Math 104 Midterm \#1

blue=question, black=answer.

1: Which Maple command would you use to plot two periods of the sine curve?

```
> plot( sin, 0..4*Pi );
```

2: \quad Sketch the plot created by the following Maple command:

```
> with(plots):
```

> implicitplot($\mathrm{x}^{\wedge} 2+\mathrm{y} * \mathrm{y}=1, \mathrm{x}=-1 . .1, \mathrm{y}=-1 . .1$);

It's a circle.
3: Here Maple cannot find an analytic solution. Which Maple command would compute a numeric solution?
> $\operatorname{int}(\sin (x) / x, x=0 . . P i / 2)$;

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin (x)}{x} \mathrm{~d} x
$$

> evalf(\%);

4: What is the formula for the shaded area between the graphs in the following picture:

5: \quad Find the area between $y=-x$ and $y=\sin (x), 0 \leq x \leq \frac{\pi}{4}$.

$$
\int_{0}^{\frac{\pi}{4}}(\sin (x)-(-x)) \mathrm{d} x=\frac{1}{32} \pi^{2}-\frac{1}{2} \sqrt{2}+1
$$

6: A solid lies between the planes perpendicular to the x-axis at $x=0$ and $x=\frac{\pi}{4}$. The cross sections perpendicular to the x-axis are discs of diameter $\sqrt{\tan (x)}$. What is the volume of the solid?

$$
\int_{0}^{\frac{\pi}{4}} \pi\left(\frac{1}{2} \sqrt{\tan (x)}\right)^{2} \mathrm{~d} x=\frac{\pi}{8} \ln 2
$$

7: \quad The region bounded by $y=|1-|x||$ and the line $y=0$ is rotated around the x-axis. Find the volume of the solid of revolution.

Solid of revolution consists of two cones, glued at the base. The base is a disc of radius $1 \Rightarrow$ Area $=\pi$. Height of each cone is $1 \Rightarrow$ Volume of 1 cone $=$ $\frac{1}{3} \cdot 1 \cdot \pi=\frac{\pi}{3}$. Hence total volume $=\frac{2 \pi}{3}$.

8: Where is the center of mass of a homogeneous triangular plate with vertices $(0,0),(0,1)$ and $(1,0)$? You may remember that the center of mass of a triangle is on a line trough a vertex and the midpoint of the opposing side. In the (x, y)-plane those lines have equations

$$
y=x, \quad y=\frac{1}{2}-\frac{1}{2} x, \quad y=-2\left(x-\frac{1}{2}\right)
$$

The common solution is $(x, y)=\left(\frac{1}{3}, \frac{1}{3}\right)$, this is the center of mass.
9: Find the center of mass of a thin plate covering the region bounded by $y=1-x^{2}$ and the x-axis if the density function is $\delta=\frac{1}{2}$.

$$
M=\int_{-1}^{1} \delta \mathrm{~d} x\left(1-x^{2}\right)=2 / 3
$$

The moment for rotation around the y-axis, m_{y}, is zero because of symmetry. The coordinates of the center of mass of a thin strip parallel to the y-axis are $(\tilde{x}, \tilde{y})=\left(x, \frac{1-x^{2}}{2}\right)$:

$$
m_{x}=\int_{-1}^{1} \mathrm{~d} m \frac{1-x^{2}}{2}=\int_{-1}^{1} \delta \mathrm{~d} x\left(1-x^{2}\right) \frac{1-x^{2}}{2}=\frac{4}{15}
$$

Hence the center of mass has coordinates

$$
(x, y)=\left(\frac{m_{y}}{M}, \frac{m_{x}}{M}\right)=\left(0, \frac{2}{5}\right)
$$

10: \quad Rotate the region bounded by $y=x^{2}, y=0$ and $x=1$ around the y-axis. Find the volume of the solid of revolution. Shell method:

$$
V=\int_{0}^{1} 2 \pi x y \mathrm{~d} x=\int_{0}^{1} 2 \pi x \cdot x^{2} \mathrm{~d} x=\frac{\pi}{2}
$$

11: \quad Find the length of the curve $x=\frac{1}{3} y^{3}+\frac{1}{y}$ from $y=2$ to $y=3 . \quad x(2)=\frac{19}{6}$, $x(3)=\frac{28}{3}$. Curve length L is

$$
L=\int_{\frac{19}{6}}^{\frac{28}{3}} \sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}} \mathrm{~d} y=\int_{\frac{19}{6}}^{\frac{28}{3}} \sqrt{y^{4}-1+y^{-4}} \mathrm{~d} y
$$

This integral cannot be evaluated in terms of elementary functions.
12: Find the area of the surface of revolution of the curve $y=\frac{1}{3} x^{3}, 0 \leq x \leq 1$ around the x-axis.

$$
A=\int_{0}^{1} 2 \pi y \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=\left[\frac{1}{9} \pi\left(x^{4}+1\right)^{3 / 2}\right]_{0}^{1}=\frac{\pi}{9}(2 \sqrt{2}-1)
$$

13: The boundary of the surface of revolution of the previous exercise is a circle. Compute the area of the cone over this circle, with the tip of the cone at the origin. Base is circle of radius $y(1)=\frac{1}{3}$. Use formula for area of cone frustrum:

$$
A=\sqrt{1+\left(\frac{1}{3}\right)^{2}} \cdot 2 \pi \frac{0+\frac{1}{3}}{2}=\frac{1}{9} \pi \sqrt{10}
$$

14: \quad Sort the following numbers: $0, \pi, \ln 2, e, 1, \sqrt{2}$.

$$
0<\ln 2<1<\sqrt{2}<e<\pi
$$

15: \quad Find the equation for the tangent at the curve $y=e^{x}$ at $x=0$.

$$
y=1+x
$$

16: \quad Solve the initial value problem $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+\frac{1}{x}, y(1)=2$.

$$
y(x)=\ln (x)+x+1
$$

17: \quad Find a curve whose length between $x=1$ and $x=2$ is $\int_{1}^{2} \sqrt{1+\frac{1}{x^{2}}} \mathrm{~d} x$

$$
y=-\frac{1}{x} 1 \leq x \leq 2
$$

