Math 104 Midterm \#2

blue=question, black=answer.

1 The H1 collaboration published the data plotted to the right ${ }^{a}$.
Which of the following expressions is the best approximation to their data?

[^0]
a). $\lambda=0.05\left(\frac{Q^{2}}{(0.3 \mathrm{GeV})^{2}}\right)$
b). $\lambda=0.05\left(Q^{2} \cdot(0.3 \mathrm{GeV})^{2}\right)$
c). $\lambda=0.05 \ln \left(\frac{Q^{2}}{(0.3 \mathrm{GeV})^{2}}\right)$
d). $\lambda=0.05 \ln \left(Q^{2} \cdot(0.3 \mathrm{GeV})^{2}\right)$
e). $\lambda=0.05 \exp \left(\frac{Q^{2}}{(0.3 \mathrm{GeV})^{2}}\right)$
f). $\lambda=0.05 \exp \left(Q^{2} \cdot(0.3 \mathrm{GeV})^{2}\right)$

Only $Q^{2} / G e V^{2}$ is a number (i.e. without units) and can appear in the argument of \ln or exp. According to the plot, there is a linear relation between λ and $\ln \left(Q^{2} / G e V^{2}\right)$. This already singles out answer c). Plug in simple values for Q^{2} if you are unsure.

2 Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1+x^{2}}$. Using Maple, how would you find the solution satisfying $\lim _{x \rightarrow \infty} y(x)=0$? Hint: A single command suffices.

```
> dsolve( { diff(y(x),x)=1/(1+x^2), y(infinity)=0 }, y(x) );
```

3 Define the error function as

$$
\operatorname{erf}(x) \stackrel{\text { def }}{=} \frac{2}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-t^{2}} \mathrm{~d} t
$$

Find the minimum of the derivative of the inverse function erf^{-1}. erf has domain \mathbb{R}, so the range of erf^{-1} is \mathbb{R}.

$$
\frac{\mathrm{d}}{\mathrm{~d} y} \operatorname{erf}^{-1}(y)=\left.\frac{1}{\frac{2}{\sqrt{\pi}} e^{-x^{2}}}\right|_{x=\operatorname{erf}^{-1}(y)}
$$

The maximum of $e^{-x^{2}}$ is at $x=0$. Hence the minimum of the derivative of $\operatorname{erf}^{-1}(y)$ is at $y=\operatorname{erf}(0)$.

$$
\frac{\mathrm{d}}{\mathrm{~d} y} \operatorname{erf}^{-1}(\operatorname{erf}(0))=\left.\frac{1}{\frac{2}{\sqrt{\pi}} e^{-x^{2}}}\right|_{x=0}=\frac{\sqrt{\pi}}{2}
$$

$4 \quad$ Compute the derivative of $u(t)=\sqrt{\ln \sqrt[3]{t}}$.

$$
\frac{1}{6} \frac{1}{t \sqrt{\ln (\sqrt[3]{t})}}
$$

5
The function $y(x)$ satisfies $\cot y=e^{x}-\ln x$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
Implicit differentiation:

$$
-\left(1+\cot (y)^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=e^{x}-\frac{1}{x}
$$

Solve for $\mathrm{d} y / \mathrm{d} x$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{e^{x}-\frac{1}{x}}{-\left(1+\cot (y)^{2}\right)}=-\frac{e^{x}-\frac{1}{x}}{1+\left(e^{x}-\ln x\right)^{2}}
$$

$6 \quad$ Integrate $\int_{0}^{\pi} \frac{2^{\ln x}}{\sqrt{x}} \mathrm{~d} x$

$$
\int_{0}^{\pi} \frac{2^{\ln x}}{\sqrt{x}} \mathrm{~d} x=\int_{0}^{\pi} x^{\ln (2)-\frac{1}{2}} \mathrm{~d} x=\frac{\pi^{\ln (2)+\frac{1}{2}}}{\ln (2)-\frac{1}{2}}
$$

7 Find $\lim _{x \rightarrow 0^{+}}\left(1+\frac{1}{x}\right)^{x}$.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(1+\frac{1}{x}\right)^{x} & =\lim _{x \rightarrow 0^{+}} \exp \left(x \ln \left(1+\frac{1}{x}\right)\right)= \\
& =\lim _{y \xlongequal{\text { def }} \frac{1}{x} \rightarrow \infty} \exp \left(\frac{\ln (1+y)}{y}\right)=0
\end{aligned}
$$

since $\frac{\ln (1+y)}{y} \rightarrow 0$ (logarithm grows slower than any nonconstant polynomial).
8 Sort the following functions by their growth rates, from slowest to fastest growing:

$$
x, \quad \sqrt{x}, \quad \sqrt{x^{2}-1}, \quad 1, \quad e^{x}, \quad(\ln 2)^{x}
$$

Which of those functions are $o(x)$, which are $O(x)$?
x and $\sqrt{x^{2}-1}$ grow at the same rate.

$$
\begin{gathered}
\leftarrow \text { slowest } \quad(\ln 2)^{x}, 1, \sqrt{x},\left\{\frac{x,}{\left.\sqrt{x^{2}-1}\right\}, e^{x} \quad \text { fastest } \rightarrow}\right. \\
\begin{aligned}
(\ln 2)^{x}, 1, \sqrt{x}, x, \sqrt{x^{2}-1} & =O(x) \\
(\ln 2)^{x}, 1, \sqrt{x} & =o(x)
\end{aligned}
\end{gathered}
$$

$9 \quad$ Find $\lim _{x \rightarrow 0^{+}} \frac{\sin ^{-1} 2 x}{\sqrt{x}}$.

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin ^{-1} 2 x}{\sqrt{x}}=\lim _{x \rightarrow 0^{+}} \frac{2 x+\frac{4}{3} x^{3}+\cdots}{\sqrt{x}}=\lim _{x \rightarrow 0^{+}}(2 \sqrt{x}+\cdots)=0
$$

$10 \quad$ Solve the differential equation $(2+x) y^{\prime}+y=\sqrt{x}$.

$$
\begin{aligned}
(2+x) y^{\prime}+ & y=\frac{\mathrm{d}}{\mathrm{~d} x}(2+x) y \sqrt{x} \\
& \Rightarrow(2+x) y=\frac{2}{3} x^{\frac{3}{2}}+C \Leftrightarrow y=\frac{2}{3} \frac{x^{\frac{3}{2}}+C^{\prime}}{2+x}
\end{aligned}
$$

11 The following graph is a slope field for the differential equation $y^{\prime}=\frac{x^{2}}{y^{2}}$. Sketch the solution which passes trough the point $(0,1)$. Make sure you do not continue the solution beyond any points where the differential equation is not defined.

Start at $x=0, y=1$. Following the slope field to the left you must stop if you reach the x-axis, the differential equation is not defined at $y=0$.

12 Find $\int_{0}^{\infty}\left(x^{2}+1\right) e^{-2 x} \mathrm{~d} x$, if it exists.

$$
\int_{0}^{\infty}\left(x^{2}+1\right) e^{-2 x} \mathrm{~d} x=\frac{3}{4}
$$

13 Expand $\frac{3 x^{4}+7 x^{2}+x+1}{\left(1+x^{2}\right)^{2}(x-1)}$ into partial fractions.

$$
\frac{3 x^{4}+7 x^{2}+x+1}{\left(1+x^{2}\right)^{2}(x-1)}=\frac{x+2}{\left(1+x^{2}\right)^{2}}+\frac{3}{x-1}
$$

14 Integrate the quotient of the previous exercise with respect to x.

$$
\int \mathrm{d} x\left(\frac{x+2}{\left(1+x^{2}\right)^{2}}+\frac{3}{x-1}\right)=\frac{4 x-2}{4\left(1+x^{2}\right)}+\arctan (x)+3 \ln |x-1|+C
$$

15 Does $\int_{2}^{\infty} \frac{e^{-x}}{\left(1+x^{2}\right)^{2}(x-1)} \mathrm{d} x$ converge?
$\left(1+x^{2}\right)^{2}(x-1)>1$ for $x \in[2, \infty[$ So

$$
0 \leq \frac{e^{-x}}{\left(1+x^{2}\right)^{2}(x-1)} \leq e^{x}
$$

and since $\int_{2}^{\infty} 0 \mathrm{~d} x$ and $\int_{2}^{\infty} e^{x} \mathrm{~d} x$ converge, so does $\int_{2}^{\infty} \frac{e^{-x}}{\left(1+x^{2}\right)^{2}(x-1)} \mathrm{d} x$.

[^0]: ${ }^{a}$ The Rise of the Proton Structure Function F_{2} Towards Low x, Acta Phys.Polon. B33 (2002) 2841-2846

