. It is possible that the 
phonological units that infants use early in word learning are actually 
more continuous, in line with automatic speech recognition features 
derived directly from the acoustic signal. Although this changes the 
problem space, other computational modeling efforts have explored the 
feasibility of speech-based segmentation (Dunbar et al., 2020; Räsänen, 
2011). It could be that some of the complexity we observed here in 
mapping variable segmented forms to distinct lexical items would be 
attenuated by avoiding the imposition of phonological categories in the 
first place. For example, if the word “tree” were sometimes realized with 
an aspirated /t/ ([thɹi]), and sometimes realized with frication ([tʃɹi]), 
these instances might be phonetically close but transcribed as phone-
mically distinct. At present, it is impossible to say whether a more 
“analog” and less “digital” conceptualization of infant speech processing 
would ameliorate the pervasive ambiguity problem we have identified, 
or exacerbate it. However, if infants do not adopt a categorical repre-
sentation of speech one way or another, they also could not compute the 
same kinds of statistics that are widely presupposed to underlie perfor-
mance in word segmentation experiments. This is a fruitful ground for 
further research efforts. 

Despite these limitations, this study has important broader implica-
tions. Specifically, it suggests that the exhaustive parsing models that 
dominate current thinking about very early language development 
would, if true, place infants in a difficult position, by leading them to 
build extremely complex initial lexicons containing a strong proportion 
of unhelpful categorizations. This provides some impetus for thinking 
about the problem in another way. In particular, rather than concep-
tualize infants as trying to fully parse every sentence using rudimentary 
statistical segmentation heuristics, we might do better to suppose that 
infants begin language learning by attending primarily to salient islands 
of reliability in phonetic and semantic space, and building outward from 
there. If infants initially filter their input, homing in on moments where 
words are pronounced more clearly or canonically, or the intended 
meaning is more easily available, this could help them sidestep some of 
the problems that phonological variability poses for early word learning. 
Eventually though, young children must contend with speech on a larger 
scale. How children make this transition and learn to manage the 
phonological variability in speech remains an open question. 
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