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• What is a model? A model is ’Toy World’: a simplified specification
of the world, endowed with (i) an environment, (ii) agents and (iii)
characteristics of the agents. Once a model is defined, we need to know
what happens, i.e., an equilibrium. Generally, by equilibrium we mean
that we want to know what happens with allocations: Are they (in
some sense) ’optimal? Do they exist?

• What is an equilibrium?
An equilibrium is a statement about what the outcome of an economy
is. Tells us what happens in an economy, and by an ecomomy we
mean a well defined environment in terms of primitives such as prefer-
ences and technology.
Then an equilibrium is a particular mapping from the environment
(preference, technology, information, market structure) to allocations
where,

1. Agents maximize

2. Agents’ actions are compatible with each other.

• One of the important questions is, given the environment what type of
equilibria we should look at. The economist doesn’t have the right to
choose what happens, but is free to define the environment.

• For the theory to be able to predict precisely what is going to happen in
a well defined environment, the outcome we define as the equilibrium
needs to exist and must be unique. For this reason uniqueness is
property that we want the equilibrium to have. We also know with
certain assumptions that will be covered we can ensure the existence
and uniqueness of an equilibrium outcome.

1 Growth Model

The basic model we deal with in 702 is the neoclassical growth model. We
will discuss the basic environment and then ask what happens in this ’toy
world’: does an equilibrium exist? is it optimal?
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1.1 Technology

• Agents have 1 unit of labor and own capital which can be transformed
in output.

• Production function:

f : R2
+ → R+ such that ct + kt+1 = f(kt, nt) (1)

• We assume (i) Constant Returns to Scale (CRS, or homogeneous of
degree one, meaning f(λk, λn) = λf(k, n)), (ii) strictly increasing in
both arguments, and ((iii) INADA condition, if necessary)

1.2 Preferences

• We assume infinitely-lived representative agent (RA).1

• We assume that preference of RA is (i) time-separable (with constant
discount factor β < 1), (ii) strictly increasing in consumption (iii)
strictly concave

• Our assumptions let us use the utility function of the following form:

∞∑
t=0

βtu(ct) (2)

• Initial capital stock k0 is given.

With these in hand the problem is,

max
{ct,nt,kt+1}∞t=0

∞∑
t=0

βtu(ct) (3)

1For now, let’s treat the economy as if there were only one agent in the economy. We
might interpret it as the result of normalization (so the number of population is 1) of
the economy with FINITE number of identical (sharing the same technology, preference,
and allocation) agents. If we proceed to the economy with mass of zero measure agents,
things will be not so trivial because changing allocation of one agent does not change the
aggregate amount of resources in the economy (since, by assumption, measure of an agent
is zero), but let’s forget it for now.
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subject to2

kt+1 + ct = f(kt, nt) (4)

ct, kt+1 ≥ 0 (5)

k0 is given (6)

A solution to this problem is a sequence of consumption and capital ac-
cumulation decisions

{
c∗t , k

∗
t+1

}∞
t=0

. We would like this solution to exists, be
unique and be Pareto Optimal. How do we do that? We can show these
properties by rewriting the model in Arrow-Debreu language and using the
theorems we know from 701.

Jan 25th, 2007

2 Arrow-Debreu (AD) Equilibrium

• In macroeconomics, we are interested in infinite- dimensional commod-
ity spaces. We want to look at the relationship between competitive
equilibrium and Pareto optimality in models with infinite-dimensional
spaces. You looked at competitive equilibrium and Pareto optimal-
ity in 701, but the proofs of the FBWT and SBWT were done in the
context of finite-dimensional commodity spaces, like the Neoclassical
Growth Model. Here we want to show that the welfare theorems
hold for economies with infinite dimensional spaces. To do this, we
introduce the equilibrium concept of ’valuation (or AD) equilibrium’.

• Before defining valuation equilibrium, we first need to define the en-
vironment, unlike the social planner problem, which is a problem of
allocation, in a AD world we will have exchange among agents. This
requires definition of markets in which the relevant commodities to be
defined are traded.

1. L, Commodity space:
L is a topological vector space.

2We can also define f (the production function) as including depreciation of capital.
In the 1st class, Victor actually took this approach, but I modified the notation to make
notation consistent across classes.
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Definition 1 (Vector Space) A vector space is a space where the op-
erations addition and scalar multiplication are defined, and where the
space is closed under these two operations. i.e. If we take two sequences
a = {ai} ∈ L and b = {bi} ∈ L, it must be that a + b ∈ L. And if we
take k ∈ R+, k > 0, it must be that a ∈ L ⇒ d = ka ∈ L ∀ k > 0.

Definition 2 (Topological Vector Space) A topological vector space
is a vector space which is endowed with a topology such that the maps
(x, y) → x+y and (λ, x) → λx are continuous. So we have to show the
continuity of the vector operations addition and scalar multiplication.

2. X ⊂ L, Consumption Possibility Set:
Specification of the ’things’ that people could do (that are feasible to
them). X contains every (individually) technologically feasible con-
sumption point.
Characteristics of X: non-empty, closed and convex. Also, note that we
will use the convention that output is positive while inputs are negative.

3. U : X →R, Specifies the preference ordering (utility function)

4. Y , Production possibility set, which must be non-empty, closed, convex
and must have an interior point.

A simplifying assumption (which will be relaxed in a couple of weeks)
we’ll impose, is that there are many identical firms and agents. With this, we
guarantee that they act competitively (take prices as given) and we only have
to consider a representative agent who chooses what everyone else chooses
(although everyone could do differently).

2.1 Prices

Prices (p) are continuous linear functions that are defined on our commodity
space. More specifically, p ∈ L∗, where L∗ is the ’dual’ of L (the set of all
linear functions over L); it may not always be possible to find a sequence of
real numbers to represent this function as a dot product formulation (as we
think of prices in finite dimensions)
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Remark 1 if L = Rn ⇒ L∗ = Rn. In other words p (`) =
∑N

n=1 pn`n

defines the value of a bundle `, composed of {`1, `2, ..., `N}

if L = Rn ⇒ L∗ = Rn. In particular

p (`) =
N∑

n=1

pn`n

2.1.1 Definition of the Arrow-Debreu equilibrium

Definition 3 (Arrow-Debreu/Valuation Equilibrium) ADE equilibrium
is a feasible allocation (x∗, y∗) and a continuous linear function p∗ such that,

1. x∗ solves the consumer’s problem:

x∗ ∈ Arg max
x∈X

u (x)

st
p∗ (x) ≤ 0

2. y∗ solves the firm’s problem:

y∗ ∈ Arg max
y∈Y

p∗ (y)

3. markets clear (compatibility of actions)

x∗ = y∗

2.2 Welfare Theorems

Theorem 1 (First Basic Welfare Theorem) Suppose that for all x ∈ X
there exists a sequence {xn}∞n=0 inX converging to x with u(xn) ≥ u(x) for
all n (local nonsatiation). If an allocation (x∗, y∗) and a continuous linear
functional p constitute a competitive equilibrium, then the allocation (x∗, y∗)
is Pareto optimal.
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The FBWT tells us that the market is a good mechanism to allocate
resources, which imply that ’you cannot do better’.

Definition 4 (Feasible allocation) For all x = y st x ∈ X and y ∈ Y

F (ε) = X ∩ Y

where ε describes, through primitives, a particular economy

Theorem 2 If u is strictly concave and X ∩ Y is convex and compact, then
the solution to

max
x∈X∩Y

u (x) (7)

exists and its unique.

This last result plus the FBWT imply that if an Arrow Debreu equilib-
rium exists, then it’s a Pareto Optimal allocation.

From (7) we can calculate the allocation (x∗, y∗). Nevertheless, to con-
struct an AD equilibrium, we still need a price function. The Second Basic
Welfare Theorem will provide us with one.

Theorem 3 (Second Basic Welfare Theorem) If (i) X is convex, (ii)
preference is convex (for ∀x, x′ ∈ X, if x′ < x, then x′ < (1−θ)x′+θx for any
θ ∈ (0, 1)), (iii) U(x) is continuous, (iv) Y is convex, (v)Y has an interior
point, then with any PO allocation (x∗, y∗) such that x∗ is not a saturation
point, there exists a continuous linear functional p∗ such that (x∗, y∗, p∗) is a
Quasi-Equilibrium with transfers((a) for x ∈ X which U(x) ≥ U(x∗) implies
p∗(x) ≥ p∗(ν∗) and (b) y ∈ Y implies p∗(y) ≤ p∗(y∗))

Note that an additional assumption we are making for SBWT to go
through in infinitely dimensional spaces is that Y has an interior point i.e.

∃ȳ ∈ Y, B ⊂ Y, B open and ȳ ∈ B

Also that the SBWT states that under certain conditions listed above,
we can find prices to support any Pareto optimal allocation as a quasi equi-
librium with transfers. Transfers are not relevant in our case since we are
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working in an representative agent environment with identical households.
Taking care of the transfers still leaves us with Quasi-Equilibrium so SBWT
by itself it does not say anything about the existence of Arrow-Debreu equi-
librium. The following lemma takes care of this.

Lemma 1 If, for (x∗, y∗, ν∗) in the theorem above, the budget set has cheaper
point than x∗ (∃x ∈ X such that ν(x) < ν(x∗)), then (x∗, y∗, ν∗) is a ADE.

With the SBWT, we established that there exists a p that will support
our PO allocation as a competitive equilibrium. What’s the problem with
this approach? SBWT only tells us that such a p exists, it doesn’t tell us
what it is. Also, we are not sure that p has a dot product representation.
The next theorem deals with this nuance

Theorem 4 (based on Prescott and Lucas 1972) If, in addition to the con-
ditions of the SBWT, agents discount remote and/or unlikely states and u is
bounded, then ∃ {qt} such that

p(x) =
∞∑

t=0

qtxt (8)

i.e. the price system has an inner product representation.

Remember, our main purpose is to be able to apply the welfare theo-
rems to the most commonly used models in macroeconomics where we have
an infinite-dimensional commodity space. Until now, we set up an envi-
ronment (Arrow-Debreu economy) which consisted of the commodity space,
consumption possibility set, production possibility set, and preferences) with
infinite-dimensional commodity space and we stated that under certain con-
ditions the Welfare Theorems hold in this environment. Now we will map
the growth model into the environment that we talked about until here, and
show that in the context of the growth model the assumptions we need for
the Welfare Theorems are satisfied. Then we can conclude that any compet-
itive equilibrium allocation is Pareto optimal and moreover we can support
a PO allocation with some prices as a competitive equilibrium. This result is
very important in macroeconomics. It helps us in solving for the equilibria.
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With the FBWT and SBWT, we can just solve for the PO allocations and
then get the prices. This makes life much easier.

What is an allocation in this environment? An allocation is a pair (x, y).
On the other hand, a feasible allocation is (x, y) such that x=y (agents’
actions need to be compatible). What are the commodities we need to make
tradable in this environment? Output, labor services, capital services. So
lets define the commodity space.

L = {{`t}t=0,∞ = {`it}t=0,∞
i=1,2,3, sit ∈ R : sup

t
|st| < ∞ }

so our commodity space will be the set of bounded sequences in sup norm.
Subindexes 1,2 and 3 represent output, capital services and labor services
respectively. The interested reader can refer to Stokey and Lucas (1989) for
the reasons behind the choice of this particular space. Next is the definition
of consumption possibility set X

X(k0) = {x ∈ L = l3∞ : ∃{ct, kt+1}∞t=0 ≥ 0 such that

kt+1 + ct = x1t ∀t (9)

x2t ∈ [−kt, 0] ∀t (10)

x3t ∈ [−1, 0] ∀t}

Now, let’s define the production possibility set Y. The firm’s problem is
relatively simple as firms do not have intertemporal decisions. Firms just
rent production factors and produce period by period.

Y = Π∞
t=0Ŷt : Ŷt = {y1t ≥ 0, y2t, y3t ≤ 0 : y1t ≤ f(−y2t,−y3t)} (11)

Finally, preferences over this space U : X → R

U (x) =
∞∑

t=0

βtu (ct (x)) (12)

ct is unique given x, because each x implies a sequence {ct, kt+1}∞t=0. If
x2t = kt , ct = x1t − x2t+1.
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3 Existence and Pareto Optimality in the Growth

Model

To support a Pareto Optimal allocation as a solution to the growth model
presented before, we have to take care of certain issues that arise when we
apply the SBWT to get our equilibrium. Those issues/solutions are listed
below:

• What are the ’transfers’ of the conclusion of the SBWT in terms of the
growth model? / we don’t need transfers; agents are homogeneous, so
even if they can act differently, they choose to do the same as everyone
else.

• Do we have to worry about the ’Quasi’ part of the equilibrium? / If we
can find a cheaper point in the feasible set, then the Quasi equilibrium
is equivalent to the AD equilibrium

• representation of prices/ if we can check the conditions of the Prescott
& Lucas Theorem, then we have a dot product representation of prices.

3.1 Characterization of the solution to the growth model

The solution to the growth model is triplet of sequences {c∗t , k∗t+1, q
∗
t }∞t=0. As

you proved in the homeworks, you can use the Arrow-Debreu apparatus in
order to argue that such an equilibrium exists. To characterize more carefully
the equilibrium, we have to impose additional restrictions:

• u, f are C2 (twice continuously differentiable)

• Inada conditions (see the Stockey and Lucas textbook for specifics)

With these conditions, we can restrict our attention to interior solutions,
which means that first order conditions are sufficient to characterize equilib-
ria.
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Rewriting the growth model (replacing consumption in the utility func-
tion using the budget constraint):

max
{kt+1}∞t=0

u[f(kt)− kt+1]

Taking the FOC with respect to kt+1 and replacing for ct to ease notation,
we get (note that we are using variables with * to denote that the following
are equilibrium conditions)

−βtu′[c∗t ] + βt+1u′[c∗t+1]f
′(k∗t+1) = 0

rearranging terms

u′[c∗t ]
βu′[c∗t+1]

= f ′(k∗t+1) (13)

Therefore, the solution to the growth model has to satisfy the condition
in (13).

Now, for prices, we can rewrite the budget equation from the AD setting
(if the conditions of Prescott and Lucas are satisfied so that prices have a
dot product representation) as follows

p(x) ≡
∞∑

t=0

(q1tx1t + q2tx2t + q3tx3t) ≤ 0 (14)

Since ct + kt+1 = x1t, kt ≥ −x2t ≥ 0 and 1 ≥ −x3t ≥ 0, (14) becomes

∞∑
t=0

(q∗1t(ct + kt+1)− q∗2tkt − q∗3t) ≤ 0 (15)

Note that in (15), we have used the fact that there is no waste (agents
rent their full capital and labor services) and that agents take the equilibrium
prices as given. The maximization problem now can be set as a Lagrangian:

max
{ct,kt+1}∞t=0

£ =
∞∑

t=0

βtu[ct]− λ{
∞∑

t=0

q∗1t(ct + kt+1) + q∗2tkt + q∗3t} (16)

The first order conditions of this problem with respect to ct and kt+1 are
respectively
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βtu′[c∗t ]
q∗1t

= λ (17)

λq∗1t − λq∗2,t+1 = 0 (18)

Note that (18) implies that q∗1t = q∗2,t+1
3, which pins down one sequence

of prices (specifically, the price of capital services). From (17), we get

λ =
βtu′[c∗t ]

q∗1t

=
βt+1u′[c∗t+1]

q∗1,t+1

⇒ u′[c∗t ]
βu′[c∗t+1]

=
q∗1t

q∗1,t+1

From before, we know that the left hand side of the last equation equals
f ′(k∗t+1). Hence

q∗1t

q∗1,t+1

= f ′(k∗t+1) (19)

Since f ′ represents the (technical) rate of exchange between goods today
and goods tomorrow, (19) tells us exactly what the sequence of output prices
should be. Finally, to obtain q∗3t, we turn to problem of the producer

max
y∈Yt

q∗(y) = q∗1ty1t + q∗2ty2t + q∗3ty3t

st

y1t = f(−y2t,−y3t)

Again, we know that {k∗t+1, 1}∞t=0 solve this problem. Then, the problem
of the firm is equivalent to

max
y∈Yt

f(kt, y3t)− q∗2tkt − q∗3ty3t

Taking FOCs with respect to k∗t and y3t respectively

3This condition is misleading, since we don’t have depreciation. In the more general
case when δ 6= 1, the condition is

q∗1t

q∗1t+1

= 1− δ +
q∗2,t+1

q∗1t+1
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q∗1tfk(k
∗
t , 1) = q∗2t

q∗1tfn(k∗t , 1) = q∗3t

Hence, the price of labor services must satisfy fn(k∗t , 1) = q∗3t/q
∗
1t ∀t.

We know now how to characterize the sequence of prices at equilibrium
in the growth model. The problem with the AD framework however, is that
we have a triple infinite (!) number of prices. Together with the assumption
that all trade takes place at t = 0, this implies that agents must know a
triple infinite number of prices in order to solve their problem.

We want to depart from this assumption of all trading happening at the
beginning of time, so we will define sequential markets and a corresponding
sequential markets equilibrium (SME). Note that we would like to maintain
existence, uniqueness and optimality of the equilibrium, so we would like
ADE ⇔ SME.

3.2 Sequential Markets Equilibrium

• We need a spot market at every period of time where agents would be
able to trade output, capital and labor services and a new good (which
we will specify below) which are ’loans’.

• Agents must be able to move resources across time.

Clearly, the budget constraint will change from the previous setup. In
ADE

3∑
i=1

∞∑
t=0

qitxit ≤ 0

In SME, we introduce the concept of ’loans’ (l), to enable agents to move
resources across time. Loans are rights to a R units of output/consumption
tomorrow, in exchange of 1 unit of output/consumption today. So, the bud-
get constraint becomes

−ltRt + lt+1 +
3∑

i=1

qitxit ≤ 0 ∀t
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Definition 5 A Sequence of Markets Equilibrium is {x∗it, q∗t , y∗it, l∗t+1, R
∗
t}∞t=0

such that

• Agents maximize, i.e.

{x∗it, l∗t+1} ∈ arg max
x∈X

∞∑
t=0

βu[ct(x)]

st

ct + kt+1 + l∗t+1 = R∗
t lt + q∗2tkt + q∗3t

k0, l0 given

• Firms maximize

• x∗ = y∗ (market clears)

• l∗t+1 = 0 ∀t (loan market clears)

To show that ADE ⇔ SME, we need to check that allocations and
choices of the agents in both worlds are the same. In the SME ⇒ ADE
direction, it’s easy to see that if we have a SME, we can construct an ADE
just by ignoring {lt+1} (it’s zero at equilibrium anyway).

Conversely (ADE ⇒ SME), if we have an ADE, we need l∗t+1 and R∗
t

to construct a SME. Again, given the condition for the clearing of the
loans market, l∗t+1 comes trivially. For R∗

t , we use an arbitrage condition:
since loans and capital perform the same function (move resources from one
period of time to another), then their price should be the same. Specifically

Rt =
q∗1t

q∗1,t+1

Finally, we have a close relationship between prices between both equi-
libriums. If {x∗, y∗, q∗} is an ADE and {x∗, y∗, q̂∗, R∗, l∗} is a SME, the
following is true since at a SME, the budget constraint is priced with re-
spect to output/consumption at each point of time

q̂∗it =
q∗it
q∗1t

∀t
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3.3 SME ’easy’

Now we will define a simpler version of the SME. Basically, we will simplify
the definition of equilibrium by ignoring loans and using the properties of
the production function

Definition 6 A SMEE is {c∗t , k∗t+1, w
∗
t , R

∗
t} such that

• Agents maximize:

{c∗t , k∗t+1} ∈ arg max
{ct,kt+1}

∞∑
t=0

βtu[ct]

st

ct + kt+1 = R∗
t kt + w∗

t

k0 given

• Firms maximize:

{k∗t+1, 1} ∈ arg max
kt,nt

f(kt, nt)−R∗
t kt − w∗

t nt

• Market clearing:
c∗t + k∗t+1 = f(k∗t , 1)

Note that the last condition is redundant, because the production function
is homogenous of degree one, i.e., production is exhausted in the payment to
production factors.

After all this work, we still have the problem of how to calculate the equi-
librium. From the FOCs we know that to get a solution, we have to solve a
second order difference equation, with an initial conditions plus a transver-
sality condition. Nevertheless, the Growth model has infinite dimensions,
which complicate things a bit.

The next step is to reformulate the problem in a recursive form. This is
much better, since we will be able to solve the problem recursively, that is,
every new period, the agent faces the same problem.
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4 Stochastic Processes

4.1 Markov Process

In this course, we will concentrate on Markov productivity shocks. Consid-
ering shocks is really a pain, so we want to use less painful ones. A Markov
shock is a stochastic process with the following properties:

1. there are FINITE number of possible states for each time. More intu-
itively, no matter what happened before, tomorrow will be represented
by one finite set.

2. the only thing that matters for the realization of tomorrow’s shock
is today’s state. More intuitively, no matter what kind of history we
have, the only thing you need to predict the realization of the shock
tomorrow is TODAY’s realization.

More formally, for each period, suppose either z1 or z2 happens 4. Denote
zt is the state today and Zt is the set of possible states today, i.e. zt ∈
Zt = {z1, z2} for all t. Since the shock follows a Markov process, the state
tomorrow will only depend on today’s state. So let’s write the probability
that zj will happen tomorrow, conditional on today’s state being zi as Γij =
prob[zt+1 = zj|zt = zi]. Since Γij is a probability, we know that

∑
j

Γij = 1 for ∀i (20)

Notice that a 2-state Markov process is summarized by 6 numbers: z1, z2,
Γ11, Γ12, Γ21, Γ22.

The great beauty of using a Markov process is that we can use the explicit
expression of probability for future events, instead of using the ambiguous
operator called expectation, which very often people don’t know what it
means when they use it.

4.2 Representation of History

• Let’s concentrate on a 2-state Markov process. In each period the state
of the economy is zt ∈ Zt = {z1, z2}.

4Here we restrict our attention to the 2-state Markov process, but increasing the number
of states to any finite number does not change anything fundamentally.
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• Denote the history of events up to t (which one of {z1, z2} happened
from period 0 to t, respectively) by ht = {z1, z2, ..., zt} ∈ Ht = Z0 ×
Z1 × ...× Zt.

• In particular, H0 = ∅, H1 = {z1, z2}, H2 = {(z1, z1), (z1, z2), (z2, z1),
(z2, z2)}.

• Note that even if the state today is the same, past history might be
different. By recording history of events, we can distinguish the two
histories with the same realization today but different realizations in
the past (think that the current situation might be ”you do not have a
girl friend”, but we will distinguish the history where ”you had a girl
friend 10 years ago” and the one where you didn’t

• Let Π(ht) be the unconditional probability that the particular history
ht does occur. By using the Markov transition probability defined in
the previous subsection, it’s easy to show that (i) Π(h0) = 1, (ii) for
ht = (z1, z1), Π(ht) = Γ11 (iii) for ht = (z1, z2, z1, z2), Π(ht) =
Γ12Γ21Γ12.

February 1st, 2007

5 Stochastic Growth Model

With this, we can rewrite the growth model when these shocks affect the
production function (usual convention in Macro). Preferences are given by
the usual von Neumann-Morgenstern utility

u (x) =
∑

t

βt
∑

ht∈Ht

π (ht) u [ct (ht)] .

In an Arrow -Debreu world the constraint is5

∑
t

∑

ht∈Ht

∑
j

pj
t (ht) xj

t (ht) ≤ 0, where j = 1, 2, 3.

5The definition of the relevant commodity spaces and consumption/production sets is
in the second problem set
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In a SM setting we need to give to the agent enough tools, so that she can
consume different quantities in different states of the world. In other words,
we have to make sure that whatever she was able to do in an AD setting, she
will also be able to do it in the SM setting. To that end, we will introduce
loans and state contingent claims (Also known as Arrow securities or bonds).
For example, bt (ht−1, z

i) is a claim that the agent bought in period t−1, and
will pay 1 unit of consumption for sure if state i occurs. In the SM world,
the budget constraint will be

ct (ht) + kt+1 (ht) + `t (ht) +
∑
zt+1

qt(ht, zt+1)bt+1 (ht, zt+1) =

kt (ht−1) Rk
t (ht) + `t−1 (ht−1) R`

t (ht) + wt (ht) + bt (ht−1, zt) ,

where qt(ht, zt+1) is the price of the state contingent claim that pays 1 in
period t + 1 if state zt+1 occurs.

From the definition of these assets, we can derive immediately a no-
arbitrage condition for loans and the state contingent securities. On the
one hand, if we save one unit of consumption today and get a loan, the gross
return is given by

R`
t+1(ht)

1
, since tomorrow the loan will pay some interests. On the other hand, by
using that same unit of consumption and investing in Arrow securities, we
get a gross return of

∑
zt+1

qt(ht, zt+1)b

b
=

∑
zt+1

qt(ht, zt+1)

where b is the level of certain future consumption one can get by spending
1 unit of current consumption. Since these two ways of savings are the same,
the no-arbitrage condition is

1 = R`
t+1(ht)

∑
zt+1

qt(ht, zt+1)

The importance of the no arbitrage conditions is that we can eliminate
(shut down) some markets, since they can be perfectly replicated by other
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markets. In the example above, we can close the state contingent market,
since we already have a loan market.

Furthermore, given our representative agent assumption, in equilibrium
we don’t need any additional markets, since

`∗ = b∗ = 0 ∀t, (ht, zt+1)

We can also derive this no-arbitrage condition through first order condi-
tions. Using the lagrangian of the problem (with multipliers λ for each t and
ht) and taking a FOC with respect to bt(ht, zt+1)

qt(ht, zt+1)λt(ht) = λt+1(ht, zt+1)

⇒ qt(ht, zt+1) =
λt+1(ht, zt+1)

λt(ht)
(21)

Next, taking a first order condition with respect to `t(ht) we get

λt(ht) =
∑
zt+1

λt+1(ht, zt+1)R
`
t+1(ht)

Since the return on loans is ’set’ before the shock is known (hence, that
return is NOT state-dependent), we can take R` outside the sum:

1 = R`
t+1(ht)

∑
zt+1

λt+1(ht, zt+1)

λt(ht)

Finally, using (21) we arrive to the same no-arbitrage condition as before:6

1 = R`
t+1(ht)

∑
zt+1

qt(ht, zt+1)

6In problem set # 2, you derived an analogous condition for the return on capital
Rk

t (ht), but since this IS state dependent, the condition is slightly different:

1 =
∑
zt+1

qt(ht, zt+1)Rk
t+1(ht, zt+1)
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Let’s write the SPP problem in sequence representation:

max
{ct,kt+1}∞t=0

∞∑
t=0

βtu(f(kt)− kt+1)

k0 given

Because of the INADA conditions we know that the solution is interior.
So if {k∗t+1} is a solution then it satisfies the first order conditions,

−βtuc(f(kt)− kt+1) + βt+1fk(kt + 1)uc(f(kt+1)− kt+2) = 0

But notice that these conditions are not sufficient. The above is a second
order difference equation. It has two degrees of freedom. Therefore this
equation is not enough to find the solution. There can be many sequences
that satisfy it. We need to more conditions to pin down the right solution:
The initial condition k0 and the transversality condition.

How to solve the SPP?

In Greenwood’s class you learned how to solve this problem through dynamic
programming.
Denote R(k, k′) = u(f(k)− k′).
The Bellman equation,

V (k) = max
k′

R(k, k′) + βV (k′)

FOC:

R′
2(k, g(k)) + βR′

1(g(k), g(g(k))) = 0

You can verify that FOC’s of these problems imply each other (HW: Verify
that this is true).

6 Recursive Competitive Equilibrium

As you have seen in 704, the beauty of the recursive representation lies in
the fact that, in a stationary environment, the nature of the problem do not
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change with passage of time. Unlike the sequential formulation, in which the
solution to the problem depends on at what point in time you solve it, the
solution to the recursive problem do not depend on time and we do not have
to keep track of time.

So what do we keep track of? Everything that matters to the structure
of our problem. These are the variables that our agents respond to either
directly or indirectly and we call them the STATE VARIABLES. State vari-
ables need to satisfy the following criteria:

1. PREDETERMINED: when decisions are made, the state variables are
taken as given and cannot be effected by the agent.

2. It must MATTER for decisions of agents: there is no sense of adding
irrelevant variables as state variable.

3. It must VARY across time and state: otherwise, we can just take it as
a parameter.

One important thing is to be able to distinguish the aggregate and indi-
vidual state variables. Aggregate state is not affected by individual choice.
But aggregate state should be consistent with the individual choice (we will
consider the meaning of ”consistency” more formally later), because aggre-
gate state represents the aggregated state of individuals. In particular, in
our RA-NGM aggregate state turns out to be the same as individual state
in equilibrium, but this does not mean that the agent decide the aggregate
state or the agent is forced to follow the average behavior, but rather the
behavior of the agent turns out to be the aggregate behavior, in equilibrium.

Also note that prices (wages, and rental rates of capital) is determined by
aggregate capital, rather than individual capital, and since individual takes
aggregate state as given, she also takes prices as given (because they are
determined by aggregate state). Again, the aggregate capital turns out to
coincide with the individual choice, but it is not because of the agent’s choice,
rather it is the result of consistency.

One notational note. Victor is going to use a for individual capital and
K for aggregate capital, in order to avoid the confusion between K and
k. But the problem with aggregate and individual capital is often called
as ”big-K, small-k” problem, because the difference of aggregate capital and
individual capital is crucial. So for our case, the counterpart is ”big-K, small-
a” problem.
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What does the agent has to know in order to solve her problem? Our
agent has to know how wealthy she is. She also needs to know the prices but
we do not need {R,w} directly. Why? Because they are redundant: K is
a sufficient statistic to calculate {R, w} as they must be equal to marginal
products in the firm problem at equilibrium.If we put K as a state variable
instead of these prices, we do not need {R, w}. So are we done? Not yet.
As the problem of the HH is formulated below, our agent not only needs to
know {R,w} but {R′, w′} as well thus K ′. But this is a variable that our
agent has no control over and the best she can do is to have a ’belief’ about
it. These beliefs in our model are parameterized by the GF function which
maps today’s state to a unique belief about next period’s value. As it is
formulated, it is an exogenous parameter, i.e. we can solve this problem for
any sort of beliefs under which the problem is well defined. But from the
beginning of this course we want to be able to ’predict’ the outcome, once
we setup our environment as precise as possible. To continue to be able to
do so, as we will see later, we will impose an additional constraint on the
beliefs and make them an equilibrium object as well, i.e. endogenize them.

The recursive form of the problem of the agent (that does not value
leisure) is:

V (K, a; GF ) = maxc,a′ [u(c) + βV (K ′, a′; GF )]

s.t : c + a′ = Ra + w
R = R(K) = FK(K, 1)

w = w (K) = FN(K, 1)
K ′ = GF (K)

Note that F is indexing the beliefs. This means that for different beliefs
F , different equilibria will arise. Of course, in this course we will only focus
on rational expectations equilibria (which we will define below).

How do we deal with the problem written above? The first step is to as-
sume that the solution (for the decision rule) is of the form, a′ = g

(
a, K; GF

)
.

So use this fact to write:

V (K, a; GF ) =
u(R (K) a− g

(
a,K; GF

)
) + βV (GF (K) , g

(
a,K; GF

)
; GF )] (1)
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Note that the FOC implies that:

-uc (c) + β ∂V
∂a′ = 0 (2)

and in order to obtain a more useful expression for the derivative we use
the Envelope condition. This is where equation (1) is useful. From (1), take
the derivative with respect to a :

∂V
∂a

= uc (c)
[
R (K)− ∂g

∂a

]
+ β ∂V

∂a′
∂g
∂a

= uc (c) R (K) + ∂g
∂a

[−uc (c) + β ∂V
∂a′

]
,

so by (2): ∂V
∂a

= uc (c) R (K) .

We will assume that there exist a
−
K, such that

−
K ≥ F

( −
K, 1

)
+

(1− δ)
−
K. In words

−
K is the amount of capital stock which is impossible

to reproduce. The assumption is that such a value of K exists.

Definition 1:
A Recursive Competitive Equilibrium with arbitrary beliefs GF is a list

of functions {V ∗(.), g∗(.), G∗(.), R(.), w(.)} such that:

1) Given {GF (.), R(.), w(.)}, {V ∗(.), g∗(.)} solves the household problem
above,

2) {R(.), w(.)} are characterized by the optimal decisions of firms, and
3) G∗(K; GF ) = g∗(K, K; GF ) (agent is representative).

Some comments on the third condition. This condition is called ’Repre-
sentative agent condition’ and is a specific case of the compatibility condition
that any equilibrium must satisfy. It basically means that if a consumer turns
out to be average this period (her individual capital stock is K, which is ag-
gregate capital stock), the consumer will choose to be average in the next
period (she chooses G∗(K), which is a belief on the aggregate capital stock
in the next period if today’s aggregate capital stock is K). This condition
guarantees that in an equilibrium, individual choice turns out to be consis-
tent with the aggregate law of motion. This is true not because our agent is
constrained to do so but because the prices are such that she choses to do
so.
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Definition
A RCE with rational expectations is a list of functions {V ∗(.), g∗(.), G∗(.), R(.), w(.)}

such that conditions 1) to 3) from the above definition are satisfied, plus:
4) G∗(K) = GF (K), in other words:

A RCE with rational expectations is a list of functions {V ∗(.), g∗(.), G∗(.), R(.), w(.)}
such that:

1) Given {G∗(.), R(.), w(.)}, {V ∗(.), g∗(.)} solves the household problem
above,

2) {R(.), w(.)} are characterized by the optimal decisions of firms, and
3) G∗(K; G∗) = g∗(K, K; G∗).

Comment: Why do we need the RCE? Isn’t it more easy to work with the
Social Planner’s Problem? The answer is yes. However, there are lots of cases
where the solution to SPP does not coincide with that of the Competitive
Economy. The most characteristic example is the presence of an externality
or a distortionary tax. Moreover, we will also see models where we don’t
have a representative agent (heterogeneous agents models), and so we don’t
really know what the SP Problem looks like. In all the above cases the SPP is
not helpful anymore, and we have to ”attach” the Competitive Equilibrium
directly.

The most common way to find and characterize A RCE (given its com-
plexity) is to use computational methods. But we will not cover any of these
techniques in 702.

Suppose now that leisure appears in the utility function of the agent. How
does the analysis of the previous lecture change? The firm’s problem (and
thus theis optimal choices) surely don’t change. However, l (or equivalently
n, hours worked) will now be a choice variable for the agent. The problem
of the agent now is the following:

V (K, a; G,H) = maxc,l,a′ [u(c, l) + βV (K ′, a′; G,H)]

s.t : c + a′ = Ra + (1− l) w
R = R(K) = FK(K, N)

w = w (K) = FN(K, N)
K ′ = G(K)

N = N (K) = H (K)
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Note that introducing leisure in the utility function created a potential
problem: Now N , the aggregate labor supply is present in the production
function. This means that our problem is not well defined (remember: a
recursive problem is ill defined if every variable is either a state, or a control,
or an explicit function of the above). We overcome this problem by adding
the last condition which gives N as a function of the aggregate state.

Definition
A RCE in this context is a list {V ∗(.), g∗(.), h∗ (.) , G∗(.), H∗ (.) , R(.), w(.)}

such that:
1) Given {G∗(.), H∗ (.) , R(.), w(.)}, {V ∗(.), g∗(.), h∗ (.)} solves the house-

hold problem above,
2) {R(.), w(.)} are characterized by the optimal decisions of firms, and
3) Agent is representative, which here means:
G∗(K) = g∗(K, K; G∗, H∗) and H∗ (K) = h∗(K, K; G∗, H∗).

Introducing Goverment

The simplest model with government is the one where a constant tax is
imposed. Also suppose government spends this money for households.

The recursive formulation of this simple problem is as follows (from now
on we will not repeat the G function as an argument (more precisely an
index) of the value function):

V (K, a) = maxc,l,a′ [u(c, l, p) + βV (K ′, a′)]

s.t : T + c + a′ = Ra + wl
R = R(K) = FK(K, N)

w = w (K) = FN(K, N)
p = P̄

K ′ = G(K)
N = N (K) = H (K)

A RCE in this context is a list {V ∗(.), g∗(.), h∗ (.) , G∗(.), H∗ (.) , R(.), w(.)}
such that:

1) Given {G∗(.), H∗ (.) , R(.), w(.)}, {V ∗(.), g∗(.), h∗ (.)} solves the house-
hold problem above,

2) {R(.), w(.)} are characterized by the optimal decisions of firms, and
3) Agent is representative, which here means:
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G∗(K) = g∗(K, K; G∗, H∗) and H∗ (K) = h∗(K, K; G∗, H∗).
4) P̄ = T (Government budget constraint)

Now let’s introduce a more interesting model with government. Suppose a
constant income tax on wages is imposed. Typically the government returns
the earnings in the form of a lump sum tax. But it wouldn’t make any
difference if the tax earnings where thrown into the ocean:

V (K, a) = maxc,l,a′ [u(c, n) + βV (K ′, a′)]

s.t : c + a′ = (1− τ)w(K)n + aR
R = R(K), w = w(K)

K ′ = G(K)
N = H (K)
τ = τ (K)

Here a RCE is a list {V ∗(.), g∗(.), h∗ (.) , G∗(.), H∗ (.) , τ ∗ (.) , R(.), w(.)}
such that:

1) Given {G∗(.), H∗ (.) , τ ∗ (.) , R(.), w(.)}, {V ∗(.), g∗(.), h∗ (.)} solves the
household problem above,

2) {R(.), w(.)} are characterized by the optimal decisions of firms,
3) Agent is representative: G∗(K) = g∗(K,K) and H∗ (K) = h∗(K,K),

and
4) Goverment budget constraint is satisfied:

τ ∗(K)w∗(K)H∗(K) = P

Feb 13th, 2007

Consider an economy in which there are two types of agents, rich and poor,
who differ in their initial wealth. The fraction of rich people in this economy
is µR. Then aggregate state variables are aggregate capital (K) and share of
this aggregate capital hold by rich guys (s).

Households solve the following problem:
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V (K, s, a) = max
a′,c

u(c) + βV (K ′, s′, a)

c + a′ = aR + w

K ′ = GK(K, s)

s′ = Gs(K, s)

R = R(K)

w = w(K)

a′ = g(K, s, a) solves this problem.
A RCE of this economy is a list {V (), g(), GK(), Gs(), R(), w()} s.t.

1. Given {GK(), Gs(), R(), w()}, {V (), g()} solves HH’s problem.

2. Prices are characterized by firm’s problem: R(K) = FK(K, 1), w(K) =
FL(K, 1).

3. Consistency:

GK(K, s) = µRg(K, s,
sK

µr
) + (1− µR)g(K, s,

(1− s)K

(1− µr)
)

Gs(K, s) =
µRg(K, s, sK

µR )

GK)(K, s)

What else in agents can differ? Agents may have different utility func-
tions (preferences), ui(c). They may differ in patience, βi and in efficiency
endowment of labor, εi.

An economy with two countries that have different production functions

We will assume that there is perfect capital integration, but no labor
mobility. Also assume equal size of the two countries. The main difference
between this model and the previous one is that now it matters in which
country you are. The reason is that there is no labor mobility and hence
the wage will be different in these countries. For i = A, B the recursive
specification of the problem is:
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Vi(a,KA, KB, x) = maxc,a′ [u(c) + βVi(a
′, K ′A, K ′B, x′)]

s.t : c + a′ = Ra + wi,
R = FA

K(KA, 1) = FA
K(KA, 1) (from perfrect capital integration)

wi = F i
N(K i, 1)

K ′A = GA(KA, KB, x)
K ′B = GB(KA, KB, x)

x′ = χ
(
KA, KB, x

)

In the problem above we know how much capital there is in each country,
but not who owns it (whether it is owned by a country A or B citizen).
This is why we introduce the new variable x which denotes the percentage
of capital that belongs to the citizens of country A7.

Here a RCE will be asn usual a set of functions such that 1) given prices
and the laws of motion of the aggregate states agents maximize, 2) firms
maximize, plus the following equilibrium conditions:

gA∗ (
x

(
KA + p∗KB

)
, KA, KB, x

)
=

χ∗
(
KA, KB, x

) [
G∗A(KA, KB, x) + p′∗G∗B(KA, KB, x)

]
(1)

gB∗ (
(1− x)

(
KA + p∗KB

)
, KA, KB, x

)
=(

1− χ∗
(
KA, KB, x

)) [
G∗A(KA, KB, x) + p′∗G∗B(KA, KB, x)

]
(2)

RA(G∗A(KA, KB, x)) = RB(G∗B(KA, KB, x)) (3)

p∗
(
(KA, KB, x)

)
= 1 (4)

Note that p is the relative price of capital between the countruies. We
use it to make sure that we don’t add ”apples” with ”oranges”. However, by
the assumption of perfect capital integration, in equilibrium p∗ = 1.

7In class to overcome this problem we introduced the aggragate variable A1 instead of
x, where A1 is the total wealth of people live in country 1.
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We will continue in the same spirit as in the previous lecture to define RCE
for different enviroments.

Assume that in the economy of this example the frims own the capital.
They also own land and there is no market for this commodity. Moreover,
set L = 1. Of course, the firms are owned by the households. In this setting
the firms will have a dynamic problem. This is given by:

Ω(K, k) = maxk′ {F (k, 1)− k′ + q(K ′)Ω(K ′, k′)}

s.t: K ′ = G (K)

The households problem is:

V (K, a) = max
a′,c

{u(c) + βV [K ′, a′]}
s.t.

c + a′q(K ′) = a

K ′ = G(K)

Assume that the solutions are of the form a′ = y (a,K) . The equilibrium
conditions here are:

Ω() and g() solve firm’s problem (K, 1) (1)

V () and y() solve HH’s problem (K, 1) (2)

g (K, K) = G (K) (3) (firm is representative)

y (Ω(K, k), K) = Ω(G (K) , G (K)) (4) (household owns the firm and is
representative)

q−1 (K ′) = F1 (K, 1) (5) 8

8We indeed don’t need this condition for an equilibrium, equilibrium implies it.
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Goverment Debt

In this last example we consider a model with government that issues
debt and imposes a consumption tax. What are the state variables for this
economy?

Aggregate states: B, K,individual states: a
The problem of the representative agent is:

V (k, B, a) = max
c,a′

[u (c) + βV (k′, B′, a′)]

s.t : c (1− τ) + a′ = w (k) + aR (k)
k′ = G(k,B)
B′ = H(k, B)

w (k) = F2 (k, 1)
R (k) = F1 (k, 1)

τ = τ (k, B)

Let the solution have the form a′ = g (a, k, B).

DEFINITION: A Recursive Competitive Equilibrium for policy (G̃, τ(K,B))
is a list of functions {V ∗(k, B, a), g∗(k, B, a), G∗(k,B), H∗(k, B) such that:

1) Given G∗(k, B), H∗(k, B),τ (k, B) the functions V ∗(k, B, a), g∗(k, B, a)

solve the agent’s maximization problem.
2) The Goverment Budget Constraint is balanced

R (k) B + G̃ = H∗(k,B) + τ (k, B) [F (k, 1)−G∗ (k)]

3) (Consistency Equilibrium Condition)

g∗(k + B, k, B) = G∗(k, B) + H∗(k, B)
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Note that the unknown functions here are three (G∗, H∗, τ) , but the equi-
librium conditions are only two (namely (2) and (3) above). What’s missing?
The problem here is that we don’t have a theory for government, i.e, we don’t
have a theory of how τ is specified. In other words, the above equilibrium is
indexed by τ . Only after specifying the government’s objective can we more
precise about how the tax equation looks like. However, we can redefine the
above set of RCE by restricting attention only to feasible policies. So we add
the following NO Ponzi condition:

4) There exist B
−

,
−
B and

−
k such that for every (k, B) ∈

[
0,
−
k

]
×

[
B
−

,
−
B

]
, G(k,B) ∈

[
0,
−
k

]
and H(k,B) ∈

[
B
−

,
−
B

]
.
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7 Recursive, Stochastic Growth Model

In previous sections, we discussed random shocks, stochastic processes and
histories. Now we will introduce those concepts into the growth model and
analyze the recursive formulation.

In the growth model, the aggregate state variables are {z,K}, the tech-
nology shock and the total amount of capital. The individual state variables
are {a, bz}, the amount of assets of the household and the amount of state
contingent claims (also known as Arrow securities9)

The recursive stochastic growth model is

V (z,K, a, bz) = max
c,a′,bz′

[u(c) + β
∑

z′
Γzz′V (z′, K ′, a′, bz′)]

st

9These securities pay 1 unit of the good when a particular state happens, and zero
otherwise

30



c + a′ +
∑

z′
qz′ (z, K) bz′ = w (z, K) + R (z, K) a + bz

K ′ = G(z, K)

where qz′(z, K) is the price of the state contingent claim related to state
z′ tomorrow. The solution to this problem for the household are functions
that relate state variables to optimal asset accumulation

a′ = g(z, K, a, bz)

and to optimal security consumption for all future states

bz′(z
′) = b(z, K, a, bz)(z

′)

Looking at equilibrium conditions, we find that this way of writing the
stochastic growth model has an ’overkill’. In equilibrium we get that

G(z,K) = g(z, K, K, 0)

b(z, K, a, 0)(z′) = 0 ∀z′

the first condition is just the representative agent condition we have seen
before. The second condition says that state contingent securities are not
traded, so their demand is zero for all states of the world. This is due the
fact that we are in a world of identical agents without uninsurable risks.
Another way of looking at this is to use the no-arbitrage condition

1 =
∑

z′
q(z, K)R(z′, G(z,K))

which says that the household can save equally by buying securities or
saving through capital.

Finally, we can reduce the individual state space for the household and
rewrite the model as follows:

V (z, K, a) = max
c,a′

[u(c) + β
∑

z′
Γzz′V (z′, K ′, a′)]
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st

c + a′ = w (z, K) + R (z,K) a

K ′ = G(z,K)

This is because the household can secure herself a unit of consumption
for sure next period either by saving or having a portfolio that pays 1 unit for
sure next period at each possible state. Since the last option is an overkill,
we drop it in order to work with our usual formulation.

Again, a solution to this problem is an optimal policy for asset accumu-
lation a′ = g (z,K, a)

Definition 7 A RCE with stochastic shocks is a list {V, G, g, w, R} such that

1. Given {G,R, w}, V and g solve the consumer problem

2. R and w solve the firm’s problem

3. Representative agent condition is satisfied, i.e.

g (z, K, K) = G (z, K)

8 Lucas Tree Model (Lucas 1978)

8.1 The Model

Suppose there is a tree which produces random amounts of fruit every period.
We can think of these fruits as dividends and use dt to denote the stochastic
process of fruit production. Further, assume dt follows a Markov process.
Formally:

dt ∼ Γ(dt+1 = di | dt = dj) = Γji (22)

Let ht be the history of realization of shocks, i.e., ht = (d0, d1, ..., dt).
Probability that certain history ht occurs is π(ht).
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The representative household in the economy consumes the only good,
which is the fruit. Consumers maximize:

∑
t

βt
∑

ht∈Ht

π(ht)u(ct) (23)

Since we are assuming a representative agent in the economy who posses
no storage technology, in the unique equilibrium the representative house-
hold eats all the dividends every period. Hence, the lifetime utility of the
household will be: ∑

t

βt
∑

ht∈Ht

π(ht)u(dt) (24)

with
p0 = 1 (25)

Note that we are considering the Arrow-Debreu market arrangement, with
consumption goods in period 0 as a numeraire.

8.2 First Order Condition

Take first order condition of the above maximization problem:

p(ht)

p0

= pt(ht) =
βtπ(ht)u

′(c(ht))

u′(c(h0))
(26)

By combining this FOC with the following equilibrium condition:

c(ht) = dt ∀t, ht (27)

We get the expression for the price of the state contingent claim in the Arrow-
Debreu market arrangement.

pt(ht) =
βtπ(ht)u

′(d(ht))

u′(d(h0))
(28)
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8.3 LT in Sequential Markets

In sequential markets, the household can buy and sell fruits in every period,
and the tree (the asset). To consider the trade of the asset, let st be share of
asset and qt be the asset price at period t. The budget constraint at every
time-event is then:

qtst+1 + ct = st(qt + dt) (29)

Thus, the consumer’s optimization problem turns out to be:

max
{ct(ht),st+1(ht)}∞t=0

∑
t

βt
∑

ht∈Ht

π(ht)u(ct(ht)) (30)

subject to
qt(ht)st+1(ht) + ct(ht) = st(ht−1)[qt(ht) + dt] (31)
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8.4 Lucas Tree in Recursive Language

Looking at the recursive version of the same problem with denoting discrete
state variable as subscripts (a note on notation: this is the same as having
V (d, s), but since the amount of fruit is linked one to one to the shock, we
can drop d and use the state as a subscript)

Vi(s) = max
s′,c

u(c) + β
∑

d′
ΓijVj(s

′)

s.t. c + s′qi = s[qi + di]

In equilibrium, the solution has to be such that c = d and s
′
= 1. Impose

these on the FOC and get the prices that induce the agent to choose that
particular allocation. Then the FOC for a particular state i would imply,

qi = β
∑

j

Γij
u′(dj)

u′(di)
[qj + dj] (32)

where

qi =
p (ht−1, di)

p (ht)

and p (.) are the prices we derived from the AD setting.
A closer look tells us that we can calculate all prices in just one system

of equations. Taking FOCs, at an equilibrium we have

piuc (di) + β
∑

j

Γij
∂V j (s′)

∂s′
= 0

using the envelope condition

∂V j (s′)
∂s′

= [pi + di] uc (di)

hence,

piuc (di) = β
∑

j

Γij [pj + dj] uc (dj) ∀i
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Stacking each equation and forming matrices




uc (d1) 0 · · · 0

0 uc (d2)
. . .

.

..

0
. . .

. . . 0
0 · · · 0 uc (dnd )







p1

p2

..

.
pnd


 = β




uc (d1) 0 · · · 0

0 uc (d2)
. . .

.

..

0
. . .

. . . 0
0 · · · 0 uc (dnd )







p1

p2

..

.
pnd


 +

βΓ




uc (d1) 0 · · · 0

0 uc (d2)
. . .

...

0
. . .

. . . 0
0 · · · 0 uc (dnd )







d1

d2

.

..
dnd




In matrix notation

p = βu−1
c Γucp + βu−1

c Γucd[
I − βu−1

c Γuc

]
p = βu−1

c Γucd

p =
[
I − βu−1

c Γuc

]−1 [
βu−1

c Γucd
]

8.5 Asset Pricing

Because in a complete market any asset can be reproduced by buying and
selling contingent claims at every node, we can use this model as a powerful
asset pricing formula. For example, take the option of selling shares at price
p̄ tomorrow. Since tomorrow we’ll have the option to sell, we exercise only if

p̄− pi > 0 ∀i
Then, the value of this option (if we are in state i), is

ϕi (p̄) =
∑

j

qij max {p̄− pj, 0}

where qij = βΓijuc (dj) [uc (di)]
−1.

Our next example is the option that can only be executed 2 periods from
now. In that case, we have

ϕ2
i (p̄) =

∑
j

qij

∑

l

qjl max {p̄− pl, 0}
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Finally, take the option that can be exercised tomorrow or the day after
tomorrow. The day after tomorrow, we exercise the option iff

p̄− pl > 0

where l is the state the day after tomorrow. At the previous node (if we
haven’t exercised the option yet and the state is j), the value of the option
is

∑

l

qjl max {p̄− pl, 0}

Hence, if the state today is i, the value of the option is

ϕ̂2
i (p̄) =

∑
j

qij max

{
p̄− pj,

∑

l

qjl max {p̄− pl, 0}
}

8.6 Aggregate Rates of Return

Given the notation and the previous analysis, we can ask some questions on
rates of return in the model economy. On the one side, consider an asset
that gives a certain return next period, risk free (e.g., a treasury bond, that
pays 1 no matter the state tomorrow) which we can denote as rf . Using the
no-arbitrage condition we know that:

1 + rf =

[∑
j

qi,j1

]−1

=

[∑
j

βΓij
uc[dj]

uc[di]

]−1

On the other hand, consider a risky asset, which pays proportionally to
the aggregate state of the economy tomorrow (fruit is dj/

∑
Γijdj). Denote

its return as rR. By the same argument as before, we have that
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1 + rR =

[∑
j

qi,j
dj∑
Γijdj

]−1

=

[∑
j

βΓij
uc[dj]

uc[di]

dj∑
Γijdj

]−1

By Jensen’s inequality

∑
j

βΓij
uc[dj]

uc[di]
> 1

which means that 1 + rf < 1
β

Also,

∑
j

βΓij
uc[dj]

uc[di]
>

∑
j

βΓij
uc[dj]

uc[di]

(
dj∑
Γijdj

)

Hence, rf < rR, or the equity premium. The intuition is that in a world
with risk averse individuals, the demand for risk free assets is higher, which
drives its price (today) upwards and then its return downwards.

If we go to the data, we find a BIG equity premium, which cannot be
accounted by the model in any way. This is called the equity premium puzzle.
For further discussion, see Mehra and Prescott (1985)

Feb. 27th, 2007

9 Economy with Heterogeneous Agents

9.1 Introduction

So far, in environments we have analyzed, the type of agents is the same
always. If the number of type of agents is small (as the example we did in
class with only two different types) it’s easy to keep track of all the types,
and so is to define an equilibrium. From now on, we will consider economies
with (i) many agents who are very different among themselves at a given
time (cross-section), and (ii) change their types over time.

An immediate question is: what is a considered MANY agents?
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• N large, countable

• a continuum, uncountable and infinite

We will use models with continuum of agents, since we can use math
tools (such as measure theory) and other useful concepts (like continuity) to
describe agents.

9.2 Introduction to Measure Theory

9.2.1 Intuition

Measure theory can be understood nicely by comparing to the notion of
weight. Measure is about ”measuring” a mass in a mathematically consistent
way, which is similar to weighting a mass. Therefore, intuitively the following
properties are expected to be satisfied by measures:

1. measure(nothing) = 0

2. if A ∩B = ∅ ⇒ measure(A + B) = measure(A) + measure(B)

These properties are intuitive with weight. The weight of nothing is zero.
If a body is 200 pounds, and you chop off a hand from the body and put
the hand and the rest of the body together on the scales, they must weight
200 pounds. Now consider an economy with many agents. The measure
of nobody in the economy is zero. If a measure of the total population is
normalized to one, and you take away the rich people from the population
and measure the sum of rich people and the rest of the population, they must
have measure one.

In macro models with heterogenous agents, we are interested in how to
measure agents with different characteristics (wealth, earnings, etc.).

9.2.2 Definitions

Definition 8 For a set S, S is a set of subsets of S.

Definition 9 σ-algebra S is a set of subsets of S, with the following proper-
ties:

1. S, ∅ ∈ S
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2. A ∈ S ⇒ Ac ∈ S (closed in complementarity)

3. for {Bi}i=1,2..., Bi ∈ S ⇒ [∩iBi] ∈ S (closed in countable intersections)

The intuition of the property 2 of σ-algebra is as follows. If we chop off
a hand from a body, and if the hand is an element of S, the rest of the body
is also an element of S. Soon we will define measure as a function from
σ-algebra to a real number Then the property of σ-algebra implies that if we
can measure the chopped hand, we can measure also the rest of the body.

Examples of σ-algebra are the follows:

1. Everything, aka the power set (all the possible subsets of a set S)

2. {∅, S}
3. {∅, S, S1/2, S2/2} where S1/2 means the lower half of S (imagine S as an

closed interval on R).

If S = [0, 1] then the following is NOT a σ− algebra

S =

{
∅, [0, 1

2
),

{
1

2

}
,

[
1

2
, 1

]
, S

}

Remark 2 A convention is (i) use small letters for elements, (ii) use capital
letters for sets, (iii) use ”fancy” letters for set of subsets.

Definition 10 A measure is a function x : S → R+ such that

1. x(∅) = 0

2. if B1, B2 ∈ S and B1 ∩B2 = ∅ ⇒ x(B1 ∪B2) = x(B1) + x(B2)

3. if {Bi}∞i=1 ∈ S and Bi ∩ Bj = ∅ for all i 6= j ⇒ x(∪iBi) =
∑

i x(Bi)
(countable additivity)

In English, countable additivity means that measure of the union of count-
able disjoint sets is the sum of the measure of these sets.
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Definition 11 Borel-σ-algebra is (roughly) a σ-algebra which is generated
by a family of open sets (generated by a topology).

Since a Borel-σ-algebra contains all the subsets generated by intervals,
you can recognize any subset of a set using Borel-σ-algebra. In other words,
Borel-σ-algebra corresponds to complete information.

You might find that a σ-algebra is similar to a topology. Topology is also
a set of subsets, but its elements are open intervals and it does not satisfy
closedness in complementarity (complement of an element is not an element
of a topology). Very roughly, the difference implies that topologies are useful
in dealing with continuity and σ-algebra is useful in dealing with measure.

Definition 12 Probability (measure) is a measure such that x(A) = 1

Lets apply these basic notions of measure theory to a simple set of prob-
lems: industry equilibria with many firms

10 Partial Equilibrium Industry Theory

We will consider models were prices are given exogenously, hence our analysis
is a partial equilibrium one. For that reason, think that the environment is
a small industry producing ”flip flops” (things nobody cares about).

There is an inverse demand function yd (p), where p is the price of the
good. A firm in this industry is indexed by it’s productivity s ∈ S = [s

¯
, s̄]

and produces according to sf (n) (the production function depends on labor
only). Firms are competitive in the output market as well as in the labor
market.

Problem of the firm is

max
n

psf (n)− wn

from the FOC, we get psf ′ (n) = w, which implicitly defines the solution
of the firm n∗ = n (s, p). The profits are defined

41



Π (s, p) = psf (n∗ [s, p])− wn [s, p]

Given a price p, to calculate the output of the industry we need a measure
X of firms (the distribution of firms according to their s).

Let

• S be the Borel σ-algebra of [s
¯
, s̄]

• X : S → R be a measure

Then, the supply of the industry is defined as

ys (p) =

∫ s̄

s
¯

sf (n [s, p]) X (ds)

In this economy, the measure of firms with respect to its type X(s) is
an uninteresting object since its given exogenously. We need to add some
tweaks in order to have some economics.
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11 Mar. 1st, 2007

Now suppose that the firm will only operate next period with probability
(1− δ). With probability δ it will die. In that case, the two period profit of
the firm is,

π2 = [p∗sf(n∗)− wn∗]
[
1 +

1− δ

1 + r

]

Now consider the infinite periods profit of the firm,

π∞ = [p∗sf(n∗)− wn∗]
∞∑

t=0

(
1− δ

1 + r

)t

= [sf(n∗)− wn∗]
(

1 + r

r + δ

)

The zero profit condition is that the profit from entry is equal to the
cost of entry, denoted by ce. This condition says that there are no further
incentives to enter the industry:

ce = π∞

Define x : S → R as the measure of firms, where S is the σ − algebra
defined on the set S

An industry equilibrium is a set {p∗, y∗, n∗, x∗ (s)}, such that:

1) p∗ = p (y∗) (demand is satisfied)

2) y∗ = x∗ (s, p∗) s f (n∗) (feasibility)
3) Firms optimize: n∗ ∈ arg max

n
p∗sf(n)− w∗n

4) Zero profit condition: ce = π∞
So far we still have no interesting dynamics. The measure of firms is

exogenous and no economic decisions are involved. In order to introduce
more interesting elements, we need some more mathematical tools:
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11.1 Digression on Transitions and Updating Opera-
tors

Definition 13 A function f : S → R is measurable with respect to the
σ − A lg ebra S, if for every a ∈ R, B ≡ {s ∈ S : f (s) ≤ a} ∈ S.

Definition 14 A transition function is a mapping Q : S × S → [0, 1], such
that:

1) Q (s, .) is a probability measure for every s ∈ S.
2) Q (., B) is a measurable function with respect to S, for every B ∈ S.

Based on the transition function Q we can define an updating operator
T . This new object satisfies x′ (B) = T (x (B) , Q). In words, T gives us the
measure of (here) firms in the subset B in the next period (x (B)), based on
the transition function and the measure of firms in this subset today.

11.2 Industry Equilibria, Tweak #1

Suppose that each firm has to pay a cost of entry c∞, and the productivity
shock is drawn from the distribution γ (s). Once the firm draws s it keeps it
forever.

An industry equilibrium is a set {p∗, n∗(s, p∗), N∗
e , x∗}, such that:

1) n∗(s, p∗) ∈ arg max [p∗sf (n)− wn]
2) yD (p∗) =

∫
S

s f (n∗ (s, p∗)) dx∗

3) c∞ =
∫
S

ˆ

Π∞(s, p∗)dγ (s) , where
ˆ

Π∞ =
∞∑

t=0

(
1−δ
1+r

)t
Π (s, p∗) .

4) x∗ (B) = (1− δ) x∗ (B) + N∗
e γ (B), for all B ∈ S, and

5) N∗
e = δx∗ (S).

Note that here, the distribution of firms completely reflects the distribu-
tion from which they draw their productivity shocks, γ(s). This is because
what types of firms remain or what types of firms exit is not an issue since
there is exogenous entry and exit. For example, if exit was endogenous we
would expect the ’bad’ firms to exit and the better ones to stay, and therefore
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the type distribution of incumbent firms would be different than the initial
distribution γ (s). But in our case, the distribution of incumbents and the
initial type distribution are identical.

So this model is not interesting because it STILL has no economics.

11.3 Ind. Eq., Tweak #2

Here s is drawn from γ (s) as before, but after the initial shock is obtained,
s′ ∼ Γss′ . We will assume that Γ satisfies First Order Stochastic Dominance.
This means that

For s1, s2 ∈ S, s1 < s2 ⇒
∫ s̄

s̃
Γ(s1, s) ds ≤ ∫ s̄

s̃
Γ(s2, s) ds

Moreover, we introduce a fixed cost that the firm has to pay in every
period, cf .

The recursive formulation of the firm’s problem is:

Ω (s) = max
[
0,−cf + maxn{psf (n)− wn}+ 1

1+r

∫
Ω (s′) Γ (ds′ | s)]

Definition 15 A stationary equilibrium for the economy described by Tweak
2 is a list
{p∗, N∗

e , s∗, n∗ (s, p∗) , x∗, Q∗} such that:

1) n∗ (s, p∗) maximizes profits and s∗ = s∗ (p∗) (threshold is optimal).
2) Free entry is satisfied: c∞ = Π∞.
3) Market clearing: yD (p∗) =

∫
S

s f (n∗ (s, p∗)) dx∗.

4) The measure of firms is stationary: x∗ (B) =
∫
S

Q (s,B) dx∗+N∗
e γ (B ∩ [s∗, s])

5) Q (s,B) = Γ

[
s,B | [s

−
, s∗)

]
, (where Γ is implied by the Markovian

transition matrix).
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Mar. 15th, 2007

11.4 Ind. Eq. Tweak #3

In this section we discuss Industry equilibria with employment and capital
as a state variables. The firm owns capital and rents labor in a competitive
market. The key ingredient here is that there are costs of adjusting the level
of capital and employment. Hence, the state variables for a particular firm
are {s, k, n}. The recursive problem of a firm is given by

Ω(s, k, n) = max
xk,xn

psf(k, n)− wn− xk − xn +
1

1 + r

∑

s′
Γss′Ω(s′, k′, n′)

s.t.

k′ = (1− δ)k + φ(xk)

n′ = (1− ρ)n + ψ(xn)

s′ ∼ Γ (Markov)

where δ is the depreciation rate and ρ is the exogenous separation rate.
Functions φ, ψ represent non-linear adjustment costs of modifying employ-
ment/capital levels. Some assumptions:

• φ(0) = ψ(0) = 0

• φ′, ψ′ ∈ [0, 1]

• φ′′, ψ′′ < 0 (convex costs)

The solution to this problem are two policy functions for x∗k = x∗k(s, k, n)
and x∗n = x∗n(s, k, n)

In this economy, the transition function is10

Q({s, k, n},B) =
∑

s′∈Bs

1{φ(xk(s,k,n))+(1−δ)k∈Bk}1{ψ(xn(s,k,n))+(1−ρ)n∈Bn}

where 1{·} is the indicator function. Then, the updating operator is given
by

10In order to ease notation, here we take the case where Bs, Bk, Bn are rectangles
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X ′ =
∫

s

∫

k

∫

n

Q({s, k, n},B)X(ds, dk, dn)

Note that in this model, all firms have value, since there is no endogenous
exit by assumption. Some key predictions of the model:

• when a firm receives a good shock, employment and capital react slug-
gishly, since its costly to reverse levels

• Aggregate production is lower than in the previous models

March 20th, 2007

Goat Farmers Economy

Imagine a economy that has a continuum of goat farmers. The goat farm-
ers get an endowment s each period which follows a Markov process with
transition Γss′ and,

s ∈ {s1, ....., sns}
There is a storage technology such that, if the goatfarmer store q units

of goats today, they get 1 unit of goat tomorrow. (s, a) is the type of a goat
farmer and the set consisting of all possible such pairs is,

S × A = {s1, s2, ....., sn} × [a, a]

Let A be the set of Borel sets on SxA. And define a probability measure
x on A,

x : A → [0, 1]

The goat farmer’s problem is:

V (s, a) = max
c,a′≥0

u(c) + β
∑

s′
Γss′V (s′, a′)

subject to

c + qa′ = e + a

c ≥ 0 and a’ ∈ [0, a]
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With the decision rule a′ = g(e, a) and the transition matrix for the
endowment process Γss′

The First Order Conditions are,

uc(s + a− qa′)=β

q

∑

s′
Γss′uc(s′+ a′ − q′a′′)

You’ll notice that a′ ∈ [0, a] is already one of the constraints of the above
maximization problem. But now rather than just imposing such a constraint,
we will find a natural reason that savings should have a lower bound and we
will consider a condition that ensures an upper bound for savings.

For the lower bound, we assume that there is no technology which allows
negative amount of saving and this sounds natural since storing a negative
amount of goat does not make much sense. So savings has a lower bound
because Mother Nature says so.

Here, the goat farmer has the risk of getting a very bad shock tomorrow.
So the goat farmer would save just in case he has this bad shock; he would
want to store some fish today in order to insure himself against getting very
small number of goat tomorrow so he is not hungry in case that happens. In
this case we need to think more about how to put an upper bound on savings,
because with uncertainty even if β < q, the fisherman is willing to save due
to gains from insurance. The kind of savings to protect oneself from risk
in the future in the absence of state contingent commodity markets which
can be used to insure against any contingency to make sure consumption
is constant across states, which is usually called precautionary savings. In
order to ensure an upper bound for savings, we need to bound the gains
from insurance somehow. The way to do this is to impose the condition on
the utility function that its negative curvature (keeping in mind that the
utility function is concave) is diminishing as wealth increases. This means
that wealthier agents are less risk-averse. Formally, that u′ is convex. The
wealthier the agent is, the smaller the variance of his endowment next period
proportional to his wealth so he doesn’t want to save if he is very wealthy.
This is simply because of the fact that the wealth is not subject to any
uncertainty but income is thus as the income wealth ratio rise, the overall
uncertainty the agent faces diminishes.

So in the economy with uncertainty, in order to have an upper bound on
savings, we need the first derivative of the utility function to be convex so
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that the following Jensen’s Inequality holds:

β

q

∫
Γss′uc(c

′) >
β

q
uc(

∫
Γss′c

′)

Theorem: If β < q and u′ is convex then ∃a such that a0 < a, g(s,a)< a
∀s.

Let a′ = g(s, a) solves the goat farmer’s problem. g(s, a) is monotone in
a and if stochastic dominance (i.e. exogenous Markov chain doesn’t feature
negatively correlated income) holds then g(s, a) is also monotone in a.

The transition function for this economy is:

Q((s, a), B) =
∑

s′∈Bs

Γss′1{g(s,a)∈Ba}

and the updating operator is:

x′(B) =
∑

s′∈Bs

∫

S×A

Γss′1{g(s,a)∈Ba}dx(s, a)

Definition: An equilibrium for goat farmers’ economy is a list {V (.), g(.)}
s.t. given q, {V (.), g(.)} solves an individual goat farmer’s problem.

Definition: An stationary equilibrium for goat farmers’ economy is a
list {V (.), g(.), x?(.)} s.t.

1. Given q, {V (.), g(.)} solves an individual goat farmer’s problem.

2. x? is a stationary distribution:

x?(B) =
∑

s′∈Bs

∫

S×A

Γss′1{g(s,a)∈Ba}dx?(s, a)

In this case idiosyncratic shocks affect income (endowment). How else could
we model economies with idiosyncratic shocks of households:

• Agents with different discount factors, i.e. β(s).

• Agents with different returns of storage, i.e. q(s).

• Agents with different utility functions, i.e. c1−σ(s)−1
1−σ(s)
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March 22th, 2007

Huggett Economy

Now consider the case of lower bound for saving less than zero. Suppose we
let the goat farmers borrow and lend to each other but not store any goats,
how can we make sure that our agents always has the capability to pay back
what they owe. What would be the endogenous lower bound to ensure this?
Such a condition would make sure that in the worst case scenario our agent
should be able pay the interest rate on its debt and roll over the same amount
(the lowest possible amount). Thus, letting the lower bound be a and the
lowest possible shock be s then,

0 + qa = a + s

a =
s

q − 1

This is called the solvency constraint rather than a borrowing constraint.
Note that when we let the fishermen to get into lending contracts with each
other, we need a consistency condition to make sure agents actions are com-
patible with each other. Here the price will be endogenously determined will
ensure the agents hold just the right amount of assets.

The stationary equilibrium of such an economy is defined as,
Definition: A stationary equilibrium for an Huggett(1993) economy is

a set {q∗, x∗(q∗), Q(s, a, B; q∗), g(s, a; q∗)} such that

1. (Agent Optimization) Given q∗, g(s, a; q∗) solves the agent’s problem.

2. (Consistency) Q(s, a, B; q∗) is a transition matrix associated with Γss′

and g(s, a; q∗).

3. (Stationarity) x∗ is the unique stationary distribution associated with
Q(s, a, B; q∗), that is x∗ = T (x∗, Q).

4. (Market clear) ∫
adx∗(q∗) = 0

(Please note that g (e, a) = a, and that g (e, a) never crosses the 45 degree
line again (here s = e stands for the state of employment, i.e. the good
state).)
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Aiyagari Economy

Finally we incorporate growth in the Huggett economy setting. Here we still
have heterogeneity and each agent obtains an idiosyncratic shock, s. We can
think of this as a shock on the efficiency of labor provided by that particular
agent. The difference is that now the agent can work and also rent his capital
(a) to firms at the market price R:

V (s, a,
K

N
) = max

a′,c,l
u(c, l) + β

∑

s′
Γss′V (s′, a′,

K ′

N ′ )

c + a′ = (1− l)ws + (1 + r)a

w = W (
K

N
), r = R(

K

N
)

K ′

N ′ = Φ(
K

N
)

a′ ∈ (a, ā), c ≥ 0

a′ = g(s, a,
K

N
), l = h(s, a,

K

N
) solve the HH problem

Definition: A stationary equilibrium for the Aiyagari economy is a list
{V (.), g(.), h(.), R(.),W (.), Φ(.), {x∗} such that

1. Given {R(.),W (.), Φ(.)}, {V (.), g(.), h(.)} solves the HH problem.

2. R(K
N

) = θ(K
N

)θ−1, W (K
N

) = (1− θ)(K
N

)θ

3. K =
∫

g(a, s, K
N

)dx?(a, s), N =
∫

(1− h(a, s, K
N

))dx?(a, s), K
N

= Φ(K
N

)

4.
Q((s, a), B) =

∑

s′∈Bs

Γss′1{g(s,a)∈Ba};

and x? is a stationary distribution:

x?(B) =
∑

s′∈Bs

∫

S×A

Γss′1{g(s,a)∈Ba}dx?(s, a)
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March 27th, 2007

Technology Improvements in the Goat Farmers Econ-

omy (Transitions-simple)

In the model we were studying, we get a stationary distribution X∗ for the
assets of all goat farmers. This equilibrium object clearly depends on the
’fundamentals’ of the economy, namely {β, Γ, q, u (c)}. In general, the prob-
lem is defined as

V (s, a; q) = max
a′

{
u [c] + β

∑

s′
Γss′V (s′, a′; q)

}

subject to

c + qa′ = s + a

with solution y (s, a; q)
Note that we are showing explicitly the importance of q in the value

functions. Now imagine that the economy is in a steady state with some
q0. We would like to know what happens if unexpectedly the cost of storage
decreases permanently from q0 to q1. In a first step, we can solve the above
problem with this new q1 < q0 and get a new policy function y (s, a; q1).
Applying the updating operator for this new economy

T
[
X∗ (

q0
)
, y

(
s, a; q1

)] 6= X∗ (
q0

)

Clearly, since a fundamental of the economy has changed, the distribution
of the fishermen will move away from X∗ (qo) into a new stationary distribu-
tion. This will be true if Γ satisfies the ’AD-AN (American Dream-American
Nightmare (Monotone Mixing Condition))’ conditions. Then, we know for
sure that

lim
n→∞

T n
[
X

(
q0

)
, y (.)

]
= X∗ (

q1
)

How do we understand transitions for this economy? Some economist
forget about transitions and just compare steady states, which is not cor-
rect if we are interested in welfare. The correct way to proceed is to guess
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some N (number of periods necessary to achieve the new stationary equilib-

rium) and then compare the sequence of distributions {T n [X (q0) , y (.)]}N
n=1

to X∗ (q0). Note that we can do this because we can calculate the decision
rules independently from X∗ (.).

Welfare Questions

How much would this society be willing to pay for a reduction of q0 to q1?
We can answer this for a particular household and for the whole society. For
a particular household, we have three different values (call them V)

• Utility gain from the switch

V1 = V
(
s, a; q1

)− V
(
s, a; q0

)

Note that this is a calculation that we can perform for particular house-
holds, defined by particular (s, a).

• Consumption/assets willing to be sacrificed (for each household) in
order to have q1

V2 = V
(
s, a− z; q1

)− V
(
s, a; q0

)

where z represents the amount of consumption/assets that the house-
hold would sacrifice in order to get the better technology. Note that we
don’t make the distinction between consumption and assets, since in
this economy we have only one good. Also, V1 is not defined for house-
holds with a = 0 i.e., no assets. One way of avoiding this problem is
to use the next calculation

• Consumption/assets needed to compensate the household if it stays
with the old technology

V3 = V
(
s, a; q1

)− V
(
s, a + z; q0

)
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Now, for the whole society, the gains from technical improvements are
given by the sum of the individual gains. The formula is given by

Vsoc =

∫
z (s, a) dX∗ (

q0
)

where z (s, a) is the one calculated from V3, for each household (pairs
of s, a) and the integration is with respect to X∗ (q0), the distribution of
fishermen at the beginning.

Technology Improvements in the Fishermen Economy

(Transitions-difficult)

Suppose now that instead of storage technology, we have an aggregate tech-
nology of the form

Y = A0K
θN1−θ

where K =
∫

adX∗ and L =
∫

sdX∗. In this case, if the economy receives
an improvement in total factor productivity (i.e., A1 > A0), answering the
welfare questions becomes much harder. Why? simply, because now the mea-
sure matters. Recall that in the previous example, the measure of fishermen
was exogenous to the calculation of the policy functions. Now, given the new
value A1, we will be moving away from a steady state, which means that the
interest rate (FK = ∂Y/∂K) and the wage (FN = ∂Y/∂N) are not constant.
Hence, we need the entire sequences of prices to get the policy function. The
problem is that to get prices, we need the whole distribution (measure) of
agents in the economy, which makes this a non-trivial problem. The prob-
lem is still solvable with computer-intensive methods and comparing steady
states is still wrong.

Growth

In our analysis so far, we have used Neo-classical Growth Model as our bench-
mark model and built on it for the analysis of more interesting economic ques-
tions. One peculiar characteristic of our benchmark model, unlike its name
suggested, was lack of growth. Many interesting questions in economics are
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related to the cross-country differences of growth rates. We will cover some
models that will allow for growth so that we will be able to attempt to answer
such questions.

Exogenous growth

What does it take for an economy to grow? Before answering that question,
we know in our standard NGM there is basically two ways of growth, one
in which everything grows, which is not necessarily a per-capita growth, and
the other is per-capita growth. We will be focusing on per-capita growth,
hence, the next definition is useful

Balanced Growth Path is a situation where all variables of a model
grow at a constant rate (not neccesarily at the same rate)

The title exogenous growth refers to the structure of models in which
growth rate is determined exogenously, and is not an outcome of the model.
First and the simplest one of these is one in which the determinant of the
growth rate is population growth.

Growth with population

Suppose the population of our economy grows at rate γ and we have the
classical CRTS technology in capital and labor inputs.

Yt = AF (Kt, Nt) (33)

Nt = N0 ∗ γt

Note that our economy is no longer stationary but as we will see, within
the exogenous growth framework we can make these economies look like
stationary ones by re-normalizing the variables. Thus, at the end of the day
it will only be a mathematical twist on our standard growth model. Once
we do that, we will be looking for the counterpart of a steady state that
we have in our stationary economies, the Balanced Growth Path, in which
all the variables will be growing at constant rates but not necessarily equal.
Back to our population growth model, we know

AF (K,N) = A[KFk(K,N) + NFN(K, N)] (34)
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Question is, if N is growing at rate γ, can this economy have a balanced
growth path. Can we construct one? We know by CRTS property FK and
FN are homogenous of degree zero. If we assume capital stock grows at rate
γ as well, then prices stay constant and per-capita variables are constant and
output grow at the same rate. So we get growth on a balanced growth path
without per-capita growth. One question is how do we model population
growth in our representative agent model. One way is to assume there is
a constant proportion of immigration to our economy from outside but this
has to assume the immigrants are identical to our existing agents in our
economy, which is a bid problematic. The other way could be to assume
growing dynasties which preserves the representative agent nature of our
economy. If we do so, the problem of the social planner becomes,

max
∞∑

t=0

βtNtU(
Ct

Nt

) (35)

st Ct + Kt+1 = AF (Kt, Nt) + (1− δ)Kt

To transform the budget set to per capita terms, divide all terms by Nt and
to make the environment stationary by dividing all the variables by γt and
assume N0 = 1, we get,

max
∞∑

t=0

(βγ)t U(ĉt) (36)

st ĉt + γk̂t+1 = AF (k̂t, 1) + (1− δ)k̂t

So how is this transformed model any different than our NGM? By the dis-
count factor, the agents in this economy with growth discounts the future
less but everything else is identical to NGM of course with the exception of
this economy growing at a constant rate.

March 29th, 2007

Labor-Productivity Growth

Now suppose we have a ’labor augmenting’ productivity growth with constant
population normalized to one, i.e. have the following CRTS technology,

Yt = AF (Kt, γ
tNt) (37)

AF (Kt, γ
tNt) = A[KtFk(Kt, γ

tN0) + γtN0FN(Kt, γ
tN0)] (38)
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Can we have an BGP? The problem is,

max
∞∑

t=0

βtU(Ct) (39)

st Ct + Kt+1 = AF (Kt, γ
tN0) + (1− δ)Kt

and since we have a population of one, these variables are already per-capita
terms. For stationarity, we have to normalize the variables to ’per produc-
tivity’ units, by dividing all by γt. Then the problem becomes,

max
∞∑

t=0

βtU(γtĉt) (40)

st ĉt + γk̂t+1 = AF (k̂t, 1) + (1− δ)k̂t

Suppose we have a CRRA preferences, then the question is how can we
represent the preferences as a function of ĉt only. Writing the CRRA,

∞∑
t=0

βt (γ
tĉt)

1−σ − 1

1− σ
=

∞∑
t=0

(β(γ1−σ))t ĉt
1−σ − 1

1− σ
(41)

and the problem becomes,

max
∞∑

t=0

(β(γ1−σ))t ĉt
1−σ − 1

1− σ
(42)

st ĉt + γk̂t+1 = AF (k̂t, 1) + (1− δ)k̂t

and once again it is exact same problem as the NGM with a different discount
factor. Note that the existence of a solution to this problem depends on
β(γ1−σ).In this set-up we get per-capita growth at rate γ. Also note that
CRRA is the only functional form for preferences that is compatible with
BGP. This is because as per-capita output grows, for consumption to grow
at a constant rate, our agent has to face the same trade-off at each period.

Now suppose we have the TFP growing at rate γ with a CRTS Cobb-
Douglas technology

Yt = AtF (kt, 1)

At+1

At

= γ
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What would be the growth rate of this economy? We can show that like
the previous cases the growth rate of the economy is the growth rate for the

productivity of labor, which is γ
1

1−α in this case.

11.5 Endogenous Growth

So far in the models we covered growth rate has been determined exoge-
nously. Next we will look to models in which the growth rate is chosen by
the model itself. We do know for a fixed amount of labor, the curvature
of our technology limits the growth due to diminishing marginal return on
capital and with depreciation there is an upper limit on (physical) capital
accumulation. So if our economy is to experience sustainable growth for a
long period of time, we either give up the curvature assumption on our tech-
nology or we have to be able to shift our production function up. Given
a fixed amount of labor, this shift is possible either by an increasing TFP
parameter or increasing labor productivity, . The simplest of such models
where we can see that is the AK model, where the technology is linear in
capital stock so that diminishing marginal return on capital does not set in.

11.6 AK Model

We have the usual social planner’s problem with linear technology and full
depreciation,

max
∞∑

t=0

βtU(Ct)

such that

Ct + Kt+1 = AKt

and the FOCs

(ct) : βtUc(.) = λt (43)

(kt+1) : λt = λt+1 (44)

58



together implies the Euler equation,

Uc(ct) = AβUc(ct+1) (45)

and on the BGP with consumption growing at rate γ with CRRA utility we
get,

γ = (Aβ)1/σ (46)

and the growth rate is determined by the model parameters endogenously.
Note that capital also grows at rate γ and the fate of the economy is deter-
mined by the fundamentals of the model. The capital stock will diverge to
infinity if (Aβ)1/σ > 1 or the economy is destined to vanish if (Aβ)1/σ < 1.
Also note that there is no transitional dynamics in this model (we loose
the state variables in the euler equation after substituting for the balanced
growth rate relation) and conditional on γ,asymptotically all economies are
same regardless of the initial capital level. If we de-centralize this economy
we know wages will be zero since labor has no use and gross rental rate of
capital will be fixed at A. This is at odds with what we observe in the real
world. We would rather like to have a model that allows for both transi-
tional dynamics, labor and growth at the same time. Allowing for labor
implies that we need a variable that proxies the increasing productivity of
labor endogenously and be reproducible in terms of output, such that we are
able to shift our production function continually in the output-capital space
without hitting a natural bound.

11.7 Human Capital and Growth

Another way of getting our models to grow ”endogenously”, is by introducing
the variable ’Human Capital’ as an input of production. This will proxy
continuous and endogenous increasing labor efficiency. We have two ways of
modeling human capital:

• one way is to see it very much like physical capital, in the sense output
has to be invested to increase the existing stock of human capital.
That is the Lucas’ approach, in which you can think of investing in
education by building more schools as a way to increase the existing
human capital stock.
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• The alternative way would be to reserve a part of the leisure time for
increasing the human capital stock, which can be thought of studying
harder to get better in a fraction of the leisure time. Unfortunately,
the second approach puts limit on the rate human capital can grow and
might fail to generate sustainable endogenous growth. Next, we look
at the Lucas’ human capital model.

Lucas’ Human Capital Model We have an Cobb-Douglas technology
with CRTS and human capital (H) as an input of production instead of labor
and the laws of motion for the inputs,

F (H, K) = AKαH1−α (47)

K ′ = ik + (1− δk)K (48)

H ′ = ih + (1− δh)H (49)

Now that there is no limit to the accumulation of human capital and
sustainable growth on a BGP is feasible. Furthermore, an analysis of the
characterization of the balanced growth path will indicate that this model
indeed has transitional dynamics, so unlike the AK model if economy starts
out of this optimal growth path economy can adjust and converge to it by
responding to prices in a de-centralized setting. If we model the law of motion
for human capital as,

H ′ = (1−N) + (1− δh)H (50)

where (1 − N) is the time devoted to accumulating human capital, say
by studying harder, we see there is a natural limit to the growth of human
capital and such an economy might not have a BGP. The key ingredient
of endogenous growth with labor is then the reproducibility of the human
capital without such a limit.

Apr. 3rd, 2007

12 Growth Through Externalities in Capital

Accumulation

We have seen in the AK model that the growth rate is endogenous and
determined solely by model primitives. Still, it is not directly or indirectly
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determined by the agents’ choices in our model. In Lucas’ human capital
model, the growth rate is determined by the choice of agents, specifically
by the optimal ratio of human and physical capital. The source of growth
in Lucas’ model is reproducibility of human capital. In this next model,
Romer introduces the notion of externality generated by the aggregate capital
stock to go through the problem of diminishing marginal returns to aggregate
capital. In this model, the source of growth will be the aggregate capital
accumulation, which is possible with a linear aggregate technology in capital
as we saw in the AK model. The firms in our model will not be aware of this
externality and will have the usual CRTS technology and observe the source
of growth coming from the TFP parameter. As usual with externalities,
the equilibrium outcome will not be optimal. Each firm has the following
technology,

yt = AK1−α
t kα

t n1−α
t (51)

but since the firms are not aware of the positive externality they are facing
they are solving the problem with the following technology.

yt = Atk
α
t n1−α

t (52)

(53)

where

At = AtK
1−α
t

We can see that the social planner in fact is solving an AK model in
per-capita terms. So does the de-centralized version of this economy have a
BGP and if it does, how would it look like? Assuming CRRA preferences
without leisure we can derive the BGP condition and pin down the growth
rate from the euler equation of a typical household,

1 = βγ−σ(1 + r) (54)

where γ =
ct+1

ct

is the growth rate at the balanced path as usual and r=MPk.

So to find out the marginal product of capital for the firm we differentiate
the technology w.r.t. kt,

1 + rt = αAK1−α
t kα−1

t n1−α
t + (1− δ) (55)
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and since the prices are determined by aggregate state variables Kt = kt

gives,
Aα− δ = r (56)

and substituting this into the euler equation we get the growth rate of con-
sumption.

[(Aα− δ + 1)β]
1
σ = γ (57)

Solving the AK problem the SP faces we can verify the optimal growth rate
for consumption is,

[(A− δ + 1)β]
1
σ = γsp. (58)

The important properties of the decentralized model are,

1. It is sub-optimal due to firms’ unawareness of the externality they are
facing and thus have lower growth rate.

2. Once again, the rental rate does not depend on the capital stock (due
to the aggregate linear technology, the states variables drop out from
the euler equation) and there is no transitional dynamics generated by
the model.

To sum up what we have done so far, we have started with models that had
exogenous growth and saw that we can make these models look and behave
like our NGM after appropriate transformation. Then we went on to look
at models that generate growth endogenously and saw that a prerequisite
for growth in these models is linearity of the technology in reproducible
factors. We looked at the simple AK model, where the technology is linear
in capital stock and analyzed the BGP of such an economy. Then we looked
at Lucas’ human capital model, in which we had two forms of capital, human
and physical, both of which are reproducible in terms of output. Then we
analyzed the model by Romer, which again has linearity in the reproducible
factor at the aggregate level (capital stock), but firms were facing the CRTS
technology with diminishing marginal return on capital and not aware of the
positive externality they face. Next we will see another model by Romer with
monopolistic competition and a R&D sector which can generate endogenous
growth.
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13 Monopolistic Competition, Endogenous Growth

and R&D

Romer’s monopolistic competition model has three production sectors, the
final goods production, intermediate goods production and R&D i.e. variety
production. Our usual TFP parameter in production function will represent
the ’variety’ in production inputs and as we will see, the growth of varieties
through research and development firms will make sure a balanced growth
path is sustainable. The production function in this economy is,

Yt = Lα
1t

∫ At

0

xt(i)
1−αdi (59)

where xt(i) is the type i intermediate good and there is a measure At of
different intermediate goods and L1t is the amount of labor allocated to
the final good production. The production function exhibits CRTS. The
intermediate goods are produced with the following linear technology,

∫ At

0

ηxt(i)di = Kt (60)

Now suppose the variety of goods grows at rate γ,that is At+1 = γAt. Is long
run sustainable growth possible? The answer to this question will depend
whether our final goods production technology is linear in growing terms. We
do know that by the curvature of the technology, optimality implies equal
amount of each variety will be used in production, xt(i) = xt,then we have,

Atηxt = Kt (61)

and our output at this equal variety becomes,

Yt = Lα
1tAtxt

1−α (62)

then substituting for xt we have,

Yt =
Lα

1t

η1−α
Aα

t K1−α
t (63)

thus if both At and Kt are growing at rate γ, then production function is
linear in growing terms and long run balanced growth is feasible. Note that
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this model becomes very similar to our previous exogenous labor productivity
growth under these assumptions. The purpose of this model is to determine
γ endogenously. What will be the source of growth, where does γ come from?
As we will see, there will be incentives for R&D firms to produce new ’vari-
eties’ because there will be a demand for them. These new varieties will be
patented to intermediate good production firms, where a patent will mean
exclusive rights to produce that intermediate good. So we will have monop-
olistic competition in the intermediate goods production. Now suppose the
law of motion for ’varieties’, which is the technology in R&D sector, is given
by

At+1 = (1 + L2tζ)At (64)

where L2t is the labor employed in R&D sector. Note that this is not a
regular law of motion in the sense that every new variety produced helps the
production of further new varieties. Hence, there is a positive externality
to variety production. Also, assume leisure is not valued and we have an
aggregate feasibility condition for labor

L2t + L1t = 1 (65)

Apr. 5th, 2007

The period t problem of a firm in the competitive final good production
sector is

max
xt(i),L1t

{Lα
1t

∫ At

0

xt(i)
1−αdi− wtL1t −

∫ At

0

qt(i)xt(i)di} (66)

and since we have CRTS with perfect competition we have zero profit with
following FOCs,

wt = αLα−1
1t

∫ At

0

xt(i)
1−αdi (67)

qt(i) = (1− α)Lα
1txt(i)

−α (68)

notice that the inverse demand function for good of variety i is,

(
qt(i)

(1− α)Lα
1t

)−1
α

= xt(i) (69)
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The intermediate goods industry will show monopolistic competition, in
which there is only one firm, that is one patent holder, producing each vari-
ety. Each firm takes the demand of its variety and prices as given, and solves
the following problem each period

Πt(i) = max
xt(i),Kt(i)

{qt(i)xt(i)−RtKt(i)} (70)

s.t. xt(i) =
Kt(i)

η

plugging in the inverse demand function and the technology constraint, the
FOC is,

(1− α)2xt(i)
−αL1t = Rtη (71)

and because of the symmetry we mentioned (xt(i) = xt = Kt

ηAt
) we can write

this FOC as,

(1− α)2(
Kt

ηAt

)−αL1t = Rtη (72)

i.e. the rental price of capital is not equal to it’s marginal product and there
is opportunities for positive profit. But also remember there is a fixed cost of
entering this industry, namely the price paid for the patent. Then as we will
see, the relation between the two will be one of our equilibrium conditions.
Now lets look at the problem of R&D firms,

max
At+1,L2t

{pP
t (At+1 − At)− wtL2t} (73)

s.t.At+1 = (1 + L2tζ)At

where pP
t is the patent of the price. Free entry is assumed, thus there will be

zero profits in equilibrium. Notice also the R&D firm is solving a static prob-
lem without realizing the positive externality this period’s decision creates
on next periods production. As we will see, this and the monopoly power of
the patent owners will be the sources of sub-optimality in the decentralized
solution.The FOC is,

pP
t =

wt

ζAt

(74)

where the wage (wt) is determined in the final goods market and given this
price, equilibrium quantity will come from the demand function. As we
mentioned before, one equilibrium condition will be that at any point in
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time, total profit a patent generates will be equal to price of it such that
there will also be zero profit in the intermediate goods market.

pP
t =

∞∑
τ=t

Πt(i)

(1 + r)τ−t
(75)

These conditions with constant growth equations for the growing variables
is sufficient to characterize the equilibrium growth rate of this economy.

14 Economies with Frictions

In this part of the course, we will discuss some type of models with frictions.
We are interested in mainly two types of frictions:

1. Hidden Actions

2. Lack of Commitment

The first model we study, labeled the ’optimal unemployment insurance’
problem, deals with the first type of friction. In the next section, we deal
directly with problems of commitment (only ONE-sided)

April 4th to April 12th, 2006 (Intensive Week)

15 Optimal unemployment insurance

15.1 (with observable effort)

Consider an economy where the probability of finding a job p (a) is a function
of effort a ∈ [0, 1]. And we assume that once the agent gets a job, she will
have wage w for ever. Thus, the individual problem is

max
at

E
∑

t

βt [u (ct)− at]

There are two cases: when the agent has got a job, she will pay no effort and
enjoy w for ever. The life long utility is

V E =
∑

t

βtu (w) =
u (w)

1− β
(76)
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When the agent is still unemployed, she will have nothing to consumer.
Her problem is

V u = max
a

{
u (0)− a + β

[
p (a) V E + (1− p (a) V u′)

]}
(77)

If the optimal solution of a is interior, a ∈ (0, 1), then the first order
condition gives

−1 + βp′ (a)
(
V E − V u

)
= 0 (78)

And since the V u is stationary,

V u = max
a

{
u (0)− a + β

[
p (a) V E + (1− p (a) V u)

]}
(79)

Solving (78)(79) gives the optimal a and V u. Another way is to suc-
cessively substitute a and obtain a solution because the problem defines a
contraction mapping operator. We can fix V u

0 , then solve (79) to get a (V u
0 )

and obtain V u
1 . Keeping going until V u

n = V u
n+1. In a word, optimal effort

level a∗ solves (79) with V u = V u′.
The probability of finding a job p (a) is called hazard rate. If agents did

not find a job with effort level a∗, next period, she will still execute the same
effort level a∗. Why? Because the duration of unemployment is not state
variable in agent’s problem. (If agents do not have enough realization about
the difficulty of getting a job. With learning, their effort a will increase as
they revise their assessment of the difficulty. But such revision of belief is
not in this model.)

Now suppose resource is given to people who is unemployed to relive her
suffering by a benevolent planner. This planner has to decide the minimal
cost of warranting agent a utility level V , Ψ (V ). To warrant utility level
V , the planner tells the agent how much to consume, how much effort to
exert and how much utility she will get if she stay unemployed next period.
Obviously, the cost function Ψ (V ) is increasing in V .

The cost minimization problem of the planner can be written in the fol-
lowing recursive problem:

Ψ (V ) = min
c,a,V u

c + [1− p (a)]
1

1 + r
Ψ (V u) (80)

subject to
V = u (c)− a + β

[
p (a) V E + (1− p (a)) V u

]
(81)
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To solve the problem, construct Lagrangian function

L = c+[1− p (a)] βΨ (V u)+θ
[
V − u (c) + a− β

[
p (a) V E + (1− p (a)) V u

]]

FOC: (c)

θ =
1

uc

(82)

(a)

Ψ (V u) = θ

[
1

βp′ (a)
− (

V E − V u
)]

(83)

(Vu)
Ψ′ (V u) = θ (84)

Envelope condition
Ψ′ (V ) = θ (85)

We will work on some implication of these conditions:
1. Compare (83) and (78), we can see that the substitution between

consumption and effort is different from the one in agent’s problem without
unemployment insurance. This is because the cost of effort is higher for work
that it is from the viewpoint of planner.

2. (84) tells us that the marginal cost of warranting an extra unit of
utility tomorrow is θ.,provided that tomorrow V u is optimally chosen when
today’s promise is V . And (85) tells us that the marginal cost of warranting
an extra unit of V today is θ.

3. Given that Ψ is strictly concave, V = V u.
4. Regardless of unemployment duration, V = V u. So, effort required

the planner is the same over time. Hazard rate is still constant.
Next , we will study the case when effort is not observable. Planner can

only choose consumption and V u. Effort level is chosen optimally by worker
and it is unobservable.

15.2 (Problem with UN-observable effort)

When a is not observable, planner can only choose c and V u. And households
choose a optimally. Now it becomes a principle-agent problem. We will solve
the problem backward.
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If given c and V u, the agent will solve

max
a

u (c)− a + β
[
p (a) V E + (1− p (a)) V u

]
(86)

FOC is
[p′ (a) β]

−1
= V E − V u (87)

This FOC gives an implicit function of a as a function of V u: a = g (V u).
(Because c and a are separate in the utility function, a is not a function of
c).

Then, the planner solve her cost minimization problem, in which the
optimality condition is also one constraint.

Ψ (V ) = min
c,a,V u

c + [1− p (a)] βΨ (V u)

subject to

V = u (c)− a + β
[
p (a) V E + (1− p (a)) V u

]
(88)

1 = [p′ (a) β]
[
V E − V u

]
(89)

Lagrangian is

c + [1− p (a)] βΨ (V u) + θ
[
V − u (c) + a− β

[
p (a) V E + (1− p (a)) V u

]]

+η
[
1− [p′ (a) β]

[
V E − V u

]]

FOC: (c)
θ−1 = uc

(a)

Ψ (V u) = θ

[
1

βp′ (a)
− (

V E − V u
)]− η

p′′ (a)

p′ (a)

(
V E − V u

)
(90)

(Vu)

Ψ′ (V u) = θ − η
p′ (a)

1− p (a)
(91)

Envelope condition
Ψ′ (V ) = θ (92)

Again, (91) tells the marginal cost to warrant additional amount of de-
layed promise. (92) gives the marginal cost to increase today’s utility. The
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Lagrangian multiplier associated with constraint (89) is positive, η > 0,
which means that the constraint is binding. So,

η
p′ (a)

1− p (a)
> 0

Therefore, we have
Ψ′ (V u) < Ψ′ (V ) ⇒ V u < V

from the strict concavity of Ψ (.). The delayed promised utility decreases
over time.

Let θu = θ − η p′(a)
1−p(a)

, then θu < θ,which tells us about the consumption

path. Consumption decreases over time because θ−1 = uc.
Overall, we get the following model implications: optimal unemployment

insurance says that longer unemployment period the agent stays, the less
insurance she will be insured for. In this way, the planner induces the higher
effort level. Although you cannot let people do what is optimal, such behavior
can be achieved by giving out less consumption and promised utility over
time. This model implies that time-varying unemployment insurance plan is
optimal, under which the replacement rate θ goes down over time.

16 Models with one sided lack of commit-

ment

We now study an economy where the agent cannot commit to the contract
that the Social Planner offers her. This means that as long as what the
Planner offers is better than what the agent can do alone she stays around.
If in some period the shock that the agent receives is so good that her value
under autarky is higher than what the planner is offering she will be willing
to walk away and be on her own (at no cost). On the other hand, if the
planner wants to keep her around, he now has to offer even more. In this
model there is no storage or financial markets, and so the agent consumes
the fruit (or fish) which is just the shock that she receives in each period.

Consider a village of agents, each of them receive s ∈ {s1, s2, ..., s} in
every period. We assume that s is iid. The probability that a certain s is
realized is Πs. ht is a history of shocks up to period t.
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First, if the agent stays in autarky, she will enjoy total utility,

VAUT =
∞∑

t=0

βt
∑

s

Πsu(s) =

∑
s Πsu(s)

1− β

Note that here V A is the utility of the agent before endowment shock is
realized.

Now we assume that the Insurer offers a contract to the agent, which
transfer resources and provide insurance to her. The Insurer can commit.
But the agent may leave the insurer (Commitment problem). Thus, this
model has one-sided commitment model: an agent can walk away from a
contract but the other cannot. Therefore, the contract should be always in
the interest of the agent for her to stay.

We define a contract ft : Ht → c ∈ [0, τ ]. We will see next class that
incentives compatibility constraint requires that at each node of history Ht,
the contract should guarantee a utility which is higher than that in autarky.

Notice that the problem is different from Lucas tree model because of the
shock realization timing. In Lucas tree model, shock is state variable because
action takes place after shock is realized. Thus, action is indexed by shock.
Here action is chosen before shock realization. Therefore, shock is not a state
variable and action is state contingent.

In Lucas tree model, V (s) = maxc u (c) + β
∑

s′ Πss′V (s′). Here, if we
write the problem recursively, it is V = maxcs

∑
s Πsu (cs) + βV .

Remember, the Insurer will make a deal with the agent. They sign a
contract to specify what to do in each state. ht ∈ Ht. Contract is thus
a mapping ft (ht) → c (ht). With this contract, the agent gives yt to the
Insurer and receives ct = ft(ht−1, yt). But if the agent decided not to observe
the contract, she consumes yt this period and cannot enter a contract in the
future, i.e. she has to live in autarky in the future.

For the Insurer to keep the agent around, the contract has to be of in-
terest to the agent (commitment issue). There are two possible outcome if
this contract is broken. One is that the agent goes away with current and
future endowment. The other is that they renegotiate. We ignore the second
possibility as no renegotiation is allowed, since it would introduce a lot of
messy algebra.

The first best outcome is to warrant a constant consumption ct to the
agent who is risk averse. But because of the one-side lack of commitment,
the first best is not achievable. The contract should always be attractive to
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the agent, otherwise, when she gets lucky with a high endowment ys, she
will feel tempted to leave. So, this is a dynamic contract problem which
the Insurer will solve in order to induce good behavior from the agent. The
contract is dynamic because nature keeps moving.

We say the contract ft (ht) is incentive compatible or satisfies participa-
tion constraint if for all ht,

u(ft(ht)) +
∞∑

τ=1

βτ
∑

s

Πsu(ft+τ (ht+τ )) ≥ u(ys (ht)) + βV A (93)

The left hand side is utility guaranteed in the contract. And the right
hand side is the utility that the agent can get by herself. The participation
constraint is not binding if ys is low. And when ys is high, PC is binding.

16.1 Problem of the Insurer

In this model, problem of the Insurer is to find an optimal contract that
maximizes the value of such a contract of warranting V to her. We define
the problem using recursive formula. Firstly, let’s define the value of contract
to the Insurer if she promised V to the agent. Φ(V ) can be defined recursively
as the following:

Φ(V ) = max
{cs,ωs}S

s=1

∑
s

Πs[(s− cs) + βΦ(ωs)] (94)

subject to

u(cs) + βωs ≥ u(s) + βV A ∀s (95)∑
s

Πs[u(cs) + βωs] ≥ V (96)

Notice that there are 1+S constraints. The choice variables cs, ωs are state-
contingent where ωs is the promised utility committed to the agent in each
state. In the objective function,

∑
s Πs(s − cs) is the expected value of net

transfer.
There are two sets of constraints. (95) is IC and (96) is promise keeping

constraint.
The First Order Conditions to the problem are:
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(cs)
Πs = (θs + λΠs)u

′(cs) (97)

(ωs)

−ΠsΦ
′(ωs) = λΠs + θs (98)

(µ) ∑
s

Πs[u(cs) + βωs] = V (99)

(λ)
u(cs) + βωs ≥ u(s) + βV A (100)

In addition, Envelope Theorem tells that:

Φ′(v) = −λ (101)

Interpreting the first order conditions:
1. (97) tells that in an optimal choice of cs, the benefit of increasing one

unit of c equals the cost of doing so. The benefit comes from two parts: first
is λΠsu

′(cs) as increasing consumption helps the Insurer to fulfill her promise
and the second part is θsu

′(cs) since increase in consumption helps alleviated
the participation constraint. And the cost is the probability of state s occurs.

2. (98) equates the cost of increasing one unit of promised utility and the
benefit. The cost to the Insurer is −ΠsΦ

′(ωs) and the benefit is µΠs + λs

which helps the Insurer deliver promise utility and alleviate the participation
constraint.

How about the contract value Φ (V ). First, Φ(V ) can be positive or
negative.

Claim: There exits V such that Φ (V ) > 0.
What’s the largest V we will be concerned with? When PC will be binding

for sure. If PC binds for the best endowment shock s, then PC holds for all
the shock s. When the agent gets the best shock, the best autarky value is
then

VAM = u (s) + βVA

And the cheapest way to guarantee VAM is to give constant consumption cS,
such that

VAM =
u (cs)

1− β
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From this case, we can see that because of lack of commitment, the Insurer
will have to give more consumption in some states. While when there is no
lack of commitment, strict concavity of u (.) implies that constant stream of
consumption beats any {ct} that have the same present value, as there is no
PC.

16.2 Characterizing the Optimal Contract

We will characterize the optimal contract by considering the two cases: (i)
θs > 0 and (ii) θs = 0.

Firstly, if θs = 0, we have the following equations from FOC and EC:

Φ′(ωs) = −µ (102)

Φ′ (V ) = −µ (103)

Therefore, for s where PC is not binding,

V = ωs

cs is the same for all s. For all s such that the Participation Constraint is
not binding, the Insurer offers the same consumption and promised future
value.

Let’s consider the second case, where θs > 0. In this case, the equations
that characterize the optimal contract are:

u′(cs) =
−1

Φ′(ωs)
(104)

u(cs) + βωs = u(s) + βV A (105)

Note that this is a system of two equations with two unknowns (cs and ωs).
So these two equations characterize the optimal contract in case θs > 0.
In addition, we can find the following properties by carefully observing the
equations:

1. The equations don’t depend on V . Therefore, if a Participation Con-
straint is binding, promised value does not matter for the optimal contract.

2. From the first order condition with respect to ωs, Φ′(ωs) = Φ′(V )− θs

Πs
,

where θs

Πs
is positive. Besides, we know that Φ is concave. This means that

V < ωs. In words, if a Participation Constraint is binding, the moneylender
promises more than before for future.

Combining all the results we have got, we can characterize the optimal
contract as follows:
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1. Let’s fix V0. We can find a s∗(V0), such that ∀s < s∗(V0), the partic-
ipation constraint is not binding and ∀s ≥ s∗(V0), the constraint is
binding, i.e. θs > 0.

2. The optimal contract that the Insurer offers to an agent is the following:

If st ≤ s∗(V0), the Insurer gives (V0, c(V0)). Both of them are the same
as in the previous period. In other words, the Insurer offers the agent
the same insurance scheme as before.

If at some point in time st > s∗(V0), the moneylender gives (V1, c(V1)),
where V1 > V0 and c doesn’t depend on V0. In other words, the mon-
eylender promises larger value to the agent to keep her around.

So the path of consumption and promised value for an agent is increas-
ing with steps.

April 12th, 2007

Overlapping Generations (OLG or OG ) Models

So far we been utilizing the NGM with infinite horizon with no demographic
details. This wasn’t because we didn’t have the tools to consider a finite hori-
zon. Many important questions in macroeconomics should be approached
within a framework where these details matter. These models contain agents
who are born at different dates and have finite lifetimes, even though the
economy goes on forever. This induces a natural heterogeneity across indi-
viduals at a point in time, as well as nontrivial life-cycle considerations for a
given individual across time. These features of the model can also generate
differences from models where there is a finite set of time periods and agents,
or from models where there is an infinite number of time periods but agents
live forever.

Let’s know first consider a very basic OLG model: Suppose that the econ-
omy goes on forever, and that at every date t there is born a new generation
of individuals (t-born agents) who live for two periods. This is the simplest
case where the generations overlap. There is also a generation of initial old
guys at t = 1 who only live for one period. For now, every generation con-
sists of a [0, 1] continuum of homogeneous agents. In the 1st and 2nd periods
of life, and let w1 = 3 and w2 = 1 be (time-invariant) endowments in the
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1st and 2nd periods of life of a t−born agent. Let cy
t and co

t+1 denote the
consumption of a t−born agent when he is young in period t and when he
is old in period t + 1, respectively. The utility function of a t-born agent is
log(cy

t ) + log(co
t+1. Initial old guys consume only co

0 and are endowed e2 = 1.

Definition: A SME for this economy is a list of sequences, {p∗t , cy∗
t , co∗

t+1}∞t=0

s.t.

1. Given prices, {cy∗
t , co∗

t+1} solves the t-born agents problem: for t =
0, 1, 2..

max
cy
t ,co

t+1

log(cy
t ) + log(co

t+1)

s.t. p∗t + 3p∗t+1 = cy
t p
∗
t + cy

t+1p
∗
t+1

2. co
0 = 1

3. Markets are clear: cy∗
t + co∗

t = 4, t = 0, 1, ..

Autarky is the unique equilibrium of this economy: Since only option
for the initial olds is to eat their endowment, by market clearance condition
every future generation consume their endowment. Then by the FOC of the
t-born agents problem, we characterize the prices assuming p∗0 = 1:

co∗
t+1

cy∗
t

=
p∗t

p∗t+1

=
1

3
t = 0, 1, 2..

Is this equilibrium (autarky allocation) Pareto optimal? Obviously not (if
at every period youngs give olds ε ≤ 1 of their endowment, everyone would
be better off). Then what is wrong with the First Basic Welfare Theorem?
Indeed there is nothing wrong with FBWT, but it just doesn’t apply to this
environment. Why it doesn’t apply to this environment? Because autarky is
a SME not an Arrow-Debrou equilibrium.

Now we introduce money (an intrinsically valueless piece of paper) into
our model:

Definition: A monetary equilibria is a list of sequences, {q∗t , R∗
t , c

y∗
t , co∗

t+1,m
∗
t , b

∗
t}∞t=0

s.t.

1. Given prices, {q∗t , R∗
t , }, {cy∗

t , co∗
t+1, b

∗
t} solves the t-born agents problem:

for t = 0, 1, 2..
max
cy
t ,co

t+1

log(cy
t ) + log(co

t+1)
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s.t. cy
t + q∗t mt + bt = 3

co
t+1 = q∗t+1mt + R∗

t bt + 1

2. co
0 = 1 + q∗0M

3. Markets are clear: cy∗
t + co∗

t = 4, mt = M , b∗t = 0 t = 0, 1, ..

Definition: A non-monetary equilibria is a monetary equilibria where
q∗t = 0, ∀t.

Definition: A stationary monetary equilibria is a monetary equilibria
where q∗t = q∗, ∀t.

Note: Please check the Problem set 9 Q3 for the difference equations that
characterize the monetary equilibria.

April 16th, 2007

16.3 Labor Earnings

What is a good theory on ε? If we look at the average wage per hour at the
different age (wε), the wage per hour increases with age, peaks at around 40,
and slowly decreases until the retirement. Since w is assumed to be same for
all agents, we need a theory that explains the difference in ε to replicate the
hump shape of the average wage profile. What kind of theory do we have?
There are two ways, in general:

1. Hormones: Take {ε} as exogenous; i.e., assuming that the young agents
are useless because they are young.

2. Human capital theory. Assume that the difference in capital stock
between the young agents and the old agents yields the difference in ε.
There are three branches:

(a) Learning-by-doing: Assume that agents accumulate human cap-
ital, ε by working. Agents learn something which enhances their
human capital stock while they are working. Imagine interns of
doctor. The young doctors learn how to do operations by actually
working at hospitals. This idea is represented by:

εi+1 = φi(εi; ni)
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where ni is hours worked of agents of age i. φi is indexed by i
because learning ability can be different depending on age.
The problem of an agent is :

Vi(a, ε) = max
c,n

u(c) + ν(n) + βVi+1(a
′, ε′)

c + a′ = wε′n + (1 + r)a

ε′ = φi(ε, n)

(b) Learning-by-not-doing: Assume that agents accumulate hu-
man capital by actually learning (which is different from working
or enjoying leisure). This idea is represented by:

εi+1 = φ(εi; li)

where li is the time spent on learning, which is different from
working or enjoying leisure. Agents allocate their time in learning
to accumulate human capital.
The problem of an agent is:

Vi(a, ε) = max
c,n

u(c) + ν(n + l) + βVi+1(a
′, ε′)

c + a′ = wε′n + (1 + r)a

ε′ = φi(ε, l)

(c) Schooling: the difference from learning models above is that most
of education is acquired in the early stage of life. Keane and Ken
Wolpin showed that 90% of people’s fate is determined before age
16, by using structurally estimated model of the career choice.
Non college guys start earning 4-5 years earlier than college gradu-
ates, however college graduates make more than non college guys.
Then why some people decide to go to college or some of them
not?

Borrowing constraint

Discount factor: College graduates are more patient than non
college guys

For non college guys it is more costly to go to college in terms of
intelligence

Mostly parents make the college decision.
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April 17th, 2007

σy, standard deviation of income among people, increases by age. What
could be the possible reasons?

• The skill levels are amplified: Someone with better skill level at the
beginning augment his skills better than others.

• Luck: It is all luck, luck leads to more variance. Also luck is persistent:
ε with σε then the variance of ρε1 + ε2 has variance of (1 + ρ2)σ2

ε .

OLG in Business Cycles

Agents live I periods, their endowment of labor in period i is εi. Newborns
born with zero asset.
State variables: i (age of the agent),z (Productivity shock), A (Vector of
aggregate asset levels of I cohorts ), a (individual asset level).

Vi(z, A, a) = max
c,a′(z′)

u(c) + β
∑

z′
Γzz′Vi+1(z

′, A′(z′), a′(z′))

s.t. c +
∑

z′
qz′(z, A)a′(z′) = R(z, K)a + w(z,K)εi

A′(z′) = Gz′(z, A)

R(z, K) = (1− δ) + zF1(
I∑

i=2

,

I∑
i=1

εi)

w(z, K) = zF2(
I∑

i=2

,

I∑
i=1

εi)

with solution a′(z′) = gi
z′(z, A, a)

Definition: A RCE of this equilibrium is a list of {V i∗(.), gi∗(.), G∗(.), q∗(.), R∗(.), w∗(.)}
s.t.

1. Given {G∗(.), q∗(.), R∗(.), w∗(.)}, {V i∗(.), gi∗(.)} solves the agent’s prob-
lem.

2. Gi
z′(z, A) = gi−1

z′ (z, A,Ai−1)
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3. There are nz − 1 market clearing conditions:

∑
i

Gi
ẑ′(z, A) =

∑
i

Gi
z̃′(z, A) ∀ẑ′, z̃′ ∈ Z

4.
∑

z′ qz′(z, A) = 1 (No Arbitrage condition)

Now let’s introduce the probability of surviving from one period to next. Let
si is the probability of surviving from i to i + 1. (So we know that sI = 0.)
Then the probability of living in the ith period is µi =

∏i−1
j=0 si.

But what happens to the assets of the death people. There are few options
to incorporate this issue into our model:

1. Pharaoh Model: Bury the capital with the death. Then the problem
of the agent is:

Vi(z, A, a) = max
c,a′(z′)

u(c) + βsi

∑

z′
Γzz′Vi+1(z

′, A′(z′), a′(z′))

s.t. c +
∑

z′
qz′(z, A)a′(z′) = R(z, K)a + w(z, K)εi

2. The capital of death is reallocated to cohort j (cohort j is arbitrarily
chosen):

Vi(z, A, a) = max
c,a′(z′)

u(c) + βsi

∑

z′
Γzz′Vi+1(z

′, A′(z′), a′(z′))

s.t. c +
∑

z′
qz′(z, A)a′(z′) = R(z, K)a + w(z,K)εi + 1i=jB(z, A)

B(z, A) =
∑

i

µi(1− si)Ai

3. Perfect Annuity Market: The assets of the death is equally reallocated
to all survivors:

Vi(z, A, a) = max
c,a′(z′)

u(c) + βsi

∑

z′
Γzz′Vi+1(z

′, A′(z′), a′(z′))

s.t. c +
∑

z′
qz′(z, A)a′(z′)si = R(z,K)a + w(z, K)εi
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April 18th, 2007

What are the important things in life?

• Health

• Money

• Love

• Children

Health

Suppose s is the health condition of an agent which is assumed to be Markov
process. Then the agent’s problem is:

Vi(s, a) = max
c,a′

u(c, s) + γi(s)β
∑

s′
Γss′Vi+1(s

′, a′)

Ψ(s) + c + a′ = (1 + r)a + wφi(s)

where γi(s) is the probability of survival of a cohort i agent from i to i + 1,
Ψ(s) is the cost of being in a health condition of s, and φi(s) is the labor
endowment function of cohort i agent which depends on health condition.

Love (Marriage)

Value function of a female in cohort i married with a guy in cohort j:

V f
i,j(a) = max

c,n,f
uf (c, nf ) + βV f

i+1,j+1(a
′)

c + a′ = εjw
m + εin

fwf + a(1 + r)

Let’s introduce divorce into this function:

V f
i,j(a, z) = max

c,n,f
uf (c, nf ) + β

∑

z′
Γzz′V

f
i+1,j+1(a

′, z′)

c + a′ = εjw
m1{z=j} + εin

fwf + a(1 + r)
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April 19th, 2007

A model of single people with health under partial control:

V (a, h) = max
c,c′,y

u(c, y) + β{φ(h′)u(c′, h′) + (1− φ(h′))uD}

h′ = ψ(h, y), φ′ > 0

a = c + c′

Why people marry?
- Match specific quality, q, of the partner.
- Individual education level.
- q, e are female’s attributes, and q∗, e∗ are the male’s.
- V fm is the value function of married female.
- V fs is the value function of single female.
- V mm is the value function of married male.
- V ms is the value function of single male.

V fm(e, e∗, q, q∗)− V fs(e) > 0

V mm(e∗, e, q∗, q)− V ms(e∗) > 0
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