Econ 702, Spring 2007 Problem set 4 Due Tuesday Feb. 20th

- **Problem 1.** 1. Consider the growth model with two different social classes as seen in class. Show that if $g^i(K, a^i)$, $i = \{R, P\}$ (the optimal saving decisions for R = rich and P = poor) are linear in their second arguments, then aggregate capital is the only necessary aggregate state variable.
 - 2. Is this the case when utility is quadratic? $(u(c) = -\frac{1}{2}(c-b)^2 \text{ where } b \text{ is a constant })$ When the utility is CRRA? $(u(c) = \frac{c^{1-\sigma}-1}{1-\sigma})$

Problem 2. Redo the analysis of the above model (setup and definition of Recursive Competitive Equilibrium) using $\{K, k^R, k^P\}$ (aggregate capital, capital owned by Rich, capital owned by Poor) as aggregate state variables.

Problem 3. (optional) In the growth model with 2 social classes, define steady state. What are the conditions for a Steady State to exist?

Problem 4. In the growth model with land, show that condition (5) is redundant from the given definition of equilibrium

Problem 5. Take the growth model with government debt (last model seen in class). Show, by way of finding 'wedges', that the competitive equilibrium is inefficient

Problem 6. Write recursively a simple growth model with utility from leisure and government, where the government wants to throw a party of size \overline{G} every period (not valued by the households), financed by either consumption taxes (τ_c) OR labor income taxes (τ_w) (the gov. budget is balanced from period to period). Find the relation between taxes in equilibrium. In terms of utility, when will τ_c be preferred over τ_w ?