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Abstract

This paper presents a model in which technological change increases the share
of reproducible factors at the expense of nonreproducible ones. When reproducible
factors are abundant, firms have incentives to adopt technologies that are intensive
in such resources, and this increases the incentives to invest more in them. This feed-
back process may generate growth or also stagnation: when reproducible factors are
not abundant, firms do not have incentives to adopt technologies intensive in those
resources and technological change does not take place. The paper also analyzes
how biased technological change affects interpersonal distribution of income: nonre-
producible factors are more equally distributed than reproducible ones, thus biased
technological change increases inequality.
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I. Introduction

Empirical evidence shows that technological change is biased in favor of human
capital (see Leavi and Murnane, 1992; and Acemoglu 2002), whether the share of phys-
ical capital is more or less constant. This means that technological change increases
the share of reproducible factors such as human and physical capital, at the expense
of nonreproductive ones such as raw labor. This paper analyzes the consequences
that this biased technological change has for growth and development, focusing in
explaining the stagnation that many developing countries suffer (see Easterly 1994,
2001) and the increasing polarization of countries (see Quah 1996, 1997).

Table 1 shows the portion of full-time male workers’ total earnings for two edu-
cational levels in U.S.A, the more highly educated group’s share of earnings in 1987
was 44% higher than in 1971. These data seem to suggest that technological change
has been biased rather than neutral: the share of human capital has risen.

Table 1: Full-Time Male Workers

1971 1979 1987
Share of 12 years of schooling 0.72 0.68 0.61
Share of 16 years of schooling 0.27 0.32 0.39

Source: Leavi and Murnane’s tabulation of Current Population Survey (table 5
and 6 in Leavi and Murnane 1992).

Table 2 shows a striking difference between low-paid workers’ earnings growth
rates and the growth rates of per capita GDP: the average growth rate of low-paid
workers’ earnings was -0.8% against a 2% average growth rate of per capita GDP. This
mean that low-paid workers in 1989 earned only 89% of their counterparts’ earnings
14 years before. By contrast, the per capita GDP in 1989 was 32% higher than 14
years before. This empirical evidence also supports the idea that the share of raw
labor has been reduced over time and that technological change is biased. If the share
of labor were constant (as in most growth models), wages and per capita output would
grow at the same rate.

Growth models were built using Kaldor’s six stylized facts as a base (see Kaldor,
1961), the fifth of such stylized facts is that labor and capital receive constant shares
of total income. The main idea of this paper is that even though the share of physical
capital and labor has been more or less constant, technology is becoming more inten-
sive in human capital. As a consequence, the share of reproducible factors increases
at the expense of the nonreproducible ones.

This paper presents an endogenous growth model in which technological change
does not increase the total factor productivity, but increases the share of reproducible
factors at the expense of the nonreproducible factors. More precisely, firms choose
among technologies of Cobb-Douglas type with different levels of sophistication. More
sophisticated technologies are more intensive in reproducible factors, that is, the share
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of reproducible factors increases with the sophistication of the technology. There
are also learning costs, which increase with the sophistication of the technology and
decreases with the technological experience of society. Firms in countries in which
technological experience and reproducible factors are abundant have incentives to
adopt sophisticated technologies, this technological change increases technological
experience and the share of reproducible factors and incentivates the accumulation of
even more reproducible factors, this feed-back process generates permanent growth.
However, when the initial levels of technological experience and reproducible factors
are low, firms have no incentive to adopt sophisticated technologies and technological
change does not take place. In this case countries converge to a steady state in which
there is neither technological change nor growth. These results are consistent with
the empirical findings by Easterly (1994, 2001) who showed that many developing
countries are stagnated, and with (Quah 1996, 1997), who observed an increasing
polarization among countries.

Table 2: First Decile Male Workers’ Labor Earnings and per capita GDP in U.S.A.

Year
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
Average

D1 Lab.
earnings
Growth %

––
0.0
1.0
3.0
-1.9
-2
-2
-3
-2.1
-4.3
0.0
2.2
-3.2
2.2
-1.1
-0.8

Per Capita
GDP
Growth %

––
4.3
3.9
4.1
1.3
-2.2
1.3
-3.9
2.6
6.3
1.9
1.7
2.0
3.0
2.2
2.0

D1 Lab.
earnings
Index

100
100
101
104
102
100
98
95
93
89
89
91
88
90
89
––

Per Capita
GDP
Index

100
104
108
113
114
112
113
109
112
119
121
123
126
129
132
––

Source D1: Table 5.3 OECD’ Employment Outlook, July 1993. GDP: Penn.
World Table.

Another empirical fact that this paper pays attention is the increasing inequality
among workers (see Leavi and Murnane, 1992; and Acemoglu 2002 for excellent sur-
veys). The preferences presented in the paper are of ”keeping up with the Joneses”
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type, in which the elasticity of substitution is higher for richer agents, who therefore
have a higher propensity to save. This preference implies that the stationary property
rights distribution is such that nonreproducible factors (such as raw labor) are more
equally distributed than reproducible factors (such as human and physical capital).
Thus biased technological change rises the inequality of income distribution since the
share of the less equality distributed factors (reproducible factors) increases at the
expenses of the more equally distributed production factors (nonreproducible ones).

This paper is fundamentally related to the poverty trap literature (see among
others Azariadis and Drazen, 1990; Azariadis, 1996; Deardorff, 2001; and Galor,
1996). The former papers do not analyze biased technological change and poverty
traps are generated by non-convexities in most of them.

The paper is also related with endogenous growth literature, (Romer, 1986; Lu-
cas, 1988; Rebelo, 1992). Especially relevant is the literature on endogenous techno-
logical change (see among others Aghion and Howitt, 1992; Grossman and Helpman,
1991; Romer, 1990) and the literature on learning by doing (see among others Lucas,
1988; Stokey, 1988; and Matsuyama, 1992). In the above-mentioned papers the share
of reproducible factors is constant over time.

There is a recent and important literature about technological change and wage
inequality (see among others Acemoglu, 1998, 2000, 2002; Caselli, 1999; Krusell,
Ohanian, Rios-Rull and Violante, 2000; Galor and Tsiddon, 1997; Galor and Moav,
2000; Greenwood and Yorukoglu, 1997; Violante, 2002). In such literature faster
technological change increases the demand for skilled workers and causes a rise in
wage inequality. There are substantial differences between those papers and the
present one, the most important is that they do not focus on the consequences that
biased technological change has on developing countries, which is the main topic here.

The structure of the paper is as follows: Section II presents the basic model.
Section III analyzes the long-run behavior of the model, that section analyses the
steady states of the model and finds conditions under which long-run growth is possi-
ble. Section IV analyzes the dynamic behavior of the model. Section V characterizes
the permanent growth paths. Section VI presents some extensions of the model.
Section VII reaches the conclusions. All the proofs are in Appendix I. Appendix II
shows that if preferences are conventional, biased technological change does not affect
income distribution.

II. The Model

Time is discrete with an infinite horizon. There are two types of production
factors: reproducible factors, which are accumulable over time, and nonreproducible
factors, which are not accumulable. Reproducible factors are denoted by H, the non-
reproducible ones by L. WhileH may be viewed as a composite of physical and human
capital, L may be viewed as a composite of raw labor and other nonreproducible fac-
tors. The most intuitive way to interpret this model is that the technological change
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reduces the share of raw labor (L) in favor of the share of human capital (H).

There is a single good in the economy that can be used for consumption and
investment:

Yt = Ct +Ht+1 − (1− δ)Ht (1)

where Yt denotes production, Ct denotes consumption, and δ ∈ (0, 1) denotes the
depreciation rate.

A. Technology:

There is a continuum of technologies differentiated by their sophistication level.
The sophisticated level of a technology is indexed by z ∈

h
1

(1−α) ,+∞
´
, where α ∈

[0, 1). A higher index z means a higher level of sophistication. The technology z is
represented by the production function F z(.):

F z(H,L) = AeΨ(1−Max{ z
X
,1})(H)1− 1

zL
1
z (2)

where A andΨ are positive constants andX ∈
h

1
(1−α) ,+∞

´
denotes the ”technological

experience” that is defined as a weighted geometrical average of the technologies used
in the past:

Xt+1 ≡
∞Y
i=0

z
η(1−η)i
t−i = zηtX

(1−η)
t (3)

where η ∈ (0, 1]. The share of reproducible factors is denoted by αt: αt ≡ 1− 1
zt
and

belongs to the set [α, 1) . Thus, α is the lower boundary of the share of reproducible
factors.

The meaning of sophistication in this model is that more sophisticated tech-
nologies are more intensive in reproducible factors. The intuition is that a more
sophisticated technology requires more knowledge in order to use it and as a conse-
quence more sophisticated technologies are more intensive in human capital which is
a reproducible factor.

The function eΨ(1−Max{ z
X
,1}) may be interpreted as the state of ”know-how”. If

a technology is more sophisticated than the technologies used in the past, then agents
cannot use this technology at its maximum potential productivity, that is, the state
of know-how is smaller than one.

The function e−ΨMax{ z
X
,1} may be interpreted as the portion of the output that

is required as the cost of learning to use a new technology. The learning cost in-
creases with the parameter Ψ and with the difference between the sophistication of
the technology and the technological experience.

B. Initial Property Rights Distribution:

There is a continuum of types of agents indexed by i ∈ [0, 1] distributed according
to the measure µ with support on [0, 1]. Agents’ life is infinite and population is
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constant. Agent of type i has sL(i) units of the nonreproducible factor in each period
and sH0 (i)h0 units of the reproducible factor in period 0 (the first period), where h0 is
the per capita amount of the reproducible factor in period 0. Thus the average sH0 (i)
should be one:

R 1
0 s

H
0 (i)dµ = 1. The amount of nonreproducible factors per capita is

normalized at one, therefore
R 1
0 s

L(i)dµ = 1. It is assumed that both sH0 (i) and s
L(i)

are increasing. This means that agents are ordered from poorer to richer: the closer
the agent’s index ”i” is to zero the poorer the agent.

It is assumed that there is i ∈ [0, 1) such that agents in the set [0, i] do not have
any initial assets (reproducible factors):

∀i ∈ [0, i] , sH0 (i) = 0 (4)

It is also assumed that agents in the set [i, 1] have the same amount of nonreproducible
factors, which is denoted by sL:

∀i ∈ [i, 1] , sL(i) = sL > 0 (5)

A property of this wealth distribution is that the richer an agent is the higher
the proportion of their income that comes from reproducible factors. The agent that
has the same portion of reproducible and nonreproducible factors is denoted by i:

i = Inf
n
i ∈

h
i, i
i

s.th. sH0 (i) > s
L(i) = sL

o
Agents are classified into three ”classes”: i) Poor agents are those that do not own
any assets. They are indexed in the set [0, i]. ii) Middle class agents are those that
own some assets but a higher portion of nonreproducible than reproducible factors:
sH0 (i) < sL(i) = sL. They are indexed in the set

³
i, i
i
. iii) Rich agents are those

that own a higher portion of the reproducible factors than the nonreproducible ones:
sH0 (i) > s

L(i) = sL. They are indexed in the set
³
i, 1

i
.

Figure 1 shows the distribution of property rights. It will be shown later that
this initial distribution does not change over time. Figure 1.a shows that poor agents
(i < i) do not own reproducible factors, and the reproducible factors owned by agents
increase with the index ”i”. Figure 1.b shows that property rights over nonrepro-
ducible factors also increases with ”i” and that middle class and rich agents (i > i)
own the same amount of nonreproducible factors (the distribution is flat for those
agents).

The assumptions about property rights distribution allows many different cases.
For example, every agent may have the same amount of nonreproducible factors; i
may be zero, in such a case every agent would have some reproducible factors. The
important property of this distribution is that the poorer an agent is, the higher the
fraction of his income that comes from nonreproducible factors. In other words, the
richer an agent is, the higher the portion of his income that comes from reproducible
factors. Thus, since biased technological change increases the share of reproducible
factors at the expense of the nonreproducible ones, it increases inequality in income
distribution.
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C. Preferences

The utility of consumers depends upon their consumption ”ct(i)” and upon the
benchmark consumption level of the society, ”vt”

1:
Q∞
t=0 (ct(i)− vt)β

t

if ∀t ct(i) ≥ vt
lim
T→∞

min
n
ct(i)
vt

oT
t=0
− 1 if ∃t ct(i) < vt

(6)

where β ∈ (0, 1), ct(i) denotes the consumption of the consumer type i in period t, and
vt is the benchmark level of consumption of the society in period t. The benchmark
level can be viewed as the standard of living, which changes over time. When the
consumption is always over the benchmark level, the utility function may be rewritten
as the time separable logarithmic utility function:

∞X
t=0

βt ln (ct(i)− vt) (7)

When consumption is not always over the benchmark level, the preferences are rep-
resented by a Leontieff utility function.

It is assumed that the benchmark consumption level of a society is the minimum
consumption level among middle class agents of this society:2

vt =ess inf
i∈[i,1]

ct(i) (8)

where i ∈ [0, 1). Since [i, 1] may be a strict subset of [0, 1], vt may be interpreted as
a minimum consumption level for a middle class life.

This utility function implies that poor agents have a higher propensity to consume
and less elasticity of substitution than rich ones. These facts have a long tradition in
growth theory (see among others Alonso-Carrera, Caballe and Raurich, 2001; Carroll,
Overland and Weil, 1997, 2000; Fisher and Holf, 2000; Kaldor 1956, 1961; Rebelo,
1992; Sieh, Lai and Chang, 2000) and have empirical support (see Atkenson and
Ogaki, 1996; Kuznets, 1961).

III. Agents’ Behavior

A. Behavior of Firms

Firms are competitive and maximize profit. It follows from the specification of
technology that the maximization problem of the firm is as follows:

1It would be more realistic to use a utility function in which the standard of living
would have a positive effect on the consumers’ utility. For example, a utility as follows:Q∞

t=0 (ct(i)− vt)β
t

+ φ
Q∞
t=0 (vt)

βt . However, such a modification would not change the results of
the paper.

2essinf cit = Sup{m s.th. µ
©
i s.th. cit < m

ª
= 0}.
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Max
H,L,z

AeΨ(1−Max{ z
X
,1})H1− 1

zL
1
z − wL− (r + δ)H (9)

where w denotes the price of nonreproducible factors, and r denotes the net payment
to reproducible factors.

When z > X, the first order conditions (FOCs) of the above problem are as
follows:

(r + δ) =
µ
1− 1

z

¶
AeΨ(1−Max{ z

X
,1})h−1z (10)

w =
1

z
AeΨ(1−Max{ z

X
,1})h1− 1

z (11)

Ψ

X
=

1

z2
ln(h) (12)

where h denotes the ratio of reproducible to nonreproducible factors: h ≡ H/L. The
first two FOCs (10) and (11) are familiar ones: the price of each factor should be equal
to its marginal product. The third FOC (12) states that the marginal cost and the
marginal product of adopting a more sophisticated technology should be equal. Such
a marginal cost is proportional to the resultant reduction in the state of know-how
and increases with the parameter Ψ and decreases with the technological experience
X. The marginal product of adopting a more sophisticated technology increases with
the ratio of reproducible to nonreproducible factors h.

It follows from the FOCs that the technology which maximizes the profits is as
follows:

z(X,h) =


³
1
Ψ
X lnh

´ 1
2 if h ≥ eΨX

X if h ∈
h
1, eΨX

i
1

(1−α) if h ≤ 1
(13)

The sophistication of the technology chosen by firms in equilibrium increases with
the ratio of reproducible to nonreproducible factors h, and with the technological
experience X, and decreases with the parameter Ψ. The incentives to use sophisti-
cated technology increase with the ratio of reproducible to nonreproducible factors:
when reproducible factors are relatively abundant their relative price is low and firms
have more incentives to use technologies more intensive on it. The state of know-
how increases with the technological experience and decreases with the parameter
Ψ, therefore the incentives to use more sophisticated technologies increase with the
technological experience and are reduced with Ψ.

Using the accumulation equation of the technological experience X (3) together
with the equation of the technology chosen by firms (13), it follows that the techno-
logical experience X grows as follows:
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Xt+1
Xt

=


³
1
Ψ
lnht
Xt

´ η
2 if ht ≥ eΨXt

1 if ht ∈
h
1, eΨXt

i³
1

(1−α)Xt
´η

if ht ≤ 1
(14)

B. Consumers’ Behavior

An agent’s net wealth in period t is defined as the assets of this agent in period
t plus the present value of his lifetime income of nonreproducible factors, minus the
present value of his lifetime benchmark level of consumption:

NWt(i) = At(i) +
∞X
j=t

³
wjs

L(i)− vj
´

Qj
i=t (1 + ri)

(15)

The consumers with positive net wealth can consume above the benchmark level
of consumption in every period, therefore consumers with positive net wealth face the
following optimization problem:

Max
{ct(i)}∞t=0

P∞
t=0 β

t ln (ct(i)− vt)
s.t. (1 + rt)At(i) + s

L(i)wt = At+1(i) + ct(i)
A0(i) = s

H
0 (i)ht

(16)

where At(i) denotes the assets owned by consumers of type i in period t.

The following assumption imposes a restriction on the equilibrium path of the
benchmark level of consumption: the ratio of assets to net wealth owned by the
poorest middle class agents should be bounded.

Assumption 1: ∀t ≥ 0 lim
i→i

hR i
i

¯̄̄
At+1(i)

NWt(i)

¯̄̄
dµ

i
µ[i,i]

<∞.

This assumption precludes the existence of two unreasonable types of equilibria.
The first type are equilibria in which the benchmark level of consumption is so high
that middle class agents need to get huge amounts of loans in order to finance this
benchmark level of consumption. The second unreasonable type of equilibrium is
those in which the future benchmark level of consumption is so high that middle
class agents are forced to accumulate huge amounts of assets in order to be able to
finance this high benchmark level of consumption in the future. In order to avoid
these two types of equilibria in which either middle class agents’ debts or savings are
huge relative to their net wealth, it is assumed that ratio of assets to net wealth in
absolute value should be bounded for middle class agents.

Proposition 1 In equilibrium ∀t > 0 vt = sLwt.

9



Proposition 1 says that the benchmark level of consumption is equal to the
minimum income among middle class agents. Proposition 1 also implies that poor
agents (i ∈ [0, i)) have negative net wealth, that is, their consumption is under the
benchmark level of consumption. Middle class and rich agents (i ∈ [i, 1]) has positive
net wealth and therefore their consumption is above the benchmark level.

Proposition 1 and the assumptions about wealth distribution imply that middle
class and rich consumers face the following optimization problem:

Max
{ct(i)}∞t=0

P∞
t=0 β

t ln
³
ct(i)− sLwt

´
s.t. (1 + rt)At(i) = At+1(i) +

³
ct(i)− sLwt

´
A0(i) = s

H
0 (i)ht

(17)

The solution of the above optimization problem implies that middle class and rich
agents consume their income from nonreproducible factors plus a constant fraction of
their income from reproducible factors:

∀i ∈ [i, 1] ct(i) = s
Lwt + (1− β)(1 + rt)At(i) (18)

Substituting the optimal consumption in the budget constraint, it follows that the
asset accumulation is:

∀i ∈ [i, 1] At+1(i) = β(1 + rt)At(i) (19)

Proposition 1, the assumptions about wealth distribution and the definition of
the preferences imply that the following ”Euler Equation” should hold for poor agents:

∀i ∈ [0, i) ct+1(i)

vt+1
=
ct(i)

vt
(20)

Using condition (20), together with the budget constraint and proposition 1, it follows
that poor agents consume all their income in every period:

∀i ∈ [0, i) ct(i) = s
L(i)wt (21)

The aggregation of the individual agents’ assets accumulation equation (19) implies
the following reproducible factors accumulation equation:

ht+1 = β(1 + rt)ht (22)

Equations (1), (10), (13) and (31) imply that the growth rate of reproducible factors
is as follows:

ht+1
ht

= β

"
(1-δ) +

Ã
1-

1

z(Xt, ht)

!
Ae

Ψ

³
1−Max

n
z(Xt,ht)

Xt
,1

o´
h

−1
z(Xt,ht)

t

#
(23)
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Stationary property rights distribution: Equations (19), (20) together
with the assumptions about the initial property rights distribution imply that the
initial property right distribution does not change over time. Thus, the stationary
property right distribution is such that reproducible factors are more equally dis-
tributed than reproducible factors. The preferences are crucial to achieve this result.
If the preferences were conventional (with a zero benchmark level of consumption),
then the long-run distribution of reproducible factors would be equal to the distribu-
tion of nonreproducible factors (see Appendix).

IV. Long-run Behavior

This section characterizes the long-run behavior of the economy, which may be of
three types: i) permanent growth, ii) a steady state in which the most unsophisticated
technology is used and iii) a continuum of steady states with different technologies,
each of which is more sophisticated than the most unsophisticated one.

The discount rate of the utility function will be denoted by ρ from now on:

ρ ≡ 1

β
− 1⇔ β ≡ 1

1 + ρ

A. Permanent Growth

In order to characterize the long-run behavior of the economy the first thing to
know is whether permanent growth is possible. The next proposition gives a set of
conditions under which permanent growth is possible.

Proposition 2 If
h
Ae−Ψ − δ

i
> ρ, there exists a non-empty set Γ such that if (X0, h0) ∈

Γ, then ∀t ≥ 0 Xt+1
Xt

> 1, ht+1
ht
> 1, lim

t→∞ ht = +∞ and lim
t→∞ Xt = +∞.

Proposition 2 states that permanent growth is possible if A is large enough, and
the consumers’ discount rate ρ and Ψ are small enough. A affects positively the
total factor productivity, therefore growth increases with A. The cost of adopting
sophisticated technology increases with Ψ, therefore technological change and growth
decreases with Ψ. Finally the larger the discount rate ρ is, the more patient the
consumers and the higher the growth.

The behavior of permanent growth paths will be characterized in Section V . The
following assumption guarantees the existence of a permanent growth path.

Assumption 2: β
h
(1− δ) +Ae−Ψ

i
> 1
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B. Low Steady State

The steady state in which the least sophisticated technology 1
1−α is used will be

called low steady state from now on. It follows from the accumulation equation of re-
producible factors (23) and the accumulation equation of the technological experience
(14) that in such a steady state the following conditions are satisfied:

ρ = αA
³
hlow

´1−α − δ (24)

hlow < 1 (25)

Condition (24) is very familiar: the net marginal product of reproducible factors
should be equal to the discount rate of the utility function. Condition (25) should hold
in the low steady state because if the ratio of reproducible to nonreproducible factors
is larger than one, firms have incentives to choose a technology more sophisticated
than α.

It follows from (24) that the stock of reproducible factors in the low steady state
is as follows:

hlow =

"
αA

ρ+ δ

# 1
1−α

(26)

Since in the low steady state the stock of reproducible factors should be smaller
than one (25), it follows from (26) that the low steady state exists if and only if the
following condition holds:

hlow =

"
αA

ρ+ δ

# 1
1−α

< 1⇔ α <
ρ+ δ

A
(27)

The assumption below guarantees the existence of the low steady state.

Assumption 33: α < ρ+δ
A

C. The Other Steady States

It follows from the accumulation equation of reproducible factors (23) and the
accumulation equation of the technological experience (14) that in any steady state
other than the low one the following condition is satisfied:

ρ = αssA (hss)−(1−α
ss) − δ (28)

hss ∈
h
1, e

Ψ
1−αss

i
(29)

Condition (28) means that the discount rate of the utility function should be equal
to the net marginal product of reproducible factors in steady state. Condition (29)

3It is easy to extend the analysis to the case in which assumption 3 is not satisfied.
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should hold in steady state because if the per capita reproducible factor h is smaller
than one, firms have incentives to choose the least sophisticated technology α. If h
is larger than eΨX

ss
, firms have incentives to choose a technology more sophisticated

that the one in the steady state (see 13).

It follows from (28) that the per capita reproducible factors in steady state are
as follows:

hss =

"
αssA

ρ+ δ

# 1
1−αss

(30)

It follows from (29) and (30) that there is a steady state for each α in the intervalh
ρ+δ
A
, ρ+δ
Ae−Ψ

i
. Another interesting fact is that the fraction of income that goes toward

investment (the saving rate) in each steady state is different:

Iss

Y ss
=

δhss

A (hss)α
= αss

δ

ρ+ δ
(31)

where I denotes gross investment.

Summarizing this section, in the long-run differences among countries may per-
sist: countries may either grow or converge to a steady state characterized by stagna-
tion. There is a continuum of steady states in each of which the share of reproducible
factors, the technology used and the saving rate are different. Firms do not use more
sophisticated technologies because reproducible factors are not abundant and thus
to adopt technologies more intensive in reproducible factors is not profitable. Con-
sumers do not have incentives to increase their reproducible factors because firms
use technologies that are not intensive in them. In other words, firms do not adopt
technologies intensive in reproducible factors because there are insufficient supply of
them and consumers do not invest in reproducible factors because there is not enough
demand for them either.

V. Dynamic Behavior

The dynamic behavior of the model is determined by the accumulation equations
for reproducible factors (23) and the technological experience (14):

ht+1
ht

= β

"
(1-δ) +

Ã
1-

1

z(Xt, ht)

!
Ae

Ψ

³
1−Max

n
z(Xt,ht)

Xt
,1

o´
h

−1
z(Xt,ht)

t

#
(32)

Xt+1
Xt

=



³
1
Ψ
lnht
Xt

´ η
2 if ht ≥ eΨXt

1 if ht ∈
h
1, eΨXt

i
³

1
(1−α)Xt

´ η
2 if ht ≤ 1

(33)
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It follows from equation (32) that the growth rate of reproducible factors is zero
if the following condition holds:

4ht = 0⇔ ht =


³
1− 1

z(Xt,ht)

´
Ae

Ψ

³
1−Max

n
z(Xt,ht)

Xt
,1

o´
ρ+ δ


z(Xt,ht)

(34)

The set of points that satisfy equation (34) is called the h-zero growth curve. It has
a positive slope for a very intuitive reason: both the share of reproducible factors
and the marginal product of the reproducible factors increase with the technological
experience. Thus the level of reproducible factors that makes its marginal product
equal to the discount rate of the utility function also increases with the technological
experience.

It follows from equation (33), that there is no technological progress if the fol-
lowing condition holds:

ht ∈ [1, eΨXt]⇒4Xt = 0 (35)

The set of points that satisfy equation (35) is the X-zero growth set.

Figure 2 shows the phase diagram that describes the dynamic behavior of the
model. The h-zero growth curve has a positive slope. The lined area in figure 2
represents the X-zero growth set. The points of intersection of the h-zero growth
curve and the X-zero growth set are steady states, those steady states are represented
by the thicker SS1-SS2 curve.

The low steady state is on the vertical axis under the line ht = 1. It follows
from equation (13) that under the line ht = 1, the technology used is the most
unsophisticated one. Thus, the model behaves like the neoclassical model: the amount
of reproducible factors converges monotonically to the low steady state level and the
share of reproducible factors stays constant over time.

The points above the X-zero growth set and below the h-zero growth curve are
combination of state variables where both the technological sophistication level and
the amount of reproducible factors grow to a positive rate. When the initial values
of the state variables are in this area, permanent growth is possible.

There is a convergent path toward the steady state SS2. If the initial values
of the state variables are above this SS2-convergent path, the economy converges
toward a permanent growth path. There is also a convergent path toward the steady
state SS1. If the initial values of the state variables are below this path, the economy
converges toward the low steady state. If the initial values of the state variables are
in between the SS1 and the SS2-convergent paths, the economy converges toward
one of the steady states on the SS1-SS2 curve.

Conditional Convergence: The sophistication of the technology does not
change when the initial values of the state variables are in the X-zero growth set,
therefore economies in which their initial values are in the X-zero growth set behave
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like the neoclassical growth model. When the initial amount of reproducible factors is
smaller than one, the same happens (see equation 13): the technology used is the most
unsophisticated, does not change over time and the model behaves as the neoclassical
one does.

Each steady state has a convergent path along which the share of reproducible
factors stays constant and the model behaves as the neoclassical one does. However,
there is a difference between the convergent path toward each steady state: the share
of investment is different along each path. More precisely, it follows from equation
(31) that the saving rate and the fraction of income invested increase with the sophis-
tication of the technology and the per capita income in the steady state. Therefore
if there is a set of countries in which the initial values of the state variable are below
the curve eΨXt, those countries exhibit conditional convergence.

VI. The Permanent Growth Path and Inter-personal Distri-
bution

In this subsection the permanent growth path is characterized. It follows from
proposition 2 and the phase diagram in figure 2 that if the initial values of the state
variables are above the X-zero growth set and below the h-zero growth curve then
the equilibrium exhibits permanent growth of both state variables. Such set will be
denoted from now on as Γ. That is, Γ denotes the set of values of the state variables
where both state variables grow permanently without bounds.

Proposition 3 If (X0, h0) ∈ Γ then lim
t→∞

ht+1
ht
= β

h
(1-δ) +Ae−Ψ

i
.

To interpret this proposition, consider the FOC (12): the marginal cost of adopt-
ing a marginally more sophisticated technology increases with the parameter Ψ. Thus,
the parameter Ψ reduces the incentives to adopt sophisticated technologies and conse-
quently the speed of technological change and the long-run growth. The other factors
that affect growth are very familiar from the endogenous growth literature: the higher
the total factor productivity A the higher the growth, the more patient that agent
are (the higher β) the higher the growth. If the parameter Ψ were zero, the tech-
nology used along the permanent growth path would be that in which the share of
nonreproducible factors is zero. In that case the model would be a typical AK model
(Rebelo 1994) with growth rate β [(1-δ) +A].

Corollary 4 If (X0, h0) ∈ Γ then wt+1
wt

< yt+1
yt
, lim
t→∞

wt+1
wt

=lim
t→∞

yt+1
yt
= β

h
(1-δ)+Ae−Ψ

i
,

where y denotes the per capita income.

Corollary 4 says that per capita income grows faster than payment of nonrepro-
ducible factors along the permanent growth path. Poor agents only own nonrepro-
ducible factors, thus the model predicts that poor agents’ income grows more slowly
than the per capita income.
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Gini’s coefficient over income distribution IyGini and over consumption I
c
Gini are

defined as follows:

IyGini ≡ 1−
R 1
0

µR x
0
y(i)dµ

yµ[0,x]

¶
dx IcGini ≡ 1−

R 1
0

µR x
0
c(i)dµ

cµ[0,x]

¶
dx (36)

where y(i) denotes the (gross) income of type i. If Gini’s coefficient is equal to zero
then all agents in the economy enjoy the same level of income. The higher Gini’s
coefficient is, the higher the inequality.

Proposition 5 If (X0, h0) ∈ Γ, then ∀t ≥ 0 IyGinit+1 > IyGinit, IcGinit+1 > IcGinit.
Proposition 5 says that along the permanent growth path income inequality

increases. Nonreproducible factors are more equally distributed than reproducible
ones (see figure 1), thus since the share of nonreproducible factors is declining along
the permanent growth path, inequality rises over time.

Proposition 5 also says that inequality not only increases in terms of income
distribution but in terms of consumption distribution as well. It follows from the
Euler Equation that if the benchmark level of consumption were zero, the consumption
growth of every agent would be the same, and the consumption distribution would
not change over time whatever the initial income distribution was (see Chatterjee
1992).

Figure 3 shows the effect of biased technological change on income distribution.
The lined area in figure 3 represents the income from nonreproducible factors (di-
vided by the per capita income). The right hand part of figure 3 shows that biased
technological change reduces the portion of the agents’ income that comes from non-
reproducible factors and increases the portion from reproducible factors. The portion
of the agents’ income from nonreproducible factors is higher for poor and middle class
agents than for rich ones (see figure 1). Thus, biased technological change reduces
the portion of per capita income that poor and middle class agents own and increases
the rich agent’s portion of per capita income (see figure 3).

The result of figure 3 is stated formally in the next proposition.

Proposition 6 Let (X0, h0) ∈ Γ, a) If i < i
syt+1(i)

syt (i)
< 1, if i > i

syt+1(i)

syt (i)
> 1, where

syt (i) is the share of per capita income of agent i: s
y
t (i) ≡ yt(i)/yt. b) yt+1(i)

yt(i)
increases

with i.

Proposition 6.a formalizes the results of figure 3: along the permanent growth
path the share of the per-capita income of poor and middle class agents decreases,
the share of the per-capita income of rich agents increases. Proposition 6.b means
that along the permanent growth path, the richer the agent the faster the growth of
his income.

Summarizing along the permanent growth path, the share of the more equally
distributed factor (nonreproducible factors) decreases in favor of the less equally dis-
tributed factor (reproducible factors). As a consequence inequality increases along
the permanent growth path.
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VII. Some Extensions

A. The productivity slow down

Most of the models that try to explain the increase of wage inequality in U.S.A.
predict that the technological change is faster and thus that TFP grows at a faster
rate. This prediction is completely contra-factual. In this section the basic model
presented until now will be modified introducing an externality of the same type that
the one used by Romer (1986) in order to explain the productivity slow down.

The technology considered in this section is as follows:

F z(H,L;h) = A (B h)
γ
z eΨ(1−Max{ z

X
,1})(H)1− 1

zL
1
z (37)

where B ∈ <++, γ ∈ [0, 1] and h is the per capita capital. This means that the
per capita reproducible factors have positive external effects over the total factor
productivity. The dynamic behavior of the model is as described in figure 2 when
γ < 1 and as described in figure 4 when γ = 1. The asymptotic growth rate along a
permanent growth path is as follows:

lim
t→∞

ht+1
ht

= β
h
(1− δ) +Ae−Ψ(1−γ)

i
(38)

The externality has a positive long-run growth effect (γ positively affects the long-run
growth), even though it is not essential in order to generate long-run growth. When γ
is equal to one, there is an externality of the Romer’s type (Romer 1986) and therefore
even in the case in which there is no biased technological change, long-run growth is
possible. If the initial values of the state variables are in the X-zero growth set (lined
area in figure 4), then the growth rate is as follows:

ht+1
ht

= β
·
(1− δ) +

µ
1− 1

Xt

¶
AB

1
Xt

¸
(39)

It is quite straightforward that even if the long-run growth rate (38) were larger than
along the transition (39) the TFP growth rate would decrease after biased technolog-
ical change starts.

B. Increasing dispersion in wages

An empirical puzzle observed in the American labor market is the increasing
dispersion in wages inside the same educational groups (see Violante 2002). The
model may capture this by introducing a stochastic shock in the productivity of the
individual reproducible factors. In this case individual income would be as follows:

yt(i) = wts
L(i) + rtθt(i)s

H(i)ht
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where θt(i) is a stochastic shock independently distributed with an expected value
equal to one. In this case biased technology change would reduce the share of the
non-risky factor in favor of the risky one and would thus increase the dispersion among
workers with the same education level.

VIII. Conclusion

This paper has presented a model in which technological change reduces the share
of nonreproducible factors in favor of reproducible ones. The incentives to adopt more
sophisticated technologies depend upon the technological experience of the country
and the relative abundance of reproducible factors. The technological experience in-
creases the productivity of sophisticated technologies, the abundance of reproducible
factors provides incentives to adopt sophisticated technologies which are more inten-
sive in them. Technological change increases the demand for reproducible factors and
thus the incentive to accumulate them. This feed-back process may generate growth
but may also generate stagnation: There is a continuum of steady states with differ-
ent technologies, shares of reproducible factors and saving rates. When reproducible
factors and technological experience are not abundant enough, economies converge to
one of these steady states. Otherwise converge to a permanent growth path in which
the share of reproducible factors increases permanently.

The preferences presented have the property of ”keeping up with the Joneses”,
which implies that nonreproducible factors are more equally distributed than repro-
ducible factors. This fact implies that biased technological change increases income
distribution inequality.
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X. Appendix

A. Proof Proposition 1

It follows from the budget constraint that:

At(i) +
∞X
j=t

wjs
L(i)Qj

i=t (1 + ri)
=

∞X
j=t

cj(i)Qj
i=t (1 + ri)

(40)

It follows from (40) and the definitions of Net Wealth NWt and benchmark level
of consumption vt that:

ess inf
i∈[i,1]

NWt(i) = ess inf
i∈[i,1]

At(i) + ∞X
j=t

wjs
L(i)Qj

i=t (1 + ri)

− ∞X
j=t

vjQj
i=t (1 + ri)

= ess inf
i∈[i,1]

At(i) + ∞X
j=t

wjs
L(i)Qj

i=t (1 + ri)

− ∞X
j=t

ess inf
i∈[i,1]

cj(i)Qj
i=t (1 + ri)

= ess inf
i∈[i,1]

At(i) + ∞X
j=t

wjs
L(i)Qj

i=t (1 + ri)

− ess inf
i∈[i,1]

 ∞X
j=t

cj(i)Qj
i=t (1 + ri)


= ess inf

i∈[i,1]

At(i) + ∞X
j=t

wjs
L(i)Qj

i=t (1 + ri)

− ess inf
i∈[i,1]

At(i) + ∞X
j=t

wjs
L(i)Qj

i=t (1 + ri)


= 0

Thus:

ess inf
i∈[i,1]

NWt (i) = 0 (41)

It follows from (41) and assumption 1 that:

ess inf
i∈[i,1]

At (i) = 0 (42)

Using (42) in the budget constraint:

ess inf
i∈[i,1]

At+1 (i) = (1 + rt) ess inf
i∈[i,1]

At (i)+ ess inf
i∈[i,1]

sL(i)wt− ess inf
i∈[i,1]

ct (i) ⇒
ess inf
i∈[i,1]

ct (i) = ess inf
i∈[i,1]

sL(i)wt = s
L(i)wt (43)
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B. Proof Proposition 2:

Lemma 7 If β
h
(1− δ) +Ae−Ψ

i
> 1 then there exists a non-empty set Γ such that

if (X0, h0) ∈ Γ, then ∀t ≥ 0 Xt+1
Xt

> 1, ht+1
ht
> 1.

Proof. Lemma 7

Define:

X ≡ Max

(
βAe−Ψ

β [Ae−Ψ + (1− δ)]− 1 ,
1

1− α
, 1 +

1

Ψ

)
(44)

Ω ≡
n
(h,X) s.th h > eΨX , X > X and h > eΨX

o
(45)

Since it is assumed that β
h
(1− δ) +Ae−Ψ

i
> 1, X is well defined. Define gh(h,X)

and gX(h,X) as the function that relates the growth rate of reproducible factors and
technological experience with the state variables:

gh(h,X) = β

"
(1-δ) +

Ã
1-

1

z(X,h)

!
AeΨ(1−

z(X,h)
X )h−

1
z(X,h)

#
− 1 (46)

gX(h,X) =

Ã
z(X,h)

X

!η

− 1 (47)

It follows from (13), (44) and (46) that if X > X:

gh(eΨX ,X) = β
h
(1-δ)+

³
1- 1
X

´
Ae−Ψ

i
-1 >

β

(1-δ) +
1- 1³

βAe−Ψ
β[Ae−Ψ+(1−δ)]−1

´Ae−Ψ
 -1 = 0

(48)

lim
h→∞

gh(h,X) = β(1-δ)− 1 < 0 (49)

It follows from (13), (44), (45) and (46) that if (h,X) ∈ Ω

∂gh(h,X)

∂h
= θ(h,X)

−1 + 1³
1- 1
z(X,h)

´
lnh

 < (50)

θ(h,X)

-1+ 1³
1- 1
X

´
ln eΨX

 ≤ θ(h,X)

-1+ 1µ
1- 1
1+ 1

Ψ

¶³
1+ 1

Ψ

´
Ψ

 = 0

where θ(h,X) = β 1
z(X,h)

³
1- 1
z(X,h)

´
AeΨ(1−

z(X,h)
X )h−

1
z(X,h)

−1. If follows from (48), (49),

(50) and the Implicit Function Theorem that there exist a continuous differentiable

function h4h=0: (X,+∞) →
³
eΨX ,+∞

´
such that: gh(h4h=0(X),X) = 0, where
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h4h=0(X) > eΨX and
∂h4h=0(h,X)

∂h
= −

∂gh(h,X)
∂X

∂gh(h,X)
∂h

> 0. The function h4h=0(X) gives the

value of reproducible factors which make the growth rate of reproducible factors zero
for a given value of the technological Experience. In the same way, define h4X=0(X)
as the function that gives the value of reproducible factors which make the growth
rate of technological experience zero for a given value of the technological Experience

h4X=0(X) = eΨX

Remember that ∀X > X ⇒ h4h=0(X) > eΨX . Thus, it is possible to define the set Γ
as follows:

Γ = {(h,X) ∈ Ω s.th. h4h=0(X) > h > h4X=0(X)}
It follows from (33), (50) and the definition of h4h=0(X) and h4X=0(X) that:

If (ht, Xt) ∈ Γ⇒ ht+1 > ht and Xt+1 > Xt (51)

It follows from the Technological Experience accumulation equation (3) and (51) that
if (ht,Xt) ∈ Γ:

Xt+2 = X1−η
t+1 z(ht+1,Xt+1)

η > X1−η
t z(ht,Xt)

η = Xt+1 ⇒
ht+1 > h4X=0(Xt+1) (52)

Define h+1(h,X) as the function that relates the reproducible factors in period t+1
with the state variables in period t:

h+1(h,X) = β

"
(1− δ)h+

Ã
1− 1

z(X,h)

!
AeΨ(1−

z(X,h)
X )h1−

1
z(X,h)

#
(53)

Since h+1(h,X) increases with both h and X it follows from (51) and the fact that
h4h=0(Xt+1) is an increasing function that:

h4h=0(Xt+1) = h+1(h4h=0(Xt+1),Xt+1) > h+1(h4h=0(Xt), Xt)
> h+1(ht,Xt) = ht+1 (54)

It follows from equations (51), (52) and (54) that

(ht,Xt) ∈ Γ⇒ (ht+1, Xt+1) ∈ Γ (55)

Lemma 7

Lemma 8 If (X0, h0) ∈ Γ, lim
t→∞ ht = +∞ and lim

t→∞ Xt = +∞.

Proof. Lemma 8 (by contradiction)

Assume that (X0, h0) ∈ Γ and lim
t→∞ ht = h 6= +∞ or lim

t→∞ Xt = X 6= +∞.
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• If h 6= h4h=0(X)⇒ lim
t→∞ g

h(h,X) = gh(h,X) > 0⇒ lim
t→∞ ht = +∞⇒⇐

• If h = h4h=0(X) and X 6= +∞ ⇒ lim
t→∞ g

X(h,X) = gX(h,X) > 0 ⇒ lim
t→∞ Xt =

+∞ ⇒ h = lim
X→∞

h4h=0(X) = +∞ ⇒⇐

• If h = h4h=0(X) and X = +∞⇒ h = lim
X→∞

h4h=0(X) = +∞ ⇒⇐

• If lim
t→∞ ht = +∞⇒ limt→∞ Xt = limht→∞

X
1−η
z(ht, X)

η = +∞⇒⇐

C. Proof Proposition 3

Lemma 9 If (h0, X0) ∈ Γ then lim
t→∞

Xt+1
Xt

= 1

Proof. Lemma 9

Let (h0,X0) ∈ Γ. It follows from the definition of Γ and proposition 2 that ht > 1.
Thus, it follows from (46) that:

ht+1
ht

< β [(1-δ)+A]⇒lim sup
t→∞

lnht+1
lnht

≤lim sup
t→∞

lnht+ ln (β [(1-δ)+A])

lnht
= 1

⇒ lim
t→∞

lnht+1
lnht

= 1 (56)

It follows from equations (3) and (13):

Xt+1
Xt

=

Ã
lnht
lnht−1

!η
2
Ã
Xt
Xt−1

!1− η
2

=

Ã
lnht
lnht−1

! η
2
Ã
lnht−1
lnht−2

!η
2(1−η

2)
...

Ã
lnhτ+1
lnhτ

!η
2(1−η

2)
t−τ−1 µ

Xτ+1

Xτ

¶(1−η
2)

t−τ

(57)

It follows from (56) that ∃ε > 0, τ s. th. ∀t > τ lnht+1
lnht

< (1 + ε), therefore:

lim sup
t→∞

Xt+1
Xt

= lim sup
t→∞

Ã
lnht
lnht−1

!η
2

...

Ã
lnhτ+1
lnhτ

! η
2(1− η

2)
t−τ−1 µ

Xτ+1

Xτ

¶(1− η
2)

t−τ

< lim sup
t→∞

(1 + ε)1−(1−
η
2)

t−τ µXτ+1

Xτ

¶(1− η
2 )

t−τ

= (1 + ε) (58)

Since the above is true for every ε > 0 it follows that lim
t→∞

Xt+1
Xt

= 1.

Proof. Proposition 3

It follows from (13) that when ht ≥ eΨXt:

ln(h
− 1
zt

t ) = −
Ã
Ψ lnht
Xt

! 1
2

= −Ψ
³
1
Ψ
lnhtXt

´ 1
2

Xt
= −Ψ zt

Xt
⇒ (59)

h
− 1
zt

t = e
−Ψ zt

Xt (60)
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It follows from (3), (46), (60), Proposition 2 and lemma 9 that:

lim
t→∞

ht+1
ht

= lim
t→∞ β

"
(1− δ) +

µ
1-
1

zt

¶
Ae

Ψ

³
1−2 zt

Xt

´#
=

lim
t→∞ β

(1− δ) +
µ
1-
1

zt

¶
Ae

Ψ

µ
1−2

³
Xt+1
Xt

´ 1
η

¶ = β
h
(1− δ) +Ae−Ψ

i
(61)

D. Proof Corollary 4

wt+1
wt

=
zt
zt+1

yt+1
yt

<
yt+1
yt

(62)

It follows from (3) and (60) that along the permanent growth path:

yt = Ae
Ψ

³
1− 2z(Xt,ht)

Xt

´
ht (63)

It follows from (3) and lemma 9 that

lim
t→∞

zt+1
zt

=lim
t→∞

Ã
Xt+2
Xt+1

! 1
η µXt+1

Xt

¶1− 1
η

= 1 (64)

It follows from (3), (62), (63) and lemma 9 that:

lim
t→∞

wt+1
wt

= lim
t→∞

zt
zt+1

ht+1
ht
e
Ψ2

³
zt
Xt
− zt+1
Xt+1

´
= (65)

lim
t→∞

zt
zt+1

ht+1
ht
e
Ψ2

µ³
Xt+1
Xt

´ 1
η−
³
Xt+2
Xt+1

´ 1
η

¶
= lim

t→∞
ht+1
ht

= β
h
(1-δ)+Ae−Ψ

i

E. Proof Proposition 5

IGini ≡ 1−
Z 1

0

ÃR x
0 y(i)dµ

yµ [0, x]

!
dx =

1−
Z 1

0

 1
z

R x
0 s

L(i)dµ+
³
1− 1

z

´ R x
0 s

H(i)dµ

µ [0, x]

 dx (66)

It follows from the assumptions about sL(i) and sH(i) that ∀x < 1
R x
0 s

H(i)dµ <R x
0 s

L(i)µ. Therefore, it follows that the Gini’s coefficient is an increasing function of
z.
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XI. Appendix II

A. Stationary Property Right Distribution with CES utility
function

Consider the following consumer’s optimization problem

Max
{ct(i)}∞t=0

P∞
t=0 β

tu(ct(i))

s.t. (1 + rt)Ht(i) + s
L(i)wt = Ht+1(i) + ct(i)

Ai0 = s
H
0 (i)Ht

(67)

where the notation used is as in the main text and where the instantaneous utility
function u(.) is the CES utility function:

u(ct(i)) =


(ct(i))1−σ
1−σ if σ ∈ (0, 1) ∪ (1,+∞)

ln(ct(i)) if σ = 1
(68)

Using conventional methods, it is follows that:

ct(i) = ξt
³
(1 + rt)Hts

H
t (i) + λtwts

L(i)
´

(69)

where ξt and λt are defined as follows:

ξt ≡
hP∞

τ=t

Qτ
j=t+1

1+gcj
1+rj

i−1
λt ≡

hP∞
τ=t

Qτ
j=t+1

1+gwj
1+rj

i
(70)

where gct and g
w
t denotes the consumption and the wages growth rates:

(1 + gct ) ≡ ct
ct−1

= (β (1 + rt))
1
σ (1 + gwt ) ≡ wt

wt−1
z (71)

It follows from (67) and the budget constraint in (69) that:

sHt+1(i) =
1

(1+gHt+1)

·
(1-ξt) (1+rt) s

H
t (i) + (1-ξtλt)

wt
Ht
sL(i)

¸
(72)

Integrating (72) with respect to i:

1 =
1

(1 + gHt+1)

·
(1− ξt) (1 + rt) + (1− ξtλt)

wt
Ht

¸
(73)

Using (72) and (73):

sHt+1(i)

sHt (i)
=

"
1 +

1

(1 + gHt+1)
(1− ξtλt)

wt
Ht

Ã
sL(i)

sHt (i)
− 1

!#
(74)

It follows from the above expression that the property rights stay constant if either i)
∀t ξtλt = 1 or ii) for almost every i sHt (i) = sL(i). The condition i) is only satisfied
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if the growth rate of wages is always equal to the growth rate of consumption, this
only happen in a balanced growth path (or a zero growth steady state).

Since in the model presented in the main text there is not a balanced growth
path with positive growth rate, the only stationary property rights distribution under
the assumption of CES instantaneous utility function would be the property right
distribution in which the distribution of reproducible factors would be equal to the
distribution of nonreproducible factors ( condition ii ).

B. Stable Property Right Distribution with Biased techno-
logical change and logarithmic utility function

Consider that the initial conditions, the parameter values and the price path are
such that the following condition is satisfied:

∀t (1+gwt ) <
³
1+gHt

´
(75)

The above condition would be satisfied along any permanent growth path with biased
technological change. Assume that σ = 1, that is, the instantaneous utility function is
logarithmic. It follows from the definition of ξt (70) that in the case of the logarithmic
utility function:

ξt = (1− β) (76)

It is going to be proved first that ξtλt < 1. Suppose that ξtλt ≥ 1, then it follows
from (73), (76) that the following condition should be satisfied

³
1+gHt+1

´
=
·
β (1+rt) + (1-ξtλt)

wt
Ht

¸
≤ β (1+rt) = (1+g

c
t ) (77)

It follows from (75) and (77) that³
1+gwt+1

´
<
³
1+gHt+1

´
≤
³
1+gct+1

´
(78)

It follows from definitions of ξt, λt (70) and (78) that:

ξt+1λt+1 ≥ ξtλt ≥ 1 (79)

Using the same argument as before it follows that:

∀i > 1
³
1 + gct+i

´
>
³
1 + gwt+i

´
(80)

But it follows from (70) and (80) that ξtλt < 1, which is contradiction with the initial
assumption. Therefore in equilibrium ξtλt < 1.

It follows from the fact that ξtλt < 1 together with equation (74) that along the
equilibrium path the distribution of property rights over reproducible factors becomes
closer each period to the distribution of property rights over nonreproducible factors.
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