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1 Existence and Pareto Optimality in the Growth
Model

To support a Pareto Optimal allocation as a solution to the growth model
presented before, we have to take care of certain issues that arise when we
apply the SBWT to get our equilibrium. Those issues/solutions are listed
below:

• What are the ’transfers’ of the conclusion of the SBWT in terms of the
growth model? / we don’t need transfers; agents are homogeneous, so
even if they can act differently, they choose to do the same as everyone
else.

• Do we have to worry about the ’Quasi’ part of the equilibrium? / If we
can find a cheaper point in the feasible set, then the Quasi equilibrium
is equivalent to the AD equilibrium

• representation of prices/ if we can check the conditions of the Prescott
& Lucas Theorem, then we have a dot product representation of prices.

1.1 Characterization of the solution to the growth model

The solution to the growth model is triplet of sequences {c∗t , k∗t+1, q
∗
t }∞t=0.

As you proved in the homeworks, you can use the Arrow-Debreu apparatus
in order to argue that such an equilibrium exists. To characterize more
carefully the equilibrium, we have to impose additional restrictions:

• u, f are C2 (twice continuously differentiable)

• Inada conditions (see the Stockey and Lucas textbook for specifics)

With these conditions, we can restrict our attention to interior solu-
tions, which means that first order conditions are sufficient to characterize
equilibria.

Rewriting the growth model (replacing consumption in the utility func-
tion using the budget constraint):

max
{kt+1}∞t=0

u[f(kt)− kt+1]
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Taking the FOC with respect to kt+1 and replacing for ct to ease notation,
we get (note that we are using variables with * to denote that the following
are equilibrium conditions)

−βtu′[c∗t ] + βt+1u′[c∗t+1]f
′(k∗t+1) = 0

rearranging terms

u′[c∗t ]
βu′[c∗t+1]

= f ′(k∗t+1) (1)

Therefore, the solution to the growth model has to satisfy the condition
in (1).

Now, for prices, we can rewrite the budget equation from the AD setting
(if the conditions of Prescott and Lucas are satisfied so that prices have a
dot product representation) as follows

p(x) ≡
∞∑

t=0

(q1tx1t + q2tx2t + q3tx3t) ≤ 0 (2)

Since ct + kt+1 = x1t, kt ≥ −x2t ≥ 0 and 1 ≥ −x3t ≥ 0, (2) becomes

∞∑
t=0

(q∗1t(ct + kt+1)− q∗2tkt − q∗3t) ≤ 0 (3)

Note that in (3), we have used the fact that there is no waste (agents rent
their full capital and labor services) and that agents take the equilibrium
prices as given. The maximization problem now can be set as a Lagrangian:

max
{ct,kt+1}∞t=0

£ =
∞∑

t=0

βtu[ct]− λ{
∞∑

t=0

q∗1t(ct + kt+1) + q∗2tkt + q∗3t} (4)

The first order conditions of this problem with respect to ct and kt+1 are
respectively

βtu′[c∗t ]
q∗1t

= λ (5)

λq∗1t − λq∗2,t+1 = 0 (6)
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Note that (6) implies that q∗1t = q∗2,t+1
1, which pins down one sequence

of prices (specifically, the price of capital services). From (5), we get

λ =
βtu′[c∗t ]

q∗1t

=
βt+1u′[c∗t+1]

q∗1,t+1

⇒ u′[c∗t ]
βu′[c∗t+1]

=
q∗1t

q∗1,t+1

From before, we know that the left hand side of the last equation equals
f ′(k∗t+1). Hence

q∗1t

q∗1,t+1

= f ′(k∗t+1) (7)

Since f ′ represents the (technical) rate of exchange between goods today
and goods tomorrow, (7) tells us exactly what the sequence of output prices
should be. Finally, to obtain q∗3t, we turn to problem of the producer

max
y∈Yt

q∗(y) = q∗1ty1t + q∗2ty2t + q∗3ty3t

st

y1t = f(−y2t,−y3t)

Again, we know that {k∗t+1, 1}∞t=0 solve this problem. Then, the problem
of the firm is equivalent to

max
y∈Yt

f(kt, y3t)− q∗2tkt − q∗3ty3t

Taking FOCs with respect to k∗t and y3t respectively

q∗1tfk(k∗t , 1) = q∗2t

q∗1tfn(k∗t , 1) = q∗3t

Hence, the price of labor services must satisfy fn(k∗t , 1) = q∗3t/q∗1t ∀t.
1This condition is misleading, since we don’t have depreciation. In the more general

case when δ 6= 1, the condition is

q∗1t

q∗1t+1

= 1− δ +
q∗2,t+1

q∗1t+1
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We know now how to characterize the sequence of prices at equilibrium
in the growth model. The problem with the AD framework however, is that
we have a triple infinite (!) number of prices. Together with the assumption
that all trade takes place at t = 0, this implies that agents must know a
triple infinite number of prices in order to solve their problem.

We want to depart from this assumption of all trading happening at the
beginning of time, so we will define sequential markets and a corresponding
sequential markets equilibrium (SME). Note that we would like to maintain
existence, uniqueness and optimality of the equilibrium, so we would like
ADE ⇔ SME.

1.2 Sequential Markets Equilibrium

• We need a spot market at every period of time where agents would
be able to trade output, capital and labor services and a new good
(which we will specify below) which are ’loans’.

• Agents must be able to move resources across time.

Clearly, the budget constraint will change from the previous setup. In
ADE

3∑
i=1

∞∑
t=0

qitxit ≤ 0

In SME, we introduce the concept of ’loans’ (l), to enable agents to move
resources across time. Loans are rights to a R units of output/consumption
tomorrow, in exchange of 1 unit of output/consumption today. So, the
budget constraint becomes

−ltRt + lt+1 +
3∑

i=1

qitxit ≤ 0 ∀t

Definition 1. A Sequence of Markets Equilibrium is {x∗it, q∗t , y∗it, l∗t+1, R
∗
t }∞t=0

such that

• Agents maximize, i.e.

{x∗it, l∗t+1} ∈ arg max
x∈X

∞∑
t=0

βu[ct(x)]

st
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ct + kt+1 + l∗t+1 = R∗
t lt + q∗2tkt + q∗3t

k0, l0 given

• Firms maximize

• x∗ = y∗ (market clears)

• l∗t+1 = 0 ∀t (loan market clears)

To show that ADE ⇔ SME, we need to check that allocations and
choices of the agents in both worlds are the same. In the SME ⇒ ADE
direction, it’s easy to see that if we have a SME, we can construct an ADE
just by ignoring {lt+1} (it’s zero at equilibrium anyway).

Conversely (ADE ⇒ SME), if we have an ADE, we need l∗t+1 and R∗
t

to construct a SME. Again, given the condition for the clearing of the
loans market, l∗t+1 comes trivially. For R∗

t , we use an arbitrage condition:
since loans and capital perform the same function (move resources from one
period of time to another), then their price should be the same. Specifically

Rt =
q∗1t

q∗1,t+1

Finally, we have a close relationship between prices between both equi-
libriums. If {x∗, y∗, q∗} is an ADE and {x∗, y∗, q̂∗, R∗, l∗} is a SME, the
following is true since at a SME, the budget constraint is priced with respect
to output/consumption at each point of time

q̂∗it =
q∗it
q∗1t

∀t

1.3 SME ’easy’

Now we will define a simpler version of the SME. Basically, we will simplify
the definition of equilibrium by ignoring loans and using the properties of
the production function

Definition 2. A SMEE is {c∗t , k∗t+1, w
∗
t , R

∗
t } such that
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• Agents maximize:

{c∗t , k∗t+1} ∈ arg max
{ct,kt+1}

∞∑
t=0

βtu[ct]

st

ct + kt+1 = R∗
t kt + w∗

t

k0 given

• Firms maximize:

{k∗t+1, 1} ∈ arg max
kt,nt

f(kt, nt)−R∗
t kt − w∗

t nt

• Market clearing:
c∗t + k∗t+1 = f(k∗t , 1)

Note that the last condition is redundant, because the production func-
tion is homogenous of degree one, i.e., production is exhausted in the pay-
ment to production factors.

After all this work, we still have the problem of how to calculate the equi-
librium. From the FOCs we know that to get a solution, we have to solve a
second order difference equation, with an initial conditions plus a transver-
sality condition. Nevertheless, the Growth model has infinite dimensions,
which complicate things a bit.

The next step is to reformulate the problem in a recursive form. This is
much better, since we will be able to solve the problem recursively, that is,
every new period, the agent faces the same problem.

2 Stochastic Processes

2.1 Markov Process

In this course, we will concentrate on Markov productivity shocks. Consid-
ering shocks is really a pain, so we want to use less painful ones. A Markov
shock is a stochastic process with the following properties:

1. there are FINITE number of possible states for each time. More intu-
itively, no matter what happened before, tomorrow will be represented
by one finite set.
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2. the only thing that matters for the realization of tomorrow’s shock
is today’s state. More intuitively, no matter what kind of history we
have, the only thing you need to predict the realization of the shock
tomorrow is TODAY’s realization.

More formally, for each period, suppose either z1 or z2 happens 2. Denote
zt is the state today and Zt is the set of possible states today, i.e. zt ∈
Zt = {z1, z2} for all t. Since the shock follows a Markov process, the state
tomorrow will only depend on today’s state. So let’s write the probability
that zj will happen tomorrow, conditional on today’s state being zi as Γij =
prob[zt+1 = zj |zt = zi]. Since Γij is a probability, we know that∑

j

Γij = 1 for ∀i (8)

Notice that a 2-state Markov process is summarized by 6 numbers: z1, z2,
Γ11, Γ12, Γ21, Γ22.

The great beauty of using a Markov process is that we can use the explicit
expression of probability for future events, instead of using the ambiguous
operator called expectation, which very often people don’t know what it
means when they use it.

2.2 Representation of History

• Let’s concentrate on a 2-state Markov process. In each period the
state of the economy is zt ∈ Zt = {z1, z2}.

• Denote the history of events up to t (which one of {z1, z2} happened
from period 0 to t, respectively) by ht = {z1, z2, ..., zt} ∈ Ht =
Z0 × Z1 × ...× Zt.

• In particular, H0 = ∅, H1 = {z1, z2}, H2 = {(z1, z1), (z1, z2), (z2, z1),
(z2, z2)}.

• Note that even if the state today is the same, past history might be
different. By recording history of events, we can distinguish the two
histories with the same realization today but different realizations in
the past (think that the current situation might be ”you do not have a
girl friend”, but we will distinguish the history where ”you had a girl
friend 10 years ago” and the one where you didn’t

2Here we restrict our attention to the 2-state Markov process, but increasing the num-
ber of states to any finite number does not change anything fundamentally.
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• Let Π(ht) be the unconditional probability that the particular history
ht does occur. By using the Markov transition probability defined in
the previous subsection, it’s easy to show that (i) Π(h0) = 1, (ii) for
ht = (z1, z1), Π(ht) = Γ11 (iii) for ht = (z1, z2, z1, z2), Π(ht) =
Γ12Γ21Γ12.

February 1st, 2007

3 Stochastic Growth Model

With this, we can rewrite the growth model when these shocks affect the
production function (usual convention in Macro). Preferences are given by
the usual von Neumann-Morgenstern utility

u (x) =
∑

t

βt
∑

ht∈Ht

π (ht) u [ct (ht)] .

In an Arrow -Debreu world the constraint is3

∑
t

∑
ht∈Ht

∑
j

pj
t (ht) xj

t (ht) ≤ 0, where j = 1, 2, 3.

In a SM setting we need to give to the agent enough tools, so that she can
consume different quantities in different states of the world. In other words,
we have to make sure that whatever she was able to do in an AD setting, she
will also be able to do it in the SM setting. To that end, we will introduce
loans and state contingent claims (Also known as Arrow securities or bonds).
For example, bt

(
ht−1, z

i
)

is a claim that the agent bought in period t − 1,
and will pay 1 unit of consumption for sure if state i occurs. In the SM
world, the budget constraint will be

ct (ht) + kt+1 (ht) + `t (ht) +
∑
zt+1

qt(ht, zt+1)bt+1 (ht, zt+1) =

kt (ht−1) Rk
t (ht) + `t−1 (ht−1) R`

t (ht) + wt (ht) + bt (ht−1, zt) ,

3The definition of the relevant commodity spaces and consumption/production sets is
in the second problem set
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where qt(ht, zt+1) is the price of the state contingent claim that pays 1
in period t + 1 if state zt+1 occurs.

From the definition of these assets, we can derive immediately a no-
arbitrage condition for loans and the state contingent securities. On the one
hand, if we save one unit of consumption today and get a loan, the gross
return is given by

R`
t+1(ht)

1
, since tomorrow the loan will pay some interests. On the other hand, by
using that same unit of consumption and investing in Arrow securities, we
get a gross return of∑

zt+1
qt(ht, zt+1)b

b
=

∑
zt+1

qt(ht, zt+1)

where b is the level of certain future consumption one can get by spending
1 unit of current consumption. Since these two ways of savings are the same,
the no-arbitrage condition is

1 = R`
t+1(ht)

∑
zt+1

qt(ht, zt+1)

The importance of the no arbitrage conditions is that we can eliminate
(shut down) some markets, since they can be perfectly replicated by other
markets. In the example above, we can close the state contingent market,
since we already have a loan market.

Furthermore, given our representative agent assumption, in equilibrium
we don’t need any additional markets, since

`∗ = b∗ = 0 ∀t, (ht, zt+1)

We can also derive this no-arbitrage condition through first order con-
ditions. Using the lagrangian of the problem (with multipliers λ for each t
and ht) and taking a FOC with respect to bt(ht, zt+1)

qt(ht, zt+1)λt(ht) = λt+1(ht, zt+1)

⇒ qt(ht, zt+1) =
λt+1(ht, zt+1)

λt(ht)
(9)

Next, taking a first order condition with respect to `t(ht) we get
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λt(ht) =
∑
zt+1

λt+1(ht, zt+1)R`
t+1(ht)

Since the return on loans is ’set’ before the shock is known (hence, that
return is NOT state-dependent), we can take R` outside the sum:

1 = R`
t+1(ht)

∑
zt+1

λt+1(ht, zt+1)
λt(ht)

Finally, using (9) we arrive to the same no-arbitrage condition as before:4

1 = R`
t+1(ht)

∑
zt+1

qt(ht, zt+1)

4In problem set # 2, you derived an analogous condition for the return on capital
Rk

t (ht), but since this IS state dependent, the condition is slightly different:

1 =
∑
zt+1

qt(ht, zt+1)R
k
t+1(ht, zt+1)
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