Econ 702, Spring 2007

Problem set 2

Suggested Solutions ${ }^{1}$

Problem 1. Characterize the relationship between commodity prices (output/consumption, capital services and labor services) in the valuation equilibrium framework, when the depreciation rate is not equal to 1, i.e., when the problem looks like the following:

$$
\begin{gathered}
\max _{x \in X} \sum_{t} \beta^{t} u\left[c_{t}(x)\right] \\
\text { such that } \\
\sum_{t}\left[p_{1 t}\left\{c_{t}+k_{t+1}-(1-\delta) k_{t}\right\}-p_{2 t} k_{t}-p_{3 t}\right] \leq 0
\end{gathered}
$$

Suggested Solution

First, the budget constraint in this case is of the 'valuation equilibrium' form, hence, we can set up the lagrangian as follows:

$$
\max _{x \in X} \sum_{t} \beta^{t} u\left[c_{t}(x)\right]+\lambda\left[\sum_{t}\left[p_{1 t}\left\{c_{t}+k_{t+1}-(1-\delta) k_{t}\right\}-p_{2 t} k_{t}-p_{3 t}\right]\right]
$$

As in class, we can take a first order condition with respect to k_{t+1} :

$$
\lambda\left[p_{1 t}-(1-\delta) p_{1, t+1}-p_{2, t+1}\right]=0
$$

Note that if $\delta=1$, the condition reduces to $p_{1 t}=p_{2, t+1}$. More generally, if $\delta \neq 1$

$$
\frac{p_{1 t}}{p_{1, t+1}}=1-\delta+\frac{p_{2, t+1}}{p_{1, t+1}}
$$

The condition changes because $\delta=1$ is the extreme case of full depreciation, hence the above condition doesn't relate to prices of consumption services in the future: there is no capital left from what the firm used, hence, no resale value (no need to worry about $p_{1, t+1}$.

Problem 2. Consider the sequential market formulation of the deterministic growth model:

$$
\begin{gathered}
\max _{\left\{c_{t}, k_{t+1}\right\}_{t=0}^{\infty}} \sum_{t} \beta^{t} u\left[c_{t}\right] \\
\text { s.t. } \\
c_{t}+k_{t+1}+\ell_{t}=\ell_{t-1} R_{t-1}^{\ell}+k_{t} R_{t}^{k}+w_{t} \quad \forall t
\end{gathered}
$$

Write the definition of a sequential market equilibrium (SME) as completely as you can.

[^0]
Suggested Solution

A Sequential Market Equilibrium (SME) is a list of sequences $\left\{c_{t}^{*}, k_{t+1}^{*}, \ell_{t}^{*}, R_{t-1}^{\ell *}, R_{t}^{k *}, w_{t}^{*}\right\}_{t=0}^{\infty}$ (allocations and prices) such that,

1. given prices, households maximize, i.e.:

$$
\begin{gathered}
\left\{c_{t}^{*}, k_{t+1}^{*}, \ell_{t}^{*}\right\}_{t=0}^{\infty} \in \operatorname{argmax}_{\left\{c_{t}, k_{t+1}, \ell_{t}\right\}_{t=0}^{\infty}} \sum_{t} \beta^{t} u\left[c_{t}\right] \\
\text { s.t. } \\
c_{t}+k_{t+1}+\ell_{t}=\ell_{t-1} R_{t-1}^{\ell *}+k_{t} R_{t}^{k *}+w_{t}^{*} \quad \forall t
\end{gathered}
$$

2. given prices, firms maximize, i.e.:

$$
\left\{k_{t}^{*}, 1\right\} \in \operatorname{argmax}_{k_{t}, n_{t}} F\left(k_{t}, n_{t}\right)-R_{t}^{k *} k_{t}-w_{t}^{*} n_{t} \quad \forall t
$$

3. markets clear:

$$
c_{t}^{*}+k_{t+1}^{*}=F\left(k_{t}^{*}, 1\right)
$$

This condition implies that returns on loans $R^{\ell *}$ are such that

$$
\ell_{t}^{*}=0 \quad \forall t
$$

Problem 3. For the stochastic growth model, verify the conditions on L, X and Y (commodity space, consumption possibility set and production possibility set) such that the uniqueness and welfare theorems apply.

Suggested Solution

This is too long of a proof for the scope of this problem set. However, the spaces in the stochastic growth model are isomorphic to those of the deterministic model, hence the proofs are analogous. ${ }^{2}$. Below are the definitions of the spaces and possibility sets.

The shocks to the production function have a bounded support $z_{t} \in Z_{t}=\left\{z^{0}, z^{1}, \ldots, z^{n_{z}}\right\}$. Then, we can define histories of length t as $h_{t}=\left\{z_{0}, z_{1}, \ldots, z_{t}\right\}$ with $h_{t} \in H_{t}=Z_{0} \times Z_{1} \times \cdots \times Z_{t}$. Finally, define a probability measure over histories, $\pi\left(h_{t}\right)$. Then, the commodity space is

$$
L=\left\{\left(l_{1 t}\left(h_{t}\right), l_{2 t}\left(h_{t}\right), l_{3 t}\left(h_{t}\right)\right) \in \mathbb{R}^{3} \forall t, h_{t}: \sup \left|l_{i t}\left(h_{t}\right)\right|<\infty \forall i, t, h_{t}\right\}
$$

The consumption possibility set:

[^1]\[

X=\left\{x \in L: \exists\left\{c_{t}\left(h_{t}\right), k_{t+1}\left(h_{t}\right)\right\}_{t, h_{t}} s.t. \quad l l $$
\begin{array}{rl}
x_{1 t}\left(h_{t}\right)+(1-\delta) k_{t}\left(h_{t-1}\right) & =c_{t}\left(h_{t}\right)+k_{t+1}\left(h_{t}\right) \\
x_{2 t}\left(h_{t}\right) & \in\left[-k_{t}\left(h_{t-1}\right), 0\right] \\
x_{3 t}\left(h_{t}\right) & \in[-1,0] \\
\left.k_{0} \text { given }\right\} &
\end{array}
$$\right.
\]

And the production possibility set $Y=\Pi_{t, h_{t}} Y_{t}\left(h_{t}\right)$ where

$$
Y_{t}=\left\{\left(y_{1 t}\left(h_{t}\right), y_{2 t}\left(h_{t}\right), y_{3 t}\left(h_{t}\right)\right): 0 \leq y_{1 t}\left(h_{t}\right) \leq F\left(-y_{2 t}\left(h_{t}\right),-y_{3 t}\left(h_{t}\right)\right)\right\}
$$

Problem 4. Write the definition of SME for the stochastic growth problem.

Suggested Solution

A Sequence of Markets Equilibrium for the Stochastic Growth Model (with full depreciation) is a list of sequences
$\left\{c_{t}^{*}\left(h_{t}\right), k_{t+1}^{*}\left(h_{t}\right), b_{t}^{*}\left(h_{t}, z_{t+1}\right), \ell_{t}^{*}\left(h_{t}\right), q_{t}^{*}\left(h_{t}, z_{t+1}\right), R_{t}^{k *}\left(h_{t}\right), R_{t}^{\ell *}\left(h_{t-1}\right), w_{t}^{*}\left(h_{t}\right)\right\}$ for every period t and history h_{t} such that

1. Households maximize:

$$
\begin{gathered}
\left\{c_{t}^{*}\left(h_{t}\right), k_{t+1}^{*}\left(h_{t}\right), b_{t}^{*}\left(h_{t}, z_{t+1}\right) \ell_{t}^{*}\left(h_{t}\right)\right\}_{t, h_{t}} \in \arg \max \sum_{t=0}^{\infty} \beta^{t} \sum_{h_{t} \in H_{t}} \pi\left(h_{t}\right) u\left[c_{t}\left(h_{t}\right)\right] \\
\text { st } \\
c_{t}\left(h_{t}\right)+k_{t+1}\left(h_{t}\right)+\ell_{t}\left(h_{t}\right)+\sum_{z_{t+1}} q_{t}\left(h_{t}, z_{t+1}\right) b_{t}\left(h_{t}, z_{t+1}\right)= \\
R_{t}^{k}\left(h_{t}\right) k_{t}\left(h_{t-1}\right)+R_{t}^{\ell}\left(h_{t-1}\right) \ell_{t-1}\left(h_{t-1}\right)+w_{t}\left(h_{t}\right)+b_{t-1}\left(h_{t-1}, z_{t}\right) \\
k_{0}, b_{0}\left(h_{0}, z_{1}\right), \ell_{0} \text { given }
\end{gathered}
$$

2. Firms maximize:

$$
\left\{k_{t}^{*}\left(h_{t}\right), 1\right\} \in \arg \max z_{t} F\left(k_{t}\left(h_{t}\right), n_{t}\left(h_{t}\right)\right)-R_{t}^{k *}\left(h_{t}\right)-w_{t}^{*}\left(h_{t}\right) n_{t}\left(h_{t}\right)
$$

for all t and h_{t}
3. Market clears, i.e., for all t and h_{t}

$$
c_{t}^{*}\left(h_{t}\right)+k_{t+1}^{*}\left(h_{t}\right)=z_{t} F\left(k_{t}^{*}\left(h_{t}\right), 1\right)
$$

which imply (given the representative agent assumption) that

$$
b_{t}^{*}\left(h_{t}, z_{t+1}\right)=\ell_{t}^{*}\left(h_{t}\right)=0
$$

Problem 5. We saw in class that the sequential budget constraint for the stochastic growth model is:

$$
\begin{array}{r}
c_{t}\left(h_{t}\right)+k_{t+1}\left(h_{t}\right)+\ell_{t}\left(h_{t}\right)+\sum_{z_{t+1}} q_{t}\left(h_{t}, z_{t+1}\right) b_{t}\left(h_{t}, z_{t+1}\right)= \\
R_{t}^{k}\left(h_{t}\right) k_{t}\left(h_{t-1}\right)+R_{t}^{\ell}\left(h_{t-1}\right) \ell_{t-1}\left(h_{t-1}\right)+w_{t}\left(h_{t}\right)+b_{t-1}\left(h_{t-1}, z_{t}\right)
\end{array}
$$

Characterize equilibrium return rates $\left(R_{t}^{k}\left(h_{t}\right)\right.$ and $\left.R_{t}^{\ell}\left(h_{t-1}\right)\right)$ in terms of $q_{t}\left(h_{t}, z_{t+1}\right)$

Suggested Solution

Like all sequential market problems, we have a budget constraint for each period t and history h_{t}, i.e., a lagrange multiplier $\lambda_{t}\left(h_{t}\right)$.

The first order condition wrt $b_{t}\left(h_{t}, z_{t+1}\right)$

$$
\begin{align*}
q_{t}\left(h_{t}, z_{t+1}\right) \lambda_{t}\left(h_{t}\right) & =\lambda_{t+1}\left(h_{t}, z_{t+1}\right) \\
\Rightarrow q_{t}\left(h_{t}, z_{t+1}\right) & =\frac{\lambda_{t+1}\left(h_{t}, z_{t+1}\right)}{\lambda_{t}\left(h_{t}\right)} \tag{1}
\end{align*}
$$

The first order condition wrt $\ell_{t}\left(h_{t}\right)$

$$
\lambda_{t}\left(h_{t}\right)=\sum_{z_{t+1}} \lambda_{t+1}\left(h_{t}, z_{t+1}\right) R_{t+1}^{\ell}\left(h_{t}\right)
$$

Since the return on loans is 'agreed' upon from period to period (and is not shock dependent), we get the following expression

$$
R_{t+1}^{\ell}\left(h_{t}\right)=\frac{1}{\sum_{z_{t+1} \frac{\lambda_{t+1}\left(h_{t}, z_{t+1}\right)}{\lambda_{t}\left(h_{t}\right)}}=\frac{1}{\sum_{z_{t+1}} q_{t}\left(h_{t}, z_{t+1}\right)}, \frac{}{\text { and }}}
$$

On the other hand, the FOC wrt $k_{t+1}\left(h_{t+1}\right)$ yields

$$
\lambda_{t}\left(h_{t}\right)=\sum_{z_{t+1}} \lambda_{t+1}\left(h_{t}, z_{t+1}\right) R_{t+1}^{k}\left(h_{t}, z_{t+1}\right)
$$

Note that the return on capital is state dependent, hence the condition for the prices boils down to

$$
1=\sum_{z_{t+1}} q_{t}\left(h_{t}, z_{t+1}\right) R_{t+1}^{k}\left(h_{t}, z_{t+1}\right)
$$

Problem 6. Write a modification to the stochastic growth model with two locations (All remaining/neccessary assumptions are yours to make). Write the commodity space, the consumption possibility set and the production possibility set and pose the maximization problem with both a 'Valuation-equilibrium' budget constraint and a 'sequential market equilibrium' budget constraint.
(note: this question is left open intentionally. There is no correct answer, but CONSISTENT answers, i.e., your response must be consistent with your assumptions)

[^0]: ${ }^{1}$ Prepared by Se Kyu Choi. Questions, comments and "Typo police" should email me at sechoi@econ.upenn.edu

[^1]: ${ }^{2}$ You can check the conditions on the spaces for the deterministic growth model here: http://www.econ.upenn.edu/ vr0j/70206/tas/solpr1ec70206.pdf

