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Time–Consistent Public
Expenditures

Paul Klein, Per Krusell, José-V́ıctor Ŕıos-Rull
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Abstract

In this paper, we study the optimal choice of public expenditures when there is no way of
committing to future policy and “reputational” mechanisms are not operative. This amounts
to confining our attention to Markov equilibria. The environment is a neoclassical growth
model where consumers derive utility from a public good. This environment gives rise to a
dynamic game between successive governments and the private sector and this game is made
interesting by the presence of a state variable: the capital stock. We characterize equilibria in
terms of an intertemporal first–order condition (a “generalized Euler equation”, GEE) for the
government and we use this condition both to gain insight into the nature of the equilibrium
and as a basis for computation.

The GEE reveals how the government optimally trades off tax wedges over time. It also
allows us to discuss in what sense a current government may be strategically influencing
future governments in their taxation decisions. For a calibrated economy, we find that when
the tax base available to the government is capital income—an inelastic source of funds at any
moment in time—the government still refrains from taxing at high rates in order to smooth
distortions over time. As a result, the economy is far from the mix of public and private
goods that would be optimal in a static context; in return, the savings distortion is not very
severe and the capital stock is quite high.
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1 Introduction

Governments are not machines implementing past decisions. Instead, at each point

in time they can choose whether or not to implement a plan made in the past. In

this paper we attempt to understand the qualitative and quantitative tradeoffs that a

benevolent government faces when it is unable to commit to its future policy choices.

We analyze a very simple setup in which the solution under commitment exhibits dy-

namic inconsistency. There is a choice between private and public consumption at each

point in time, and because the financing of public consumption must involve distor-

tionary taxation (e.g., capital income is taxed), as time evolves the government would

in general want to modify any plan made in the past. We assume period–by–period

budget balance but focus on the case where there are physical implications of current

policy on future feasible sets, through the effect of policy on capital accumulation. Our

main contributions here are to develop analytical tools for the study of time–consistent

Markov–perfect equilibria and to evaluate the quantitative significance—using a cali-

bration based on U.S. data—of the lack of commitment in the public spending choice.

An understanding of what guides government decisions regarding the provision of pub-

lic goods when there is no commitment is not only a challenging intellectual exercise,

but we also believe it is of quantitative importance. Public goods are, in all developed

economies, a sizeable fraction of GDP, and the taxes necessary to pay for these expen-

ditures are arguably an important determinant of economic performance, especially if

taxes on the income of accumulated factors such as physical and human capital are

considered. In order to understand these policy outcomes—both the cross–country and

time–series variation of public spending on goods and services and the associated tax

choices—we need to understand how governments make their decisions. Of course, in

contrast with what we assume, governments may not be benevolent, or they may be

torn between constituencies with conflicting goals, and the political process itself, as

well as markets, may be less than perfect. However, before proceeding to such arguably

more realistic setups, one needs to understand the underlying basics of policy choice

over time when commitment is lacking even under benevolence and no frictions other

than those implied by taxation itself. Our goal here is to develop those basics.

The lack of commitment makes the policy choice of the government into more than a
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decision problem: the current government needs to predict how future governments—

which it cannot directly influence—respond to current policy. We embed the choice

of public goods into a framework with capital accumulation: we use the neoclassical

growth model. This is done for two reasons. First, with capital as a state variable,

the implications of current policy for the future capital stock become an important

channel trough which current and future policy are linked. In other words, we are in a

world with fundamental dynamic links, as opposed to a repetition of static economies.

Second, because taxation in practice involves distortions to factor accumulation, which

are believed to be important for welfare as well as for long–run output, a quantita-

tively aimed analysis needs to consider accumulation; the neoclassical growth model is

the standard workhorse for such analysis. Thus, the setup we study boils down to a

sequential game between successive governments, with the restriction that allocations

need to be competitive equilibrium allocations. The bulk of the analysis here is de-

voted to understanding how such an economy evolves over time both qualitatively and

quantitatively.

The easiest way to illustrate some basics of our setup is to suppose that the economy

has a finite time horizon, say, two periods, and that the government can tax total

income at a proportional rate subject to a balanced budget period by period. In the

second period, the government makes a policy choice given the resources available in

the economy, as implied by the amount of capital at that time. It therefore solves

the static problem of balancing the tax wedge in the period–two labor–leisure choice

with the wedge between the marginal utility of public and private goods at that time.

The resulting decision is to tax income quite heavily, as at least one part of that

income—capital income—is provided inelastically ex post. Predicting such tax rates,

the private sector will save little in the first period. What is the resulting behavior

of the government in the first period? It too would like to tax current (period–one)

income at a high rate, but it also realizes that if it holds back on taxation a bit, thus

sacrificing public goods and increasing the inefficiency in their current provision, it

leaves resources in the hands of the private sector, and part of these resources will

be saved, assuming that consumption at different points in time are normal goods and

that the tax rate in the last period is not 100%. Thus, having somewhat lower taxation

in the first period than in the second period is beneficial, as it will constitute a way

of counteracting the future government’s high ex–post taxation of (capital) income:
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it will increase savings. One realizes that this line of reasoning becomes more potent

with more periods: tax rates early on may be quite a bit lower than those in the last

period. As a quantitative matter, one would like to know how important this channel

is in counteracting the negative aspects of a lack of commitment.

Our analysis in this paper amounts to analyzing economies like the one just described

when the time horizon is long. If the time horizon is literally infinite, one could ap-

peal to reputation mechanisms in order to support “better” equilibria, such as even

the allocation that a government with access to commitment could attain. We do

not. We instead focus on the limit of finite–horizon equilibria, because we take the

position that this case is an equally important benchmark. Reputation mechanisms

may not work, either because agents are not patient enough, or because the equilib-

rium selection mechanism may not result in a good equilibrium. Thus, a loose way

of stating what we do here is: we answer the question “What if reputation cannot be

relied upon—what happens then?”. We provide the answer by means of two tools:

(i) an interpretable first–order condition for the government’s choice of policy, which

dictates how the government will balance present and future wedges due to taxes and

non–optimal provision of public goods; and (ii) quantitative, numerical solutions of a

model calibrated to U.S. data, allowing us to assess the importance of the different

wedges. By our analysis in (ii), we are thus able to assess the quantitative relevance of

the lack of commitment in our simple economy.

Formally, we develop tools for the analysis of differentiable Markov–perfect equilibria.

The “Markov–perfect” part is just the requirement that outcomes cannot be history–

dependent other than through the physical state variable capital. The “differentiable”

part, i.e. the requirement that decision rules be differentiable, is introduced for two

reasons. First, differentiability is a convenient requirement that rules out the kind of

multiplicity of Markov equilibria that has been shown to be present in similar environ-

ments. In particular, Krusell and Smith (2003) show that there is an indeterminacy of

Markov–perfect equilibria in an infinite–horizon game between “selves” with different

time orientation. The many equilibria in that setup, neither of which can occur in

a finite economy, rely on discontinuous decision rules, and differentiability would rule

these equilibria out.

Second, and more substantially, we use differentiability to derive interpretable first–
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order conditions for the choice problem of the government: current policy choices

will, through an impact on capital, influence future policy choices, and we analyze

environments in which marginal conditions make sense to use. Thus, the first–order

condition for the government will generally contain a derivative of the function, used by

the next government, that maps capital into policy choice. Although this first–order

condition can be given an intuitive form, it is a significantly more complex object

mathematically than the standard first–order condition for the consumption–savings

choice. One implication of this complication is that it is necessary to jointly solve for

steady states and dynamics in this class of models. Another implication is that, in

order to solve the model numerically, even if one is only interested in the steady state,

one needs to go beyond linearization techniques. The methods we use can, however,

be viewed as a straightforward extension of linearization.

We use recursive language to define and characterize equilibria. The main output

of our analytical results are a first–order necessary condition for government choice.

We label this equation the “GEE” to represent the “Government”, or “Generalized”,

Euler Equation.1 We state this condition in two ways. The first version of the GEE

parallels the typical intertemporal first–order condition in macroeconomics where the

current contemporaneous effects of a tax hike are compared with those that arise in

the future. We make appeal to an envelope theorem: because the current government

is benevolent, it would make the same decisions as any future government given the

same starting condition, i.e., given the same amount of capital. This means that “the

future” can be summarized by effects on the following period; any further effects are of

second order. Thus, the first–order condition weighs current effects on marginal utility

against effects on marginal utility one period later. The alternative specification—

which is merely a reordering of terms — presents the first–order condition as a weighted

average of wedges. In this case the government can be seen as choosing the optimal

relative size of deviations from the first best, with the GEE providing a formula for

how to weigh those wedges: if a certain wedge is narrowed today, some other wedge

has to increase, either today or in the future, and the GEE tells us which and by how

much. This approach follows a tradition in the public finance literature by describing

optimal taxes as a compromise between different wedges.

1The term “generalized Euler equation” was, as far as we know, first used in the literature on
time–inconsistent preferences; see Laibson (1994). Our GEE is similar to the GEEs of that literature.

5



We also discuss whether the current government wants to manipulate its successor

via the state variable, in the spirit of Persson and Svensson (1989). We find that it

does not. The reason is that, in our environment, it is the constraints that are time–

inconsistent and not the preferences. More precisely, the current government will not

manipulate tomorrow’s capital stock so as to make its successor behave more in line

with its own preferences via the effect of tomorrow’s capital stock on the successor’s

policy. It will not because both governments share the same objective function; hence

the envelope theorem referred to above. What the government however would like to

do, if it could, is to alter the private sector’s expectations of future policy so as to

increase savings. It cannot do this directly, but its policy choice will influence private

capital accumulation which has an equilibrium influence on future policy, and thus on

itself. This effect is taken into account by the government.

In our quantitative experiments it turns out that the properties of taxes and allocations

in the time–consistent and Ramsey (commitment) equilibria can, but do not necessarily,

differ markedly. We find that even though reputation is by definition ruled out, the

mechanisms that are left—which involve the effects of current taxation on the capital

stock bequeathed to the next decision maker—can be quite powerful. In an economy

where labor supply is exogenous and the government taxes current capital income alone

to finance the current provision of public goods, it does not produce an mix of private

and public goods that equates the marginal rate of substitution to the marginal rate of

transformation, even though the capital income tax is equivalent to a lump–sum tax.

This has to do with to the wealth effect outlined in the two–period example above,

and this effect has quantitative significance: long–run Ramsey tax rates on capital are

not so much lower than time–consistent tax rates as one might suspect. When labor

supply is elastic, Ramsey equilibria lead to higher income taxes than do time–consistent

equilibria, since higher taxes at time t lead to higher work effort at earlier times, which

is a desirable effect of taxation for a Ramsey government; the effects on past labor

effort are always ignored by a time–consistent planner.

Since Kydland and Prescott stated the time–inconsistency problem, most of the at-

tempts to deal with time inconsistency of public policy have been attempts to fully

resolve the problem. In short, the idea has been to introduce (full or partial) commit-

ment through other mechanisms: “rules” (e.g., Kydland and Prescott (1977), delega-
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tion (e.g., Rogoff (1985)), a richer set of policy instruments with built–in irreversibilities

(such as long-maturity bonds which by assumption cannot be defaulted upon; see, e.g.,

Lucas and Stokey (1983)), and so on. To us, it is not clear that these alternatives are

feasible. Finally, it is possible to argue—see Chari and Kehoe (1990), following Abreu,

Pearce, and Stacchetti (1990)—that good outcomes are feasible without explicit com-

mitment, assuming that the time horizon is infinite and that agents are sufficiently

patient.

The tools developed in this paper are, we think, quite general and applicable to a wide

variety of contexts. However, there is earlier work in this direction. First, Markov

equilibria of the type that we are interested in have been studied in Cohen and Michel

(1988) and Currie and Levine (1993), who explore linear–quadratic economies.2 In

such economies, Markov equilibria can be characterized and computed rather easily,

since the first–order conditions become linear in the state variable. The problem of

unknown derivatives cropping up in equilibrium conditions is not nearly as severe as in

environments that are not linear–quadratic, since second and higher–order derivatives

of decision rules vanish. The drawback, of course, of linear–quadratic settings is that

they only apply in extremely special settings. Thus, either one has to give up on

quantitative analysis to apply them, or accept reduced–form objective functions and/or

reduced–form private decision rules.

There is also a literature both in political economy (Krusell, Quadrini, and Rı́os-Rull

(1997), Krusell and Rı́os-Rull (1999)) and in optimal policy with a benevolent gov-

ernment (Klein and Rı́os-Rull (1999)) that has used computational methods to find

quantitative implications of Markov equilibria for a variety of questions. This work

is closely related to the present one, but it has two drawbacks. First, the meth-

ods used—essentially, numerical solution of value functions based on linear-quadratic

approximations—are of the “black–box” type: they do not deliver interpretable con-

ditions, such as first–order conditions for the key decision maker. The present paper

fills this gap. Secondly, the numerical methods do not deliver controlled accuracy. In

contrast, the methods proposed and used here do.

In a related paper, Phelan and Stacchetti (2001) have looked at environments like those

2More recently, Ambler (2001) has extended the Cohen–Michel approach to the non–linear–
quadratic case.
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studied in this paper and have developed methods to find all equilibria. Their methods,

however, do not allow Markov equilibria to be identified and explicitly interpreted. The

only other closely related literature is that upon which the present work builds quite

directly: the analysis of dynamic games between successive selves, as outlined in the

economics and psychology literature by Strotz (1956), Phelps and Pollak (1968), Pollak

(1971), Laibson (1997), and others. This literature contains the derivation of a GEE,

and Krusell, Kuruşçu, and Smith (2000) show how to solve it numerically for a smooth

decision rule equilibrium. As will be elaborated on below, the smooth rule can be

difficult to find with standard methods, and Krusell, Kuruşçu, and Smith (2000) resort

to a perturbation method, which we also use here. This method relies on successive

differentiation of the GEE.

The broad outline of the paper is as follows. In Section 2 we describe our baseline

environment, in which the only private economic decision is the consumption-savings

choice (Section 2.1), define a Ramsey equilibrium (Section 2.2), and then define and

discuss our time–consistent, Markov equilibrium (Section 2.3) step by step. The section

ends with some illustrative examples where closed-form solutions are available. The

analysis of our equilibrium—which involves interpretations of the GEE and of govern-

ment behavior as well as comparisons with alternative ways of stating the government

problem/defining equilibrium—is contained in Section 3. Section 4 then discusses an

extension to our baseline setup where leisure is valued and where there are different

possibilities for what tax base might be used. Section 5 discusses the properties of

the policies that arise in an environment calibrated to U.S. data where governments

do not have access to a commitment technology (Markov policies) and compares them

to those that arise both in environments with commitment (Ramsey policies) and in

environments where the government has access to lump sum taxation (Pareto policies).

We argue that the canonical structure we study captures central components of any

more complex story of government decision making. Often, for example, successive

governments may disagree, because they may represent different voter groups, or be-

cause governments may simply not be benevolent. However, in these contexts as well,

the mechanisms we explore here are present. That is, our setup is a useful benchmark

for any further explorations into positive analysis of government decision making over

time. Section 6 concludes with a discussion along these lines. The Appendix includes
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some auxiliary formal definitions and the description of the computational procedures

we use.

2 The model

In this section, we describe the specific setup. We then define a benchmark “Ram-

sey equilibrium”—the solution to an optimal–policy problem where the government

can commit to future policies. After that, we proceed toward a definition of a time–

consistent equilibrium where the government does not have the ability to commit.

2.1 The environment

Our setup is a canonical model of public-goods provision embedded in a neoclassical

growth framework. The representative consumer is infinitely lived and there is a benev-

olent government with a period-by-period balanced budget and proportional taxation.

To begin with, the tax base is total income and leisure is not valued.

In a competitive equilibrium, households maximize

T∑
t=0

βt u(ct, gt),

where T is either a natural number or +∞, subject to

ct + kt+1 = kt + (1− τ t) [wt + (rt − δ)kt]

taking the price and tax sequences as given. Firms maximize profits; using a constant-

returns-to-scale production function f(k, l), where f is concave, they employ inputs

so that wt and rt are the marginal products of labor and capital, respectively. The

resource constraint in this economy reads

ct + kt+1 + gt = f(kt, 1) + (1− δ)kt
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It follows that the government’s balanced-budget constraint is

gt = τ t [f(kt, 1)− δkt] .

We will make use of the following functions:

T (k, g) ≡ g/ [f(k, 1)− δk]

and

C(k, k′, g) ≡ f(k, 1) + (1− δ)k − k′ − g,

where ′s denote next-period values. These functions—C representing consumption as

a function of current and next-period capital and the current public expenditure and

T representing the balanced-budget tax rate as a function of current capital and the

current public expenditure—are exogenous and will economize on notation significantly.

2.2 Commitment: the Ramsey problem

If lump-sum taxes were available, the optimal allocation in this economy would involve

two conditions: uc(ct, gt) = β(1 + fk(kt+1, 1) − δ)uc(ct+1, gt+1) (optimal savings) and

uc(ct, gt) = ug(ct, gt) (optimal public expenditures). In our economy lump-sum taxes

are assumed not to be available, and the the optimal allocation using a proportional

income tax is more involved.

We will first assume that the government has the ability to commit to all its future pol-

icy choices at the beginning of time. The government’s decision problem is therefore to

choose a sequence of tax rates {τ t}T
t=0 in order to maximize utility, taking into account

how the private sector will respond to these taxes. It order to simplify notation from

here and on, we will assume that the government chooses a sequence of expenditures

instead: it chooses {gt}T
t=0.

3 A simple way to describe this problem formally is to

3Formally, letting the government choose g instead of τ can be a problem if there are more than
one tax rate associated with a given g (which can occur). One could then specify a selection rule, or
alternatively simply state the choice in terms of the tax rate directly. None of our conclusions depend
on this notational simplification.
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choose {gt, kt+1}T
t=0 to maximize

T∑
t=0

βt u(C(kt, kt+1, gt), gt)

subject to the private sector’s first–order condition for savings

uc(C(kt, kt+1, gt), gt) =

βuc(C(kt+1, kt+2, gt+1), gt+1) [1 + (1− T (kt+1, gt+1))(fk(kt+1, 1)− δ)]
(1)

for all t ≥ 0. We refer to the solution of this problem as the Ramsey allocation.

This problem has a noteworthy feature: its solution will, in general, not be time–

consistent. That is, the optimal sequence of taxes and capital stocks will not be optimal

ex post: if the government could reoptimize at a t > 0, they would choose to not follow

the original sequence. For this reason, the assumption that the government can commit

to future taxes is a binding one.

Technically, the source of the time–inconsistency is the special status of period 0. For

any other period s, two versions of (1) apply, one with t = s and the other with

t = s − 1. For s = 0 only one constraint applies. This means that resetting the clock

matters to zero changes the optimal solution.

Intuitively, the tax rate chosen by the government for time t > 0 does influence—

distort—the savings choice in period t − 1 (and therefore also in any earlier periods),

but if it were to reoptimize at time t, it would not recognize this distortion. The

characterization of the solution to this Ramsey problem will briefly be discussed in our

section with quantitative analysis below; the full analysis is contained in another paper

(Klein, Krusell, and Rı́os-Rull (2003)).

2.3 No commitment: time–consistent equilibrium

The development of the time–consistent equilibrium concept will take place in three

steps. First we define equilibrium in a finite-horizon environment via backward induc-

tion. Then we illustrate this solution concept in some environments where a closed-form
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solution is available. In those environments, we can easily analyze what happens when

the horizon tends to infinity. We then go on to define equilibrium in a more general

environment with an infinite horizon.

2.3.1 Definition of equilibrium when the horizon is finite

Consider again the environment described in Section 2.1. We will define equilibrium

with recursive methods, thus describing equilibrium choices of private savings and

public policy in terms of functions of state variables. The optimal policy choice by the

government period t will be given by a function Ψt mapping any relevant history—

which is summarized by our only state variable, the capital stock—into a choice for

public expenditures: gt = Ψt(kt).
4 Denote the value of being born as a representative

agent into the economy at t when the capital stock is kt by vt(kt).

Private savings will also be given by a function of the state variable. However, in order

to define the government’s choice problem at any point in time, we need to define

private savings as a function not only of current capital but also of any current choice

for government expenditures (and hence the tax rate). Let privately optimal saving

in period t when the capital stock is kt and the current policy is gt be given by the

function Ht so that kt+1 = Ht(kt, gt).

Having established this notation, a Markov-perfect equilibrium is a sequence of func-

tions {Ht, vt, Ψt}T
t=0 such that

1. the government maximizes consumer utility, i.e.,

Ψt(k) ∈ argmax
g

{u(C(k,Ht(k, g), g), g) + βvt+1(Ht(k, g))}

for k ≥ 0 and t = 0, 1, . . . , T ,

vt(k) = u(C(k,Ht(k, Ψt(k)), Ψt(k)), Ψt(k)) + βvt+1(Ht(k, Ψt(k)))

4We will presume that the equilibrium in any finite-horizon economy is unique. In case it is not,
the history might include more information than the capital stock.
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for k ≥ 0 and t = 0, 1, . . . , T ,

vT+1(k) = 0,

for k ≥ 0; and

2. the private sector saves optimally, i.e.,

uc(C(k, k′, g), g) =

βuc(C(k′, k′′, g′), g′) [1 + (1− T (k′, g′))(fk(k
′, 1)− δ)]

(2)

for k ≥ 0 and g ≥ 0 where, in (2), k′ = Ht(k, g), g′ = Ψ(k′) and k′′ = Ht+1(k
′, g′)

for t = 0, 1, . . . , T − 1 and

HT (k, g) = 0.

Our finite-horizon equilibrium can be solved for backwards. We will look at some

examples below where functional form assumptions on preferences and technology allow

closed-form solution. Among cases which do not admit closed-form solutions, we will

restrict attention to those which deliver differentiable policy rules for the private and

the public sectors.5 Our main tool for analyzing our equilibria will rely on a first–

order condition for the government’s choice. To save on space, we will postpone the

derivation of such a first–order condition to the section below which uses a finite time

horizon.

To illustrate our solution concept, we now briefly consider environments where the

Markov equilibrium can be solved for explicitly.

2.3.2 Some examples with a closed-form solution

We will consider two examples that illustrate the nature of the Markov-perfect equi-

librium and how it relates to the Ramsey solution.

5Differentiability follows when decision problems yield unique interior solutions assuming sufficient
differentiability of the primitive functions. The purpose here is not to state precise conditions under
which such properties obtain; finding general conditions on primitives guaranteeing differentiability is
difficult. It does not, however, seem that the applications to policy choice in the neoclassical growth
model we consider lead to multiple solutions for government choice.
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2.3.2.1 A proportional tax on total income

Here we maintain the case where the tax rate on capital income equals that on wage

income. Assume that the period utility function is ln c + γ ln g, that the production

function is kθ, and that there is full depreciation. Then it is straightforward to solve

for a competitive equilibrium for any sequence of government expenditures/tax rates.

It is given by

kt+1 = st(1− T (kt, gt))k
θ
t

with

st = βθ
1 + βθ + . . . (βθ)t−1

1 + βθ + . . . (βθ)t−1 + (βθ)t

and

T (k, g) = g/kθ.

This competitive equilibrium has the feature that future government spending pat-

terns/tax rates do not matter for current savings. This result depends crucially on

the functional forms we employ. We know, first, that with logarithmic utility, changes

in future returns to capital—which directly depend on tax rates on income—do not

affect current savings because income and substitution effects cancel for an isoelastic

utility function. Second, a tax on future labor income is a negative wealth effect and

should cause current savings to increase, since consumption at different points in time

are normal goods. However, the net present value of future labor income net of taxes is

also affected by discounting, and if the tax rate on capital income goes up too, the net

interest rate will go down, thus increasing the current value of any future income. If

the rate of depreciation is 100%, or if the tax is on gross capital income, the decreased

net interest rate exactly offsets the decreased future net labor income; hence, current

savings will be unaffected by future taxes. The Cobb-Douglas form of the production

function is helpful because it allows closed-form solution of the savings function.

Given that current savings do not depend on future levels of government expendi-

tures/tax rates, the commitment solution will be time–consistent: there is no incentive

to change plans for future policy once current savings decisions are made. To find the

optimal tax rate, notice that there are direct and indirect effects on utility. The direct

effects occur on current private consumption—a higher g lowers c—and on public con-

sumption. The indirect effects occur through savings. These effects cannot be ignored
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here, because the consumer does not internalize the effects of savings on future public-

goods provision that occur because capital income is taxed. Thus, we need to find out

how savings influence utility. In our finite-horizon setup, it is easy to see that in the last

period government expenditures will be a constant fraction τT = γ/(1 + γ) of output

and, indeed, the same property will also hold at all earlier dates. Thus “guessing” that

Ψt(k) = τ tk
θ, the value function at time t can be seen to equal

vt(k) = At ln k + Bt,

where

At = θ(1 + γ)
1− (βθ)T−t+1

1− βθ
,

and

Bt = ln(1− τ t)(1− st) + γ ln τ t + βAt+1 ln st(1− τ t) + βBt+1,

with AT+1 = BT+1 = 0. The optimal choice of g at t can now be found by maximizing

over τ t:

τ t ∈ argmax
τ

{ln(1− τ − st) + γ ln τ + βAt+1 ln(1− τ)}

and the unique solution is

τ t =
γ

1 + γ

1− βθ

1− (βθ)T−t+1
.

We see that tax rates are between zero and one, and that they are increasing over

time for any given time horizon: the longer the remaining time horizon, the higher are

savings so the higher is the positive impact on future expenditures by taxing less now.

In other words, tax rates that are lower than the statically optimal level will be used

in order to increase current savings, which are suboptimally low due to tax distortions.

In particular, it is possible that the statically optimal tax rate is very close to 100%

and yet that taxes early on are far from 100%; the time-zero tax rate is decreasing in

the time horizon, approaching (1− βθ)γ/(1 + γ) as T goes to infinity.

2.3.2.2 A proportional tax on capital income

When the tax base is capital income only—gt = τ tθk
θ
t —we obtain savings rules of a
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very similar form:

kt+1 = st(1− θT (kt, gt))k
θ
t

the same form as before, but savings rates now satisfy the recursion

st = βθ
(1− βθ)(1− τ t+1)

1− θτ t+1 − st+1 + β(1− τ t+1)θ

with sT = 0. Here, savings at t depend on all future tax rates: they decrease in

all future tax rates. The reason is that future tax rates decreases discounting, thus

making any future income more worth in present terms; this positive wealth effect

will increase current consumption and decrease savings. As a result, the commitment

solution will not be time–consistent in this case. We will not solve for the commit-

ment solution here—it does not admit closed-form expressions—but we will solve for

the time–consistent equilibrium. As in the case with a tax on total income, optimal

government policy at t will be a constant fraction τ t of output at t, leading to the same

indirect utility as above with the difference that Bt now satisfies

Bt = ln(1− θτ t)(1− st) + γ ln θτ t + βAt+1 ln st(1− θτ t) + βBt+1.

Inspecting this expression, one sees that the optimal choice of τ t does not interact with

future taxes, delivering

τ t =
1

θ

γ

1 + γ

1− βθ

1− (βθ)T−t+1
.

Thus, θτ t here obeys the same form as τ t did before. However, with a high enough

γ in this case, capital income will not suffice to provide for ex-post optimal public

consumption levels in the last period, leading to a tax rate above 100%. If this occurs

in period T , there will be no savings in any earlier periods and both c and g will be

0 in all periods but the very first one. With a literally infinite time horizon, however,

there will also be an “expectations-driven” equilibrium with savings in this case if

(1− βθ)γ/(1 + γ)/θ < 1: if agents—private and public—believe future capital income

will not be taxed at high rates, there will be savings.
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2.3.3 Infinite time horizon

The main purpose of our paper is to develop an applied version of the model where

the time horizon is not an important determinant of outcomes. Like in most of the

macroeconomic literature, we therefore assume that the time horizon is infinite. I.e.,

the presumption is that T is large enough that small changes in it will not signif-

icantly change the model’s predictions. The resulting version of our Markov-perfect

equilibrium is simply a “stationary” version of our earlier definition: it consists of time–

invariant value and policy functions. Thus, a Markov-perfect equilibrium consists of

three functions H, v, and Ψ such that

1. Given H and Ψ, v is the value function, i.e.

v(k) = u(C(k,H(k, Ψ(k)), Ψ(k)), Ψ(k)) + βv(H(k, Ψ(k))) (3)

for all k ≥ 0;

2. given H and v, Ψ delivers an optimal choice for the government, i.e.

Ψ(k) ∈ argmax
g

{u(C(k,H(k, g), g), g) + βv(H(k, g))} (4)

for all k ≥ 0; and

3. given Ψ, H is an optimal savings function, i.e.

uc(C(k, k′, g), g) =

βuc(C(k′, k′′, g′), g′) [1 + (1− T (k′, g′))(fk(k
′, 1)− δ)]

(5)

for all k ≥ 0 and g ≥ 0 where, in (5), k′ = H(k, g), g′ = Ψ(k′) and k′′ = H(k′, g′).

With an infinite horizon, the Bellman equation expresses the time-consistency of gov-

ernment behavior: its stationarity guarantees that consecutive governments agree,

given initial conditions. Agreement across governments may be surprising, and in Sec-

tion 3.2.1 we will discuss the (limited) sense in which consecutive governments disagree

on taxation issues.
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How many Markov-perfect equilibria exist in general is a question that we do not

address in this paper. We do not have a proof of existence or uniqueness.

Because we wish to encapsulate a strong sense of lack of commitment, we will focus

on equilibria that are limits of the finite-horizon equilibria defined in the previous

section. In order to make such equilibria operationally useful, however, we will employ

a more precise definition of Markov-perfect equilibria: we will refer to a time–consistent

equilibrium as a Markov-perfect equilibrium whose policy function Ψ is differentiable.

The differentiability requirement is both useful computationally and a tool for eliminat-

ing potential indeterminacy of Markov-perfect equilibria. Computationally, first, it al-

lows the analysis to build on first–order conditions—one standard condition character-

izing private sector behavior and a new condition summarizing government behavior—

rather than on an iterative procedure whereby equilibria are solved backwards. We

will discuss our computational algorithm in more detail below. Second, indeterminacy

of Markov-perfect equilibria has been demonstrated in similar contexts. In particular,

the setup in Krusell and Smith (2003) is one where the consecutive decision makers

have different objectives, and the indeterminacy there builds on decision rules—those

equivalent to Ψ here—that are discontinuous (step functions). The differentiability

requirement therefore rules out such equilibria, though it is an open question whether

they would exist here.

2.3.4 Deriving the GEE: the government’s first–order condition

We now assume that our equilibrium policy functions Ψ and H are differentiable

and proceed to derive a functional-equation first–order condition for the government’s

choice. This equation, which we will refer to as the GEE (the Government’s, or Gen-

eralized, Euler Equation), will be in focus in the analysis below.

There are several ways to derive the GEE. The most straightforward way at this point

is to first derive a first–order condition from the government’s recursive problem, which

will contain the unknown value-function derivative, vk, and then use an envelope con-

dition to eliminate vk. This procedure is nonstandard only in that it is somewhat more

roundabout to eliminate vk here than in the standard growth model.
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The first–order condition for the government produces

uc(−Hg − 1) + ug + βv′kHg = 0.

Here, we are economizing on notation by suppressing the arguments of the functions.

This equation, thus, pins down g. The notation v′k stands for the derivative of v with

respect to k (subscript denote derivatives) evaluated at H(k, g) (primes denote forward

lags). To obtain an expression for it, we differentiate Equation (3) with respect to k.

We obtain, noting that Cg = Ck′ = −1,

vk = uc(Ck − (Hk +HgΨk)−Ψk) + ugΨk + βv′k(Hk +HgΨk) = 0.

This equation contains indirect effects , via Ψk. Notice, too, that a grouping of the Ψk

terms leads to Ψk · 0, where the “0” results from use of the first–order condition above:

this is the envelope theorem. However, unlike in the setting of the standard growth

model, the use of the envelope theorem does not suffice to make v′k disappear here: vk

still depends on v′k:

vk = uc(Ck −Hk) + βv′kHk = 0.

This may appear like a problem, but it is not: v′k can be expressed in terms of primitives

and decision rules from the first–order condition above. This delivers

βv′k =
1

Hg

(uc(Hg + 1)− ug) .

Thus, the expression for vk in terms of primitives and decision rules reads

vk = uc(Ck −Hk) +
Hk

Hg

(uc(Hg + 1)− ug) .

We can now update this expression one period and substitute back into the original

first–order condition to obtain our GEE:

−uc [Hg + 1] + ug+

βHg

{
u′c [f ′k + 1− δ −H′

k] +
H′k
H′g

(
u′c(H′

g + 1)− u′g
)}

= 0,
(6)
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where we have also used the definition of C in terms of primitives. Equation (6), where

arguments are still suppressed for readability and primes on functions indicate that

the function is evaluated in the next period, holds for all k. It is our fundamental

functional equation determining Ψ(k) given H(k, g). I.e., it defines the government

policy rule Ψ as the optimal policy determination under the assumption that the private

sector behaves according to an arbitrary H. In the next section, we will discuss the

government’s behavior from the perspective of this equation.

3 Properties of government behavior

We now move to our discussion of the GEE—the government’s first–order condition.

After providing various interpretations of this condition, we present two reformulations

of our problem. The first one of these is more compact than the one above, although

perhaps less transparent. It is particularly useful in the numerical work later. The

second reformulation casts the government’s problem as a sequential one. This problem

is useful in delivering an alternative, and perhaps easier, method for deriving the GEE

than the one above.

3.1 Interpretation of the government’s Euler equation

We begin with two alternative interpretations of the costs and benefits of raising current

taxes. Thereafter, we address the question of whether there is a sense in which the cur-

rent government, through the effect its taxation decision has on capital accumulation,

manipulates its successors.

3.1.1 The macroeconomist’s version

A first notable property of the GEE is that it has a finite number of terms. That is,

even though the current tax rate choice in general has repercussions into the infinite

future—recall that the present government cannot “keep future variables constant”

because it cannot commit future governments—the marginal costs and benefits at an

optimum can be summarized with terms involving only two consecutive periods. This,
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of course, is due to the recursive structure and the use of the envelope theorem. The

envelope theorem in this context means that, when k′ is viewed as given, the current

government agrees with the next government on how to set g′; these two governments

have identical ways of evaluating utility from tomorrow and on. That is, disagreement

is only present if the effects of g′ on k′ are taken into account.

The recursive structure of the government’s problem makes it equivalent to a sequential

problem, which we will state and discuss in some detail in Section 3.1.3. Thus, one

can also view the GEE as resulting from a variational (2-period) problem: keeping the

state variables k and k′′ fixed, vary k′, through the control variables g and g′, in order

to obtain the highest possible utility. Viewed this way, one sees that any change in g′,

which is effectuated by a change in g, requires an accompanying change in g′ so that k′′

remains unchanged. Total differentiation of k′′ = H(k′, g′) thus states that this change

in g′ has to be dg′
dk′ = −H′k

H′g . Notice that this term appears in the GEE: it thus reflects

a partial change in g′ coming about due to a change in k′. It is not, however, equal to

Ψ′, which is the net change in g′.

Second, the GEE contains both primitive functions, such as marginal utility, and (en-

dogenous) decision rules: H and Ψ. Moreover, and this is why the term “generalized”

Euler equation is appropriate, the equation contains derivatives of of decision rules; it

contains Hk and Hg, both evaluated in the present and in the future. It is possible

to eliminate the derivatives of H by use of the consumer’s Euler equation for savings,

equation (5). This equation defines H(k, g), and by differentiation with respect to k

and g, respectively, these derivatives can be obtained. This differentiation, however,

will produce another unknown derivative: Ψ′
k. Since Ψ is present in the forward-looking

consumer’s Euler equation, its derivative is a determinant of how changes in current

policy and capital will induce equilibrium changes in savings. Thus, our equilibrium

system of functional equations is actually a differential equation system.

We will now interpret the GEE in terms of marginal benefits and marginal costs of

changing g. These benefits and costs will involve the unknowns Hk and Hg. In our

discussion, we will assume that the former of these is positive and the latter negative.

These assumptions seem natural: under the normal goods assumption regarding c and

c′ (i.e., time-additive utility and a concave u), one would expect increased income to

increase savings, and both an increase in k and a decrease in g reflect increased income.
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However, notice that, to the extent k also changes tax rates (recall that k is not the

individual’s state variable, but the economy-wide capital stock), which it does in our

economy, other effects could be present. In our analytically solved example below as

well as in our quantitative section, we confirm the assumed signs of Hk and Hg.

We can thus describe our marginal benefits and costs as follows. The effects on today’s

utility-relevant variables from a marginal increase in current government expenditures

are on

1. current consumption, which

(a) goes up via lower savings, delivering a utility effect of −ucHg > 0, and

(b) down via higher government spending, with an effect on utility of −uc<0;

and on

2. current government spending, whose rise leads to a utility change of ug > 0.

The effects of the increase in g on future utility-relevant variables occur via a decrease

in savings (Hg < 0), leading to

3. effects on next period’s consumption which

(a) goes down via a direct effect on production and undepreciated capital, af-

fecting utility by βHgu
′
c(f

′
k + 1− δ) < 0;

(b) goes up via an indirect negative effect from lowered saving (dk′
dg

dk′′
dk′ = HgH′

k <

0), affecting utility by βHgu
′
c(−H′

k) > 0; and

4. two induced effects which occur via the above-mentioned decrease in next period’s

government expenditures, dg′
dg

= −Hg
H′k
H′g < 0; this effect

(a) raises next period’s consumption, which results in a change in next period’s

utility by βHg(−H′k
H′g )u′c[−H′

g − 1] > 0 (assuming Hg + 1 > 0), and

(b) lowers next period’s government spending, which leads to a utility change

of the amount βHg(−H′k
H′g )u′g < 0.
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In our numerical work below, we assign (steady-state) values to these different terms:

we learn which of the effects in the GEE are quantitatively important and which are

not.

3.1.2 The public economics version

The GEE can be rewritten so that it is a linear combination of wedges. Thus, rear-

ranging terms we obtain the following equation.

[
ug − uc

]
+Hg

[
−uc + βu′c(1 + f ′k − δ)

]
+ βHg(−H

′
k

H′
g

)

[
u′g − u′c

]
= 0. (7)

Three terms in brackets appear: these are the three different “wedges” that are affected

by the change in the current tax rate. Note that only wedges in the current and in

the next period appear, even though this intertemporal economy has wedges in every

period: again, envelope theorems imply that future wedges are handled optimally and

hence can be ignored in comparing marginal costs and benefits of a current tax increase.

How are the different distortions traded off against each other? First, an increase in g

influences the gap between ug and uc. This gap, which would be zero with lump-sum

taxes since private and public goods are perfect substitutes in production, must be

positive since it is costlier to provide g than c here. This means that a g increase,

which also lowers c, makes this gap smaller.

Second, since the increase in g leads to a decrease in savings, the intertemporal distor-

tion is affected. The second bracket, −uc +βu′c(1+f ′k− δ), actually equals u′c(f
′
k− δ)τ ′

from the consumer’s Euler equation: so long as the tax rate next period is positive,

marginal utility of consumption today is too low (because savings are too low). Thus,

the decrease in savings resulting from an increase in current taxes will be detrimental:

it increases the intertemporal distortion further.

Third, the lowered savings will lead to changes in the provision of public goods next

period, and it will thus influence the gap between the marginal utilities of public and

private goods in that period. The channel is that lowered saving induces a decrease

in next period’s government expenditures: dg′
dg

= Hg(−H′k
H′g ) < 0. Thus, this effect is a
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negative: the distortion is increased next period.

In sum, we are weighing one positive effect of increasing the current government

expenditures—it decreases the wedge between public and private goods—against two

negative ones: it increases the same wedge next period, and it also increases the in-

tertemporal wedge. Not all wedges can be zero, because the optimal provision of public

goods—uc = ug—demands a positive tax rate, which necessarily makes the intertem-

poral distortion nonzero. This result is perhaps surprising: the use of the income tax

seems nondistortionary in this model from the perspective of the current government:

it is like a lump-sum tax. Nevertheless, the government does not tax at the high rates

that would be necessary to deliver (statically) optimal public-goods provision. This is

because the government finds it in their interest to leave more resources than that in

the hands of the private sector, because some of those resources will be saved, and this

will help alleviate the intertemporal distortion. At an optimum, an optimizing govern-

ment makes sure that a marginally decreased current public-goods-provision wedge is

exactly counterbalanced by increases in the other wedges.

3.1.3 A sequential formulation

By Bellman’s principle, it follows that we can alternatively characterize the problem

of the government as one where it chooses a policy sequence, {gt}T
t=0, to solve the

following sequential problem:

max{gt,kt+1}T
t=0

∑T
t=0 βt u (C(kt, kt+1, gt), gt))

subject to

kt+1 = H(kt, gt).

(8)

Problem (8), however, does not correspond to the decision problem the government is

actually facing, because it does feature a different feasible set for taxes: it does allow

the government full power to choose any {gt}T
t=0. In contrast, in our time–consistent

equilibrium, the government at time t only has a one-dimensional way of affecting

future taxes: by the choice of gt, which via H influences kt+1, which in turn via Ψ

affects gt+1, and so on. But despite being formally different problems, the equilibrium
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sequence chosen by the government in our Markov-perfect equilibrium will also solve

this problem, and vice versa!

Problem (8) is not autonomous: it is still part of a fixed-point problem in Ψ. How

does Ψ enter in the problem? As just pointed out, it is incorporated into H: the shape

of this function reflects the expectations of future taxes through the private sector’s

Euler equation.

The usefulness of the sequential formulation is that it provides a direct way of deriving

the GEE by using standard variational methods.

3.2 An alternative equilibrium definition

It is possible to provide a more compact definition of equilibrium.6 We state this defi-

nition because its compactness actually matters for computation (as we will comment

on later in detail) and because it is more closely connected to the Ramsey problem of

Section 2.2. The compactness is accomplished by not allowing a distinction between

the government and the private sector. The government thus chooses both k′ and g

directly, with associated equilibrium mappings h(k) and Ψ(k).

The problem that the government solves—maximize utility subject to the Euler equa-

tion of the households—reads as follows:

v(k) = maxk′,g {u (C(k, k′, g), g) + β v(k′)}
subject to

uc (C(k, k′, g), g) =

β uc (C (k′, h(k′), Ψ(k′)) , Ψ(k′)) · {1 + [1− T (k′, Ψ(k′))][fk(k
′)− δ]} .

(9)

Thus, k′ is left as a choice variable and the restriction that it be consistent with

private-sector behavior is not captured through a function H but instead by including

the consumer’s Euler equation explicitly. This equation, moreover, is not a functional

equation; it restricts k′ and g, while k′′ as well as g′, which enter on the right-hand

side of the Euler equation, are restricted to equal h(k′) and Ψ(k′), respectively. This

6We owe gratitude to Harald Uhlig, who suggested this very natural alternative definition.
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is how the lack of commitment shows up in this formulation.

Problem (9) is, of course, also a fixed-point problem: taking as given expectations about

future behavior as captured by h and Ψ, current optimal behavior has to reproduce

these functions. This formulation is obviously closer to the Ramsey formulation: the

difference is that future savings and tax choices here are restricted by h and Ψ whereas

they are free in the Ramsey problem.

It is straightforward to see that our two equilibrium definitions are equivalent: the

function H is defined to solve the Euler equation above with the only difference that

what appears on the right-hand side is H(k′, Ψ(k′)), not h(k′), and Ψ(k′), not Ψ(k).

Thus, if H and Ψ constitute an equilibrium according to our original definition, then h

and Ψ defined by h(k) ≡ H(k, Ψ(k)) and Ψ ≡ Ψ are an equilibrium as defined in this

section; and if h and Ψ satisfy the above equilibrium definition, then one can define H
from the Euler equation above (solve for k′ as a function of k and g) and set Ψ ≡ Ψ

and it is evident that H and Ψ are an equilibrium according to our original definition.

It is also possible to derive the GEE from (8). However, as perhaps is evident, it will

lead to an equation which is very long, because both g and, especially, k′, appear in

a large number of places. Among the many terms, both Ψ′ and h′—the derivatives of

the policy rules—will appear in this first–order condition.

One can simplify matters by summarizing the Euler equation by

η(k, g, k′) = 0, (10)

where η is defined as the left-hand side of the restriction in (9) minus the right-hand

side. The GEE, then, becomes (after deriving the first–order condition and utilizing

the envelope theorem)

0 = (−uc + ug)ηk′ − ηg

[
−uc + βu′c(f

′
k + 1− δ)− β

(−u′c + u′g
) η′k

η′g

]
. (11)

Noting that H is defined by

η(k, g,H(k, g)) = 0
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for all (k, g), we can differentiate with respect to k and g and obtain, respectively,

Hk = − ηk

ηk′

and

Hg = − ηg

ηk′
.

Dividing the GEE—equation (11)—by ηk′ and rearranging, we obtain our original

GEE—equation (6).

3.2.1 Strategic policy: does the current government manipulate its suc-

cessors?

The dynamic game played between governments involves a disagreement: the current

government would like to see the next government choose a lower tax on income, τ ′,

than it ends up choosing. Does this mean that the current government attempts to

“manipulate” the next government in its tax choice? It could influence τ ′ through its

influence on saving, k′. Suppose, for example, that g′ = Ψ(k′) is increasing. Then the

current government might see a reason to increase g a little extra, so as to decrease

k′ and thereby decrease g′: it could influence the government expenditure choice next

period through savings.

Our GEEs, however, do not directly contain the derivative of the tax policy rule Ψ,

as one might think it would. In fact, from our arguments earlier, and the very fact

that the government’s problem can be written recursively, the successive governments

actually agree in one important dimension: given the value for current savings , they

agree on how to set next period’s taxes. That is why the derivative of Ψ does not

appear directly in the government’s first–order conditions. It appears indirectly, as a

determinant of Hg. But this appearance does not reflect strategic behavior; rather,

it simply captures how the effects on private-sector savings of a current change in g

depends on how those extra savings will alter next period’s tax rate. That is, Hg reflects

how a current tax change influences the expectations of private agents, and therefore

their savings. More precisely, if the tax rate today is changed, how much extra (or

less) capital is saved—Hg—depends on how the determination of the expenditure on
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g′ is perceived by the private sector.

To illustrate the role of Ψ in the determination of the savings response, let us compare

a “myopic” government to the kind of government we model: a myopic government

does not realize that their current taxation behavior influences future taxes. Suppose

that the time–consistent equilibrium has Ψ as an increasing function: the higher the

savings today, the higher the government expenditures will be next period. In con-

trast, the myopic government perceives Ψ(k) to be constant. How, then, would the

myopic government’s first–order condition look? The answer is that it would look the

same, with the one difference that Hg would be a different number: in terms of our

compact equilibrium definition, we have Hg = − ηg

ηk′
, and here the denominator (but

not the numerator) depends on the derivate of Ψ. Assuming that u(c, g) is additively

separable, that ηg > 0, and that ηk′ > 0, one sees that if a change in future government

expenditures is ignored, ηk′ would could be too high—because of the lowered consump-

tion, and therefore increased future marginal utility value of savings, implied by the

higher future tax rate—or too low—because of the lower net-of-tax return from future

savings. That is, a myopic government would misperceive Hg, but whether this leads

to lower or higher equilibrium taxes is a quantitative question.

4 Extensions: valued leisure and other tax bases

Suppose now that leisure is valued: we assume that utility is given by

∞∑
t=0

βt u(ct, 1− `t, gt).

We continue assuming that the tax base is total income. Our equilibrium definition

works as before, but one more element is needed: we need to describe the equilibrium

labor response to (k, g). The relevant mapping is L(k, g), which is obtained from the

consumer’s first–order condition for the labor-leisure choice. Thus,

u` (C(k,H(k, g), g), 1− L(k, g), g)

uc (C(k,H(k, g), g), 1− L(k, g), g)
= f` (k,L(k, g)) (1− T (k, g)) (12)
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for all (k, g) and the first–order condition for savings (which now contains a leisure ar-

gument, but which we will not restate) jointly define the functions H(k, g) and L(k, g).

The equilibrium conditions now include three functional equations: the private sector’s

first–order conditions for labor and savings and the government’s first–order condition.

We go straight to the latter—to the GEE—which can be derived with the same pro-

cedure as above. It reads

Lg

[
ucf` − u`

]
+

[
ug − uc

]
+Hg

[
−uc + βu′c(1 + f ′k − δ)

]
+

βHg

{
L′k

[
u′cf

′
` − u′`

]
− H′k

H′g

(
L′g

[
u′cf

′
` − u′`

]
+

[
u′g − u′c

])}
= 0

(13)

for all k (again, the arguments of the functions are suppressed for readability). We

see a new wedge appearing: ucf` − u`, in the current period as well as in the next.

This wedge, which equals ucτ , must be positive so long as public goods are provided

(τ > 0). A current tax increase will now decrease labor supply (presumably) and thus

increase this intratemporal distortion. Similarly, there will be repercussions through

lowered savings on the same wedge in the future, in parallel with the induced effects

on future savings.

In a closed-form application of the economy with leisure and taxation of total income,

using u(c, 1−`, g) = α ln c+(1−α) ln(1−`)+γ ln g and the same production technology

as used in Section 2.3.2, it is straightforward to see that Ψ(k) = γ
α+γ

(1 − βθ)kθ, with

L(k, g) = α
α+(1−α)(1−βθ)

and H(k, g) = βθ(1 − T (k, g))kθ`1−θ, solves this functional

equation: the tax rate is constant. Here, as above, future taxes do not influence

present savings decisions, and present work decisions are not influenced either because

wealth effects are not present: future taxes will lower net-present-value income for given

net interest rates (and should increase work effort) but net interest rates go down to

exactly cancel the lowering of future income flows.

Below in the quantitative section, we will look at an economy with less than full

depreciation of capital and income taxation (i.e., the stock of capital is not taxed).

There, in contrast, an increase in future taxes on total income would decrease present-

value income. This is because the net interest rate would fall by less in percentage

terms than would the value of the future labor endowment, and hence current work
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effort (and savings) would increase.

A similar effect would be present if only labor income were taxed: there, there would

be no counteracting decrease in the interest rate at all, and increased future tax rates

would lower raise work effort and increase current savings. In this and the latter kinds

of economies, hence, this by-product of future taxation–the induced rises in current

work and savings efforts—will counteract the distortions present by taxation and thus

be desirable. In particular, in an economy with labor taxation only the commitment

outcome is expected to lead to higher taxation than the outcome without commitment,

which does not internalize the positive impact of current taxes on past work efforts.

The GEE with labor income taxes only becomes

Lg

[
ucf` − u`

]
+

[
ug − uc

]
+

β Hg

{
(L′k − H′k

H′gL
′
g)

[
u′cf

′
` − u′`

]
− H′k

H′g )

[
u′g − u′c

]}
= 0.

(14)

A wedge version of the GEE that would have arisen in an economy with lump-sum

taxes is given by [
ug − uc

]
+ βHg(−H

′
k

H′
g

)

[
u′g − u′c

]
= 0. (15)

Here, a policy that sets marginal utility of government expenditures equal to that of

private consumption satisfies equation (15) and hence is an equilibrium policy. Mean-

while, to satisfy the private Euler equations with no distortionary taxes, labor supply

will be Pareto optimal as well in the Markov equilibrium. Thus the Markov equilibrium

is Pareto optimal. When the first best can be achieved, time inconsistency is no longer

a problem, and the GEE shows that.

Finally, consider the case where only (net) capital income can be taxed. Then the GEE

becomes

[
ug − uc

]
+Hg

[
−uc + βu′c(1 + f ′k − δ)

]
+ βHg(−H′k

H′g )

[
u′g − u′c

]
= 0. (16)

Notice that this is the same GEE as in the model without leisure. This does not mean

that the equilibrium tax rate is the same—the remaining equilibrium equation elements
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are different. As in the case without valued leisure, it will not be optimal to go all the

way to (statically) optimal public-goods provision.

5 Optimal policy for actual economies

We proceed next to look at numerical solutions for a selected set of economies with some

aggregate statistics that resemble those of the United States postwar economy. For the

sake of comparison we also provide the optimal policy under the first best (lump-sum

taxation) allocation and those implied by a benevolent government that has access to

commitment but not to a technology to save resources, that is, the Ramsey equilibrium

given a period-by-period balanced budget constraint.7

We specify the per-period utility function of the CES class as

u(c, `, g) =

[
(1− αp) (αcc

ρ + (1− αc)`
ρ)Ψ/ρ + αpg

Ψ
] 1−σ

Ψ − 1

1− σ
. (17)

This function reduces to a separable function with constant expenditure shares when

σ → 1, ρ → 0 and Ψ → 0, yielding

u(c, `, g) = (1− αp)αc ln c + (1− αp)(1− αc) ln ` + αp ln g (18)

Meanwhile, the production function is a standard Cobb-Douglas function with capital

share θ: f(K,L) = A ·KθL1−θ.

Our parameterization of the baseline economy is also standard. We calibrate the base-

line model economy, which is the one with only labor taxes, to have some statistics

within the range of U.S. data in the lack-of-commitment economy. So we set the share

of GDP that is spent by the government to be slightly under 20%, the capital share

to 36%, the investment-to-output ratio to a little over 20%, hours worked to about

7The discussion of the intuition underlying the Ramsey equilibrium in this section is kept quite
brief; more extensive formal analysis of this case is contained in another paper: Klein, Krusell, and
Ŕıos-Rull (2003). Related insights are also obtained in Stockman (1998). For earlier analysis of a setup
without commitment, see Klein and Rı́os-Rull (1999) who perform a quantitative analysis of optimal
taxation (labor and capital income taxes) for exogenous public expenditures under a period-by-period
balanced budget constraint.
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one fourth of total time, and the capital-to-output ratio to about 3. These choices are

common in the macroeconomic literature.

We choose the baseline economy to have logarithmic utility which makes preference

separable (making cross derivatives zero). We report the values of the parameters that

implement our choices in Table 1.

Parameter values

θ = 0.36 αc = 0.30 αp = 0.13

β = 0.96 δ = 0.08 ρ = 0

Ψ = 0 σ = 1.0

Table 1: Parametrization of the baseline model economy

5.1 Labor income taxation

We now look at the steady states of the baseline economy under three different benevo-

lent governments that we label Pareto, Ramsey, and Markov. These labels, respectively,

refer to: a government with commitment and access to lump-sum taxation (Pareto); a

government restricted by a period-by-period balanced-budget constraint and to the use

of labor income taxation, both one with access to a commitment technology (Ramsey)

and one which does not have access to such commitment technology (Markov, because

we look at the Markov equilibrium). Table 2 reports the steady-state allocations of

these three economies.

The absence of capital income taxes in all economies ensures that the steady-state

interest rate is equated to the rate of time preference, yielding an equal capital-to-

output ratio in all economies. Comparing the Pareto and the Ramsey economies, we

see the effect of distortionary labor taxation. The Pareto economy delivers the optimal

allocation while the Ramsey economy has a distortionary tax that discriminates against

produced goods and in favor of leisure. As a result, leisure is significantly higher in the
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Labor taxes, endogenous g

steady state type of government

statistic Pareto Ramsey Markov

y 1.000 0.700 0.719

k/y 2.959 2.959 2.959

c/y 0.509 0.509 0.573

g/y 0.254 0.254 0.190

c/g 2.005 2.005 3.017

` 0.350 0.245 0.252

τ – 0.397 0.297

Table 2: Baseline model economy

Ramsey economy than in the Pareto economy, and because of this and the equal rate

of return, the steady-state stock of capital and output are much lower in the Ramsey

economy. However, the ratio between private and public consumption is the same in

both economies given that this margin is undistorted. This latter feature is a special

implication of the functional form that we have chosen and it relies on preferences

being separable in all three goods and on being of the CRRA class with respect to

consumption.8

When we look at the behavior of the Markov economy, we see two things: first, quali-

tatively, the distortion introduced by the tax on labor is also present in this economy,

inducing more leisure and less consumption (both private and public) than in the

Pareto economy; and second, the ratio between private and public consumption is not

the same as in the other economies (where it was equal to the relative share parameter

in preferences). Recall that from equation (14) the optimal policy of the Markov case

amounted to striking a balance between achieving the first best in terms of equating

the marginal utility of the private and public good and the distortion that the labor

tax induces on the leisure–private consumption margin. This balance does not imply

8This is a simple implication of the first–order conditions of the Ramsey problem when written in
the primal form.
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setting the margin between the public and the private good to zero. Indeed, the term

ug−uc is positive in the Markov case, making the second term of equation (14) positive

and the first one negative. The difference with the Ramsey case can perhaps be best

described by the fact that the Ramsey policy maker takes into account the fact that

a tax hike at t not only lowers labor supply at t but raises it at t − 1. In contrast, a

Markov policy-maker treats the latter as a bygone and hence chooses lower tax rates.

5.2 Capital income taxation

Table 3 shows the steady state when the only available tax is the capital income tax.

Capital income taxes, endogenous g

steady state type of tovernment

statistic Pareto Ramsey Markov

y 1.000 0.588 0.488

k/y 2.959 1.734 1.193

c/y 0.509 0.712 0.690

g/y 0.254 0.149 0.215

c/g 2.005 4.779 3.211

` 0.350 0.278 0.255

τ – 0.673 0.812

Table 3: Baseline model economy

This tax is in general very distortionary. The Ramsey government understands this

and, therefore, reduces future taxes so as to mitigate the distortionary effect. However,

since no other tax base is available here, the result is that the ratio of private to

public consumption is much lower than in the unconditional first best. The Markov

government, however, does not see the current tax as distortionary at all, as capital

is already installed when the government chooses the tax rate: capital is inelastically

supplied.
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The Markov government, however, understands that the government that follows one

period later will distort the allocation significantly, and is therefore willing to attempt

to transfer resources into the future to increase future consumption. For this reason,

it does not tax capital so as to set the private-to-public consumption ratio at the first-

best level. The ability of the Markov government to influnce the future choices is of

course smaller than that of the Ramsey government, and as a result its capital tax rate

is higher and capital and output are lower.

Another interesting feature of this case is that leisure is the lowest in the Pareto case,

even when there is no tax on leisure. With the preferences of this model economy, in

any market implementation, the household’s choice of leisure can be decomposed into

two parts. One part is what it would choose if all income were labor income—it equals

(1 − αc) exactly, independently of the wage (that in this case is 0.7). The other part

comes from the amount of additional income that the household has, so that leisure

is increasing in that additional income. In the Pareto economy, the lump-sum tax

levied is larger than the amount of capital income, inducing the household to enjoy

less leisure than 0.7, while in all the other economies, the after-tax capital income is

always positive, which accounts for why workers enjoy leisure of more than 0.7 in those

economies.

5.3 General income taxation

With respect to the case of a tax on total income, a couple of points are worth stressing.

First, the Ramsey government can set the ratio of private to public consumption to its

unconditionally optimal level. Due partly to the special nature of the preferences used

in this model economy, the distortions that affect the intertemporal margin and the

consumption leisure margin do not affect the private-to-public-consumption margin.

From the point of view of the Markov government, however, this is not the case.

An uncommitted policy maker does not take into account that today’s taxes increase

yesterday’s incentives to work, and in addition it wishes to increase savings by taxing

less today, and these effects induce a smaller government sector. This result is perhaps

surprising because one might have guessed that a Markov government, which views its

taxes as less distortionary than does the Ramsey government, would tax more.
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Total income taxes, endogenous g

steady state type of government

statistic Pareto Ramsey Markov

y 1.000 0.669 0.693

k/y 2.959 2.527 2.649

c/y 0.509 0.532 0.587

g/y 0.254 0.265 0.201

c/g 2.005 2.005 2.928

` 0.350 0.256 0.258

τ – 0.334 0.255

Table 4: Baseline model economy

In addition to the comparisons that we have performed between the three taxing tech-

nologies that the government may have access to (and that yield the Pareto, Ramsey,

and Markov cases), for each of the tax tools, we should also compare the allocations

for the Markov case across tax instruments.

¿From the point of view of the Markov government, taxing capital is not distortionary

since it is already installed and hence is like a lump-sum tax. On the other hand, the

tax base is quite small, as capital income is much smaller than labor income.9 On the

other hand, labor taxes are distortionary but its base is larger. Finally, total income

taxes have the highest tax base and they are as distortionary as the labor income tax

rate for the same tax rate, or less distortionary for the same revenue.

With respect to tax outcomes, first, as should have been expected, the larger is the role

of capital income taxes (which implies an ordering with capital income first, followed

by total income and last labor income), the lower is the stock of capital, and hence

the lower is output. The differences are large. Second, hours worked are actually

varying very little across environments. Third, perhaps the most surprising feature

9Note that because the tax base excludes depreciation, the tax base of a capital income tax is not
a constant fraction of GDP.
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that we obtain is that the ratio of private consumption to public consumption is the

highest in the capital-tax economy. This is very surprising, since we should expect

that the government, since it considers taxes to be non-distortionary, would allocate

current resources optimally across these goods, thus equating the marginal utility of

public and private consumption (which is what the Pareto government does). The

reason why this does not occur is that the government in the capital-income economy

understands that the next government will tax capital heavily (more heavily, indeed,

than what this government would like), and in an effort to move resources into the

future it thus sacrifices current public consumption. Note also that this effect is non-

linear in that the private-to-public consumption ratio closest to the first best is that of

the total income-tax economy.

6 Conclusion

In this paper we have characterized time–consistent equilibria of an environment where

a benevolent government that does not have access to commitment sets tax rates to fi-

nance a public good. We have shown how the problem of the government has a recursive

structure with only one nonstandard feature: the restriction on the government—the

behavior of the private sector—is summarized by an equation that embodies private-

sector expectations of future government taxation behavior. Given these expectations,

successive governments agree on taxation. The relevance of the lack of commitment is

thus not the lack of direct power over next period’s taxation decisions but rather the

inability to influence private-sector expectations. Thus, the government only has an

imperfect ability to influence current private decisions such as savings and work effort.

For example, absent the ability to make the private sector “believe” that capital in-

come will not be taxed next period, the government can only increase current savings

by spending less resources on current public goods.

Our analysis leads to a natural characterization of government behavior in terms of a

first–order condition—the GEE. We have emphasized the interpretative and computa-

tional value of the GEE, and we have explored calibrated versions of it. For U.S.-like

parameter values, the level of (capital income) taxation without commitment is surpris-

ingly low presuming that the tax base is total income. This result is due in part to the
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idea that holding back on taxation helps saving, thus alleviating the distortion that

future capital income taxation has. However, the equilibrium without commitment

also has much lower taxes on labor income than does the equilibrium with commit-

ment, because a government with commitment realizes that current taxation is a way

of making earlier consumers work harder, thus alleviating the labor-leisure distortion.

We know that our conclusions depend at least quantitatively on the assumption of

a balanced budget: the government might otherwise tax extremely heavily early on

to build up a large surplus from which future spending can be financed. We do not,

however, observe large asset accumulation for governments in present-day economies

and it is an open question as to why this is so. The research program to which the

present paper is a beginning aims to systematically explore optimal government deci-

sion making with and without commitment, with and without the ability to borrow

and lend, and with and without other intertemporal “frictions” such as differences in

preferences that may be due to the political process or agency problems, with voters

being principals and governments agents. We believe that the organization of this anal-

ysis around a stochastic version of the GEE, summarizing the tradeoffs governments

face, could be as useful as the Euler equation has been to the consumption literature.

Before empirical work can begin, however, we need to understand how to derive these

optimality conditions for various settings and how to compare them across different

economies, and the present paper precisely starts this investigation. An important

problem in this context is computational tractability, and our work suggests methods

that are a simple generalization of, and very close to as easy to use as, the well-known

linearization techniques used in the business cycle literature.

Finally, we believe that the methods we use here are straightforwardly applicable to

other areas with dynamic interaction without commitment, e.g., for studying optimal

monetary policy, dynamic political economy, dynamic industrial organization issues

(e.g., the durable goods monopoly and dynamic oligopoly), models with impure inter-

generational altruism, and so on.
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Appendix

A Our computational algorithm

The compact definition of equilibrium of Section 3.2 is most convenient at this stage:
h is a simpler object to characterize than H, since it has one less argument.

A.1 The functional equations

Recall the two first–order conditions: the one for the private sector,

0 = uc − β u′c [1 + (1− T ′) (f ′k − δ)] , (19)

and the one for the government,

0 = (−uc + ug) ηk′ − ηg

[
−uc + β u′c (f ′k + 1− δ)− β

(−u′c + u′g
) η′k

η′g

]
. (20)

These are functional equations: they hold for all k. The derivatives of η are derived
from the definition of η in Section 3.2; they are

ηk = ucc Ck (21)

ηg = ucc Cg + ucg (22)

ηk′ = ucc Ck′ + u′c [1− T ′] f ′kk − uc [f ′k − δ]
[T ′

k + T ′
g Ψ′

k

]
+

{1 + [1− T ′] [f ′k − δ]} {
ucc

[C ′k + C ′k′ h′k + C ′g Ψ′
k

]
+ ucgΨk(k

′)
}

(23)

If we substitute equations (21-23) into equations (19) and (20) we obtain a system of
two equations that we can write compactly as

0 = ξp{k, h(k), Ψ(k), h[h(k)], Ψ[h(k)]} (24)

0 = ξg{k, h(k), Ψ(k), h[h(k)], Ψ[h(k)], h′k(k), Ψ′
k(k)}. (25)

Global computation of a solution to the pair of functional equations could be opera-
tionalized in a number of ways, including postulating flexible parameterized functional
forms for h and Ψ and requiring that the functional equations hold exactly on an ap-
propriately chosen grid, or that the error to these equations be minimized over a large
number of grid points. Here, however, we will only solve for steady states, and thus a
simple generalization of a linearization method can be used.
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A.2 The steady state

A steady state is a pair of values k∗ and g∗ such that the two functional equations are
satisfied when setting k = k′ = k′′ and g = g′. Doing this yields

0 = ξp(k∗, k∗, g∗, k∗, g∗) ≡ ξp∗(k∗, g∗) (26)

0 = ξg(k∗, k∗, g∗, k∗, g∗, h∗k, Ψ
∗
k) ≡ ξg∗(k∗, g∗, h∗k, Ψ

∗
k). (27)

Using this compact form, we see two equations and four unknowns: the vector of
steady-state values for k and g and the first derivatives of their associated decision
rules evaluated at the steady state: (k∗, g∗, h∗k, Ψ

∗
k). This means that levels cannot be

solved for without knowing derivatives.

The method we use to solve for a steady state is outlined for a simpler problem in
Krusell, Kuruşçu, and Smith (2000).

The algorithm builds on (i) constructing a set of local approximations of order m—here,
m-order polynomials—to the functions h and Ψ; (ii) denoting these approximations
ϕp,m(k) and ϕg,m(k), respectively, solving for the steady state given m; (iii) increasing
m until the steady state changes by less than some convergence criterion. We now
show in more detail how such an algorithm is implemented.

1. When m = 0, the functions ϕ are constants. With two equations—equations (26)
and (27)—and two unknowns (using the fact that the derivatives are zero) there
is typically a unique solution. Denote the implied steady state {k0, g0}.

2. For m = 1, the functions ϕ are linear, yielding k′ = ϕk,1
0 + ϕk,1

1 k and g =
ϕg,1

0 + ϕg,1
1 k; this means that all derivatives of order 2 and above are zero and

that the functions are entirely specified by their levels and derivatives at the
steady state. Now the 4 unknowns necessitate 4 equations. We thus keep the
equations from the previous step and differentiate each of these with respect to
k; this is valid (assuming differentiability) since the equations have to hold for
all k. Thus we have 4 equations and 4 unknowns. Imposing the steady-state

condition and substituting k by
ϕk,1

0

1−ϕk,1
1

, g by
ϕg,1

0

1−ϕg,1
1

, hk(k) by ϕk,1
1 , and Ψk(k) by
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ϕg,1
1 we have

0 = ξp (28)

0 = ξg (29)

0 = ξp
k + ϕk,1

1 ξp
k′ + ϕg,1

1 ξp
p +

(
ϕk,1

1

)2

ξp
k′′ + ϕg,1

1 ϕk,1
1 ξp

g′ (30)

0 = ξg
k + ϕk,1

1 ξg
k′ + ϕg,1

1 ξg
g +

(
ϕk,1

1

)2

ξg
k′′ + ϕg,1

1 ϕk,1
1 ξg

g′ , (31)

where equations (30) and (31) use the fact that hkk(k) and Ψkk(k) are zero
because these functions are assumed to be linear at this stage of the iteration. In
this equation system, the ξ functions and their derivatives of course depend on
the four unknowns, and a nonlinear solver has to be used to deliver the unknowns,
and hence {k1, g1, h1

k, Ψ
1
k}.

3. Turning to m = 2, there are six unknowns which are uniquely determined by
the values of h and Ψ and their first two derivatives at a given point. The six
equations are the four equations from the previous step plus those that result
from differentiating the last two equations once more with respect to k.

4. The procedure is repeated until the steady-state values for k and g (and possibly
some low-order derivatives, if local dynamics are also an object of study) change
by a small amount.

Two specific additional comments are in order. First, to differentiate the first–order
condition (multiple times) one can either use numerical differentiation or use symbolic
differentiation using a package like MAPLE. The latter imposes no bound on the num-
ber of derivatives that can be computed; numerical derivatives of high order are hard
to obtain with precision.

Second, to solve the nonlinear equation system at step m, which involves 2(m + 1)
equations and unknowns, one can of course use brute force. However, it is also possible
to use an inherent recursivity in the system. This recursivity, however, requires com-
puting not the coefficients in the polynomials for h and Ψ but the associated sequence
of derivatives. In terms of these derivatives, (i) the first equation always contains
two levels and no derivatives; (ii) the next two equations contain the two levels and
two first–order derivatives; (iii) the next two equations contain the two levels, the two
first–order derivatives, and the two second-order derivatives; and so on until the last
equation, which contains no new higher-order derivatives, since these are assumed to
be zero. Thus, one guesses on, say, km, uses the first equation to solve for gm, the next
two to solve for the two first–order derivatives, the following two to solve for the two
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second-order derivatives, etc., until all the non-zero derivatives have been calculated;
the last equation remains, and it has to be satisfied, which is ensured by iteration on
the initial choice km. Thus, at no stage is it necessary to solve more than two equations
and two unknowns with this recursive method.
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