
0.1 Week 13 Lecture 24: One sided lack of commitment

We now study an economy where the agent cannot commit to the contract that
the Social Planner offers her. This means that as long as what the Planner
offers is better than what the agent can do alone she stays around. If in some
period the shock that the agent receives is so good that her value under autarky
is higher than what the planner is offering she will be willing to walk away and
be on her own (at no cost). On the other hand, if the planner wants to keep
her around, he now has to offer even more. In this model there is no storage
or financial markets, and so the agent consumes the fruit (or fish) which is just
the shock that she receives in each period.
Consider the village of fisherladies, where young granddaughters receive s ∈

{s1, s2, ...,
_
s} in every period. We assume that s is iid. The probability that a

certain s is realized is Πs. ht is a history of shocks up to period t.
First, if the granddaughter stays autarky, she will enjoy total utility,

VAUT =
∞X
t=0

βt
X
s

Πsu(s) =

P
sΠsu(s)

1− β

Note that here V A is the utility of the young lady before endowment shock
is realized.
Now we assume that the grandmother offers a contract to the granddaugh-

ter, which transfer resources and provide insurance to her. Grandmother can
commit. But the young granddaughter may leave grandmother and break her
word. Thus, this model is one-sided commitment model: an agent can walk
away from a contract but the other cannot. Therefore, the contract should be
always in the interest of granddaughter for her to stay.
We define a contract ft : Ht → c ∈ [0, τ ]. We will see next class that

incentives compatibility constraint requires that at each node of history Ht, the
contract should guarantee a utility which is higher than that in autarky.
Notice that the problem is different from Lucas tree model because of the

shock realization timing. In Lucas tree model, shock is state variable because
action takes place after shock is realized. Thus, action is indexed by shock.
Here action is chosen before shock realization. Therefore, shock is not a state
variable and action is state contingent.
In Lucas tree model, V (s) = maxc u (c)+β

P
s0 Πss0V (s

0). Here, if we write
the problem recursively, it is V = maxcs

P
sΠsu (cs) + βV .

Remember, the grandmother will make a deal with her granddaughter. They
sign a contract to specify what to do in each state. ht ∈ Ht. Contract is thus
a mapping ft (ht) → c (ht). With this contract, granddaughter gives yt to the
grandmother and receives ct = ft(ht−1, yt). But if the granddaughter decided
not to observe the contract, she consumes yt this period and cannot enter a
contract in the future, i.e. she has to live in autarky in the future.
For grandmother to keep granddaughter around her, the contract has to be

of interest to granddaughter because although grandmother keeps her promise,
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granddaughter does not. There are two possible outcome if this contract is
broken. One is that granddaughter goes away with current and future endow-
ment. The other is that they renegotiate. We ignore the second possibility
as no renegotiation is allowed. But we need deal with the possibility that the
granddaughter says no to the contract and steps away.
The first best outcome is to warrant a constant consumption ct to grand-

daughter who is risk averse. But because of the one-side lack of commitment,
the first best is not achievable. The contract should always be attractive to
granddaughter, otherwise, when she gets lucky with high endowment ys, she
will feel like to leave. So, this is a dynamic contract problem which the grand-
mother will solve in order to induce good behavior from granddaughter. The
contract is dynamic because the nature keeps moving.
We say the contract ft (ht) is incentive compatible or satisfies participation

constraint if for all ht,

u(ft(ht)) +
∞X
τ=1

βτ
X
s

Πsu(ft+τ (ht+τ )) ≥ u(ys (ht)) + βV A (1)

The left hand side is utility guaranteed in the contract. And the right hand
side is the utility that granddaughter can get by herself. The participation
constraint is not binding if ys is low. And when ys is high, PC is binding.

0.1.1 Problem of the grandmother

In this model, problem of the grandmother is to find an optimal contract that
maximizes the value of such a contract of warranting V to her. We define the
problem using recursive formula. Firstly, let’s define the value of contract to
grandmother if she promised V to her granddaughter by Φ(V ). Φ(V ) can be
defined recursively as the following:

Φ(V ) = max
{cs,ωs}Ss=1

X
s

Πs[(s− cs) + βΦ(ωs)] (2)

subject to

u(cs) + βωs ≥ u(s) + βV A ∀s (3)X
s

Πs[u(cs) + βωs] ≥ V (4)

Notice that there are 1 + S constraints. The choice variables cs, ωs are state-
contingent where ωs is the promised utility committed to granddaughter in
each state. In the objective function,

P
sΠs(s− cs) is the expected value of net

transfer.
There are two sets of constraints. (3) is IC and (4) is promise keeping

constraint.
The First Order Conditions to the grandmother’s problem are:
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(cs)
Πs = (θs + λΠs)u

0(cs) (5)

(ωs)

−ΠsΦ0(ωs) = λΠs + θs (6)

(μ) X
s

Πs[u(cs) + βωs] = V (7)

(λ)
u(cs) + βωs ≥ u(s) + βV A (8)

In addition, Envelope Theorem tells that:

Φ0(v) = −λ (9)

Interpreting the first order conditions:
1. (5) tells that in an optimal choice of cs, the benefit of increasing one

unit of c equals the cost of doing so. The benefit comes from two parts: first
is λΠsu0(cs) as increasing consumption helps grandmother to fulfill her promise
and the second part is θsu0(cs) since increase in consumption helps alleviated
the participation constraint. And the cost is the probability of state s occurs.
2. (6) equates the cost of increasing one unit of promised utility and the

benefit. The cost to grandmother is −ΠsΦ0(ωs) and the benefit is μΠs + λs
which helps grandmother deliver promise and alleviate participation constraint.
How about the contract value Φ (V ). First, Φ(V ) can be positive or negative.

Claim 1 (1) There exits V such that Φ (V ) > 0.

What’s the largest V we will be concerned with? When PC will be binding
for sure. If PC binds for the best endowment shock s, then PC holds for all
the shock s. When granddaughter gets the best shock, the best autarky value
is then

VAM = u
¡_
s
¢
+ βVA

And the cheapest way to guarantee VAM is to give constant consumption cS ,
such that

VAM =
u (c_s )

1− β

From this case, we can see that because of lack of commitment, the grandmother
will have to give more consumption in some states. While when there is no
lack of commitment, strict concavity of u (.) implies that constant stream of
consumption beats any {ct} that have the same present value, as there is no
PC.
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0.1.2 Characterizing the Optimal Contract

We will characterize the optimal contract by considering the two cases: (i)
θs > 0 and (ii) θs = 0.
Firstly, if θs = 0, we have the following equations from FOC and EC:

Φ0(ωs) = −μ (10)

Φ0 (V ) = −μ (11)

Therefore, for s where PC is not binding,

V = ωs

cs is the same for all s. For all s such that the Participation Constraint is
not binding, the grandmother offers the same consumption and promised future
value.
Let’s consider the second case, where θs > 0. In this case, the equations that

characterize the optimal contract are:

u0(cs) =
−1
Φ0(ωs)

(12)

u(cs) + βωs = u(s) + βV A (13)

Note that this is a system of two equations with two unknowns (cs and ωs). So
these two equations characterize the optimal contract in case θs > 0. In addition,
we can find the following properties by carefully observing the equations:
1. The equations don’t depend on V . Therefore, if a Participation Constraint

is binding, promised value does not matter for the optimal contract.
2. From the first order condition with respect to ωs, Φ0(ωs) = Φ0(V )− θs

Πs
,

where θs
Πs

is positive. Besides, we know that Φ is concave. This means that
V < ωs. In words, if a Participation Constraint is binding, the moneylender
promises more than before for future.
Combining all the results we have got, we can characterize the optimal con-

tract as follows:

1. Let’s fix V0.We can find a s∗(V0), such that ∀s < s∗(V0), the participation
constraint is not binding and ∀s ≥ s∗(V0), the constraint is binding, i.e.
θs > 0. (For a formal proof of this fact see PS12 / exercise 1).

2. The optimal contract that the moneylender offers to an agent is the fol-
lowing:

If st ≤ s∗(V0), the moneylender gives (V0, c(V0)). Both of them are the
same as in the previous period. In other words, the moneylender offers
the agent the same insurance scheme as before.

If at some point in time st > s∗(V0), the moneylender gives (V1, c(V1)),
where V1 > V0 and c doesn’t depend on V0. In other words, the moneylen-
der promises larger value to the agent to keep her around.
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So the path of consumption and promised value for an agent is increasing
with steps.

0.2 Lecture 25: Two sided lack of commitment

0.2.1 The Model

• Two brothers, A and B, and neither of them has access to a commitment
technology. In other words, the two can sign a contract, but either of them
can walk away if he does not feel like observing it.

• This is an endowment economy (no production) and there is no storage
technology. Endowment is represented by (yAs , y

B
s ) ∈ Y × Y , where yis is

the endowment of brother i. s=(yAs , y
B
s ) follows a Markov process with

transition matrix Γss0 .

0.2.2 First Best Allocation

We will derive the first best allocation by solving the social planner’s problem:

max
{ci(ht)}∀ht,∀i

λA
∞X
t=0

βt
X
ht

Π(ht)u(c
A(ht)) + λB

∞X
t=0

βt
X
ht

Π(ht)u(c
B(ht))

subject to the resource constraint:X
i

ci(ht)− yi(ht) = 0 ∀ht w/ multiplier γ(ht)

The First Order Conditions are:

FOC(cA(ht)) : λAβtΠ(ht)u
0(cA(ht))− γ(ht) = 0

FOC(cB(ht)) : λBβtΠ(ht)u
0(cB(ht))− γ(ht) = 0

Combining these two yields:

λA

λB
=

u0(cA(ht))

u0(cB(ht))

The first best allocation will not be achieved if there is no access to a commit-
ment technology. Therefore, the next thing we should do is look at the problem
the planner is faced with in the case of lack of commitment. Due to lack of
commitment, the planner needs to make sure that at each point in time and in
every state of the world, ht, both brothers prefer what they receive to autarky.
Now we will construct the problem of the planner adding these participation
constraints to his problem.
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0.2.3 Constrained Optimal Allocation

The planner’s problem is:

max
cA(ht),cB(ht)

λA
∞X
t=0

βt
X
ht

Π(ht)u(c
A(ht)) + λB

∞X
t=0

βt
X
ht

Π(ht)u(c
B(ht))

X
i

ci(ht)− yi(ht) = 0 ∀ht w/ multiplier γ(ht)

∞X
r=t

βr−t
X
hr

Π(hr|ht)u(ci(hr)) ≥ Ωi(ht) ∀ht,∀i w/ multiplier μi(ht)

where Ωi(ht) =
P∞

r=0 β
r−tP

hr
Π(hr|ht)u(yi(ht)) (the autarky value)

• How many times does cA(h17) appear in this problem? Once in the ob-
jective function, once in the feasibility constraint, and it appears in the
participation constraint from period 0 to period 16.

• We know that the feasibility constraint is always binding so that γ(ht) >
0 ∀ht. On the other hand the same is not true for the participation
constraint.

• Both participations cannot be binding but both can be nonbinding.

• Define Mi(h−1) = λi

and Mi(ht) = μi(ht) +Mi(ht−1)

(We will use these definitions for the recursive representation of the prob-
lem in the next class)

0.2.4 Recursive Representation of the Constrained SPP

We want to transform this problem into the recursive, because it would be
easier to solve the optimal allocation with a computer. Now we will show how
to transform the sequential problem with the participation constraints into its
recursive representation.
Before we do this transformation, first recall the Lagrangian associated with

the sequential representation of the social planner’s problem:

λA
∞X
t=0

βt
X
ht

Π(ht)u(c
A(ht)) + λB

∞X
t=0

βt
X
ht

Π(ht)u(c
B(ht))

+
∞X
t=0

βt
X
ht∈Ht

Π(ht)
2X

i=1

μi(ht)

" ∞X
r=t

βr−t
X
hr

Π(hr|ht)u(ci(hr))− Ωi(ht)
#

+
∞X
t=0

X
ht∈Ht

γ(ht)

"
2X
i=1

ci(ht)−
2X
i=1

yi(ht)

#
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Note that here the Lagrangian multiplier associated witih the participation
constraint for brother i after history ht is β

tΠ(ht)μi(ht).
Now we will use the definitions from the previous class (for Mi(ht)) to rewrite

the above Lagrangian in a more simple form,
Collect terms and rewrite,

∞X
t=0

βt
X
ht

Π(ht)
X
i

(
λiu(ci(ht) + μi(ht)

" ∞X
r=t

βr−t
X
hr

Π(hr|ht)u(ci(hr))− Ωi(ht)
#)

+
∞X
t=0

X
ht∈Ht

γ(ht)

"
2X

i=1

ci(ht)−
2X
i=1

yi(ht)

#

Note that,
P∞

r=t β
r−tP

hr
Π(hr|ht)u(ci(hr))−Ωi(ht) = u(ci(ht))+

P∞
r=t+1 β

r−tP
hr
Π(hr|ht)u(ci(hr))−

Ωi(ht),
and that Π(hr|ht)Π(ht) = Π(hr) so using these, rewrite as,

∞X
t=0

βt
X
ht

Π(ht)
X
i

©
λiu(ci(ht) + μi(ht)u(c

i(ht)
ª

+
∞X
t=0

X
hr

X
i

μi(ht)

" ∞X
r=t+1

βr
X
hr

Π(hr)u(c
i(hr))− Ωi(ht)

#

+
∞X
t=0

X
ht∈Ht

γ(ht)

"
2X
i=1

ci(ht)−
2X

i=1

yi(ht)

#
Collect the terms of u(ci(hr),

∞X
t=0

βt
X
ht

Π(ht)
X
i

("
λi +

t−1X
r=0

μi(hr)

#
u(ci(ht) + μi(ht)

£
u(ci(ht)− Ωi(ht)

¤)

+
∞X
t=0

X
ht∈Ht

γ(ht)

"
2X

i=1

ci(ht)−
2X
i=1

yi(ht)

#
Introduce the variable Mi(ht) and define it recursively as,

Mi(ht) = Mi(ht−1) + μi(ht)

Mi(h−1) = λi

where Mi(ht) denotes the Pareto weight plus the cumulative sum of the
Lagrange multipliers on the participation constraints at all periods from 1 to t.
So rewrite the Lagrangian once again as,

∞X
t=0

βt
X
ht

Π(ht)
X
i

©
Mi(ht−1)u(c

i(ht) + μi(ht)
£
u(ci(ht)− Ωi(ht)

¤ª
+
∞X
t=0

X
ht∈Ht

γ(ht)

"
2X
i=1

ci(ht)−
2X
i=1

yi(ht)

#
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Now we are ready to take the First Order Conditions:

u0(cA(ht))

u0(cB(ht))
=

MA(ht−1) + μA(ht)

MB(ht−1) + μB(ht)" ∞X
r=t

βr−t
X
hr

Π(hr)

Π(ht)
u(ci(hr))− Ωi(ht)

#
μi(ht) = 0

2X
i=1

ci(ht)−
2X
i=1

yi(ht) = 0

0.2.5 Recursive Formulation

Our goal is make the problem recursive, which is very nice when we work with
computer. To do this, we need to find a set of state variables which is sufficient
to describe the state of the world. We are going to use x as a state variable.So
the state variables are the endowment: y = (yA, yB) and weight to brother 2:
x. Define the value function as follows:

V = {(V0, VA, VB) such that Vi : X×Y → R, i = 1, 2, V0(x, y) = VA(x, y)+xVB(x, y)}

What we are going find is the fixed point of the following operator (operation
is defined later):

T (V ) = {T0(V ), T1(V ), T2(V )}
Firstly, we will ignore the participation constraints and solve the problem:

max
cA,cB

u(cA(y, x)) + xu(cB(y, x)) + β
X
y0

Γyy0V0(y
0, x)

subject to
cA + cB = yA + yB

First Order Conditions yield:

u0(cA)

u0(cB)
= x

Second, we will check the participation constraints. There are two possibil-
ities here:

1. Participation constraint is not binding for either 1 or 2. Then set x(ht) =
x(ht−1). In addition,

V N
0 (y, x) = V0(y, x)

V N
i (y, x) = u(ci(y, x)) + β

X
y0

Γyy0Vi(y
0, x)
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2. Participation constraint is not satisfied for one of the brothers (say A).

This means that agent A is getting too little. Therefore, in order for the
planner to match the outside opportunity that A has, he needs to change x so
that he guarantees person A the utility from going away. We need to solve the
following system of equations in this case:

cA + cB = yA + yB

u(cA) + β
X
y0

Γyy0VA(y
0, x) = u(yA) + β

X
y0

Γyy0ΩA(y
0)

x0 =
u0(cA)

u0(cB)

This is a system of three equations and three unknowns. Denote the solution
to this problem by,

cA(y, x)

cB(y, x)

x0(y, x)

So that,

V N
0 (y, x) = V N

A (y, x) + xV N
B (y, x)

V N
i (y, x) = u(ci(y, x)) + β

X
y0

Γyy0Vi(y
0, x0(y, x))

Thus we have obtained T(V)=VN . And the next thing we need to do is find V∗

such that T(V∗) = V ∗.
Final question with this model is ”how to implement this allocation?” or ”Is

there any equilibrium that supports this allocation?”. The answer is yes. How?
Think of this model as a repeated game. And define the strategy as follows:
keep accepting the contract characterized here until the other guy walks away.
If the other guy walks away, go to autarky forever. We can construct a Nash
equilibrium by assigning this strategy to both of the brothers.
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