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1 Introduction

A model is an artificial economy. Description of a model’s environment may include specifying the

agents’ preferences and endowment, technology available, information structure as well as property

rights. Neoclassical Growth Model becomes one of the workhorses of modern macroeconomics because

it delivers some fundamental properties of modern economy, summarized by, among others, Kaldor:

1. Output per capita has grown at a roughly constant rate (2%).

2. The capital-output ratio (where capital is measured using the perpetual inventory method based

on past consumption foregone) has remained roughly constant.

3. The capital-labor ratio has grown at a roughly constant rate equal to the growth rate of output.

4. The wage rate has grown at a roughly constant rate equal to the growth rate of output.

5. The real interest rate has been stationary and, during long periods, roughly constant.

6. Labor income as a share of output has remained roughly constant (0.66).

7. Hours worked per capita have been roughly constant.

Equilibrium can be defined as a prediction of what will happen and therefore it is a mapping from

environments to outcomes (allocations, prices, etc.). One equilibrium concept that we will deal with

is Competitive Equilibrium1 Characterizing the equilibrium, however, usually involves finding solutions

to a system of infinite number of equations. There are generally two ways of getting around this.

First, invoke the welfare theorem to solve for the allocation first and then find the equilibrium prices

associated with it. The first way sometimes may not work due to, say, presence of externality. So the

second way is to look at Recursive Competitive equilibrium, where equilibrium objects are functions

instead of variables.

1 Arrow-Debreu or Valuation Equilibrium.
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2 Review: Neoclassical Growth Model

We review briefly the basic neoclassical growth model.

2.1 The Neoclassical Growth Model Without Uncertainty

The commodity space is

L = {(l1, l2, l3) : li = (lit)
∞
t=0 lit ∈ R, sup

t
|lit | <∞, i = 1, 2, 3}.

The consumption possibility set is

X (k0) = {x ∈ L : ∃(ct , kt+1)∞t=0 s.th. ∀t = 0, 1, ...

ct , kt+1 ≥ 0, x1t + (1− δ)kt = ct + kt+1, −kt ≤ x2t ≤ 0, −1 ≤ x3t ≤ 0, k0 = k0}.

The production possibility set is Y =
∏

t Yt , where

Yt = {(y1t , y2t , y3t) ∈ R3 : 0 ≤ y1t ≤ F (−y2t ,−y3t)}.

Definition 1 An Arrow-Debreu equilibrium is (x∗, y ∗) ∈ X ×Y , and a continuous linear functional ν∗

such that

1. x∗ ∈ arg maxx∈X ,ν∗(x)≤0

∑∞
t=0 β

tu(ct(x),−x3t),

2. y ∗ ∈ arg maxy∈Y ν
∗(y),

3. and x∗ = y ∗.

Note that in this definition, we have added leisure. Now, let’s look at the one-sector growth model’s
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Social Planner’s Problem:

max
∑∞

t=0 β
tu(ct ,−x3t) (SPP)

s.t.

ct + kt+1 − (1− δ)kt = x1t

−kt ≤ x2t ≤ 0

−1 ≤ x3t ≤ 0

0 ≤ y1t ≤ F (−y2t ,−y3t)

x = y

k0 given.

Suppose we know that a solution in sequence form exists for (SPP) and is unique.

Exercise 1 Clearly stating sufficient assumptions on utility and production function, show that (SPP)

has a unique solution.

Two important theorems show the relationship between CE allocations and Pareto optimal allocations:

Theorem 1 Suppose that for all x ∈ X there exists a sequence (xk)∞k=0, such that for all k ≥ 0,

xk ∈ X and U(xk) > U(x). If (x∗, y ∗, ν∗) is an Arrow-Debreu equilibrium then (x∗, y ∗) is Pareto

efficient allocation.

Theorem 2 If X is convex, preferences are convex, U is continuous, Y is convex and has an interior

point, then for any Pareto efficient allocation (x∗, y ∗) there exists a continuous linear functional ν such

that (x∗, y ∗, ν) is a quasiequilibrium, that is (a) for all x ∈ X such that U(x) ≥ U(x∗) it implies

ν(x) ≥ ν(x∗) and (b) for all y ∈ Y , ν(y) ≤ ν(y ∗).

Note that at the very basis of the CE definition and welfare theorems there is an implicit assumption of

perfect commitment and perfect enforcement. Note also that the FWT implicitly assumes there is no

externality or public goods (achieves this implicit assumption by defining a consumer’s utility function
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only on his own consumption set but no other points in the commodity space).

From the First Welfare Theorem, we know that if a Competitive Equilibrium exits, it is Pareto Optimal.

Moreover, if the assumptions of the Second Welfare Theorem are satisfied and if the SPP has a

unique solution then the competitive equilibrium allocation is unique and they are the same as the PO

allocations. Prices can be constructed using this allocation and first order conditions.

Exercise 2 Show that

v2t

v1t
= Fk(kt , lt) and

v3t

v1t
= Fl(kt , lt).

One shortcoming of the AD equilibrium is that all trade occurs at the beginning of time. This assump-

tion is unrealistic. Modern Economics is based on sequential markets. Therefore we define another

equilibrium concept, Sequence of Markets Equilibrium (SME). We can easily show that SME is equiv-

alent to ADE. Therefore all of our results still hold and SME is the right problem to solve.

Exercise 3 Define a Sequential Markets Equilibrium (SME) for this economy. Prove that the objects

we get from the AD equilibrium satisfy SME conditions and that the converse is also true. We should

first show that a CE exists and therefore coincides with the unique solution of (SPP).

Note that the (SPP) problem is hard to solve, since we are dealing with infinite number of choice

variables. We have already established the fact that this SPP problem is equivalent to the following

dynamic problem (removing leisure from now on):

v(k) = max
c,k ′

u(c) + βv(k ′) (RSPP)

s.t. c + k ′ = f (k).

We have seen that this problem is easier to solve.
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2.2 A Comment on the Welfare Theorems

Situations in which the welfare theorems would not hold include externalities, public goods, situations

in which agents are not price takers (e.g. monopolies), some legal systems or lacking of markets which

rule out certain contracts which appears complete contract or search frictions. So, What happens in

such situations then? In this case the solutions to the social planners problem and the CE do not

coincide and so we cannot use the theorems we have developed for dynamic programming to solve the

problem. As we will see in this course, in this case we can work with Recursive Competitive Equilibria.

In general, we can prove that the solution to the RCE coincides with a sequential markets problem but

not the other way around (for example when we have multiple equilibria). However, in all the models

we see in this course, this equivalence will hold.

3 Recursive Competitive Equilibrium

3.1 A Simple Example

What we have so far is that we have established the equivalence between allocation of the SPP problem

which gives the unique Pareto optima (which is same as allocation of AD competitive equilibrium and

allocation of SME). Therefore we can solve for the very complicated equilibrium allocation by solving the

relatively easier Dynamic Programming problem of the social planner. One handicap of this approach

is that in a lot of environments, the equilibrium is not Pareto Optimal and hence, not a solution of

a social planner’s problem, e.g. when you have taxes or externalities. Therefore, the above recursive

problem would not be the right problem to solve. In some of these situations we can still write the

problem in sequence form. However, we would lose the powerful computational techniques of dynamic

programming. In order to resolve this issue we will define Recursive Competitive Equilibrium equivalent

to SME that we can always solve for.

In order to write the decentralized household problem recursively, we need to use some equilibrium
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conditions so that the household knows what prices are as a function of some economy-wide aggregate

state variable. We know that if capital is Kt and there is 1 unit of labor, then w (K ) = Fn (K , 1) and

R (K ) = Fk (K , 1) . Therefore, for the households to know prices they need to know aggregate capital.

Now, a household who is deciding about how much to consume and how much to work has to know

the whole sequence of future prices, in order to make his decision. This means that he needs to know

the path of aggregate capital. Therefore, if he believes that aggregate capital changes according to

K ′ = G (K ), knowing aggregate capital today, he would be able to project aggregate capital path for

the future and therefore the path for prices. So, we can write the household problem given function

G (·) as follows:

Ω(K , a; G ) = max
c,a′

u(c) + βΩ(K ′, a′; G ) (RCE )

s.t. c + a′ = w(K ) + R(K )a

K ′ = G (K ),

c ≥ 0

The above problem is the problem of a household that sees K in the economy, has a belief G , and carries

a units of assets from past. The solution of this problem yields policy functions c(K , a; G ), a′(K , a; G )

and a value function Ω(z , K , a; G ). The functions w(K ), R(K ) are obtained from the firm’s FOCs

(below).

uc [c(K , a; G )] = βΩa[G (K ), a′(K , a; G ); G ]

Ωa[K , a; G ] = (1 + r)uc [c(K , a; G )]

Now we can define the Recursive Competitive Equilibrium.

Definition 2 A Recursive Competitive Equilibrium with arbitrary expectations G is a set of functions2

Ω, g : K ×A → R, R, w, H : K → R+ such that:

2 We could add the policy function for consumption gc(K , a;G ).
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1. given G ; Ω, g solves the household problem in (RCE),

2. K ′ = H(K ; G ) = g(K , K ; G ) (representative agent condition),

3. w (K ) = Fn (K , 1) ,

4. and R (K ) = Fk (K , 1).

We define another notion of equilibrium where the expectations of the households are consistent with

what happens in the economy:

Definition 3 A Rational Expectations (Recursive) Equilibrium is a set of functions Ω, g , R, w, G ∗,

such that:

1. Ω(K , a; G ∗), g(K , a; G ∗) solves HH problem in (RCE),

2. G ∗(K ) = g(K , K ; G ∗) = K ′,

3. w (K ) = Fn (K , 1),

4. and R (K ) = Fk (K , 1).

What this means is that in a REE, households optimize given what they believe is going to happen in

the future and what happens in the aggregate is consistent with the household’s decision. The proof

that every REE can be used to construct a SME is left as an exercise. The reverse turns out not to

be true. Notice that in REE, function G projects next period’s capital. In fact, if we construct an

equilibrium path based on REE, once a level of capital is reached in some period, next period capital is

uniquely pinned down by the transition function. If we have multiplicity of SME, this would imply that

we cannot construct the function G since one value of capital today could imply more than one value

for capital tomorrow. We will focus on REE unless expressed otherwise.

Remark 1 Note that unless otherwise stated, we will assume that depreciation rate δ is 1. R (K ) is

the gross return on capital which is Fk (K , 1) + 1− δ. Net return on capital is r (K ) = Fk (K , 1)− δ.
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3.1.1 A Note on Envelope Theorem

To solve for RCE, we use envelope theorem. This method is valid because of time consistency of

consumption choice.

By taking first order condition, we can get:

−uc(c) + βV2(K ′, a′) = 0 (1)

Let a′?(K , a) be the solution for HH problem. Then we can write value function as:

V (K , a) = u(w(K ) + R(K )a − a′?(K , a)) + βV (K ′, a′?(K , a))

Using implicit function theorem we can get the derivative with respect to a:

V2(K , a) = R(K )uc +
∂a′?(K , a)

∂a
[−uc + βV2(K ′, a′?(K , a))]

Term in the bracket in the right hand side is first order condition, hence it is zero. So we can get

V2(K , a) = R(K )uc . Though, we need V2(K ′, a′) to find optimal allocation. So we need to do the

same for V (K ′, a′). But since tomorrow’s incentive will not change we know that equation 1 will hold

tomorrow. Hence −u′c + βV2

[
G (K ), a′?(G (K ), a′?(K , a))

]
= 0, which implies V2(K ′, a′) = R(K ′)u′c .

To illustrate this point, consider an individual who wants to loose weight and decides whether to start

diet or not. But he would like to eat well today and start diet tomorrow. Let 1 denotes that he obeys

the diet restrictions, 0 no. So his preference ordering is:

1. (0, 1, 1, 1...)

2. (1, 1, 1, 1...)
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3. (0, 0, 0, 0, ...)

Even though he promises himself that he will start diet tomorrow and chooses first option today,

tomorrow he will face the same problem. So he will choose the same option tomorrow. This way he

will never start diet and will end up with least preferred one: (0, 0, 0, 0, ...).

However, in our model this is not the case. Agents preferences are time consistent, so what she promises

today is optimal for her to do tomorrow. This way we can use envelope theorem.

3.2 Adding Uncertainty

3.2.1 Markov Processes

In this part, we want to focus on stochastic economies where there is a productivity shock affecting the

economy. The stochastic process for productivity that we are assuming is a first order Markov Process

that takes on finite number of values in the set Z = {z1 < · · · < znz}. A first order Markov process

implies

Pr(zt+1 = z j |ht) = Γij , zt(ht) = z i

where ht is the history of previous shocks. Γ is a Markov matrix with the property that the elements

of its rows sum to 1.

Let µ be a probability distribution over initial states, i.e.

∑
i

µi = 1

and µi ≥ 0 ∀i = 1, ..., nz .

Next periods the probability distribution can be found by the formula: µ′ = ΓTµ.
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If Γ is “nice” then ∃ a unique µ∗ s.t. µ∗ = ΓTµ∗ and µ∗ = limm→∞(ΓT )mµ0, ∀µ0 ∈ ∆i .

Γ induces the following probability distribution conditional on z0 on ht = {z0, z1, ..., z t}:

Π({z0, z1}) = Γi ,. for z0 = zi .

Π({z0, z1, z2}) = ΓTΓi ,. for z0 = zi .

Then, Π(ht) is the probability of history ht conditional on z0. The expected value of z ′ is
∑

z ′ Γzz ′z
′

and
∑

z ′ Γzz ′ = 1.

3.2.2 Problem of the Social Planner

Let productivity affect the production function in a multiplicative fashion; i.e. technology is zF (K , N),

where z is the shock that follows a Markov chain on a finite state-space. The problem of the social

planner problem (SPP) in sequence form is

max
{ct(z t),kt+1(z t)}∈X (z t)

∞∑
t=0

∑
z t

βtπ(z t)u(ct(z t))

s.t. ct(z t) + kt+1(z t) = ztF (kt(z t−1), 1),

where zt is the realization of shock in period t, and z t is the history of shocks up to (and including)

time t. X (z t) is similar to the consumption possibility set defined earlier but this is after history z t has

occurred and is for consumption and capital.

Therefore, we can formulate the stochastic SPP in a recursive fashion as

V (zi , K ) = max
c,K ′

{
u(c) + β

∑
j

ΓijV (zj , K ′)

}

s.t. c + K ′ = ziF (K , 1),

where Γ is the Markov transition matrix. The solution to this problem gives us a policy function of the
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form K ′ = G (z , K ).

In a decentralized economy, Arrow-Debreu equilibrium can be defined by:

max
{ct(z t),kt+1(z t),x1t(z t),x2t(z t),x3t(z t)}∈X (z t)

∞∑
t=0

∑
z t

βtπ(z t)u(ct(z t))

s.t.
∞∑
t=0

∑
z t

pt(z t).xt(z t) ≤ 0,

where X (z t) is again a variant of the consumption possibility set after history z t has occurred. Ignore

the overloading of notation. Note that we are assuming the markets are dynamically complete; i.e.

there is complete set of securities for every possible history that can appear.

By the same procedure as before, SME can be written in the following way:

max
{ct(z t),bt+1(z t ,zt+1),kt+1(z t)}

∞∑
t=0

∑
z t

βtπ(z t)u(ct(z t))

s.t. ct(z t) + kt+1(z t) +
∑
zt+1

bt+1(z t , zt+1)qt(z t , zt+1)

= kt(z t−1)Rt(z t) + wt(z t) + bt(z t−1, zt)

bt+1 (z t , zt+1) ≥ −B .

To replicate the AD equilibrium, here, we have introduced Arrow securities to allow agents to trade

with each other against possible future shocks.

However, in equilibrium and when there is no heterogeneity, there will be no trade, i.e bt+1(z t , zt+1) = 0

for any z t , zt+1. Moreover, we have two ways of delivering the goods specified in an Arrow security

contract: after production and before production. In an after production setting, the goods will be

delivered after production takes place and can only be consumed or saved for the next period. This is

the above setting. It is also possible to allow the consumer to rent the Arrow security income as capital

to firms, which will be the before production setting.
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An important condition which must hold true in the before production setting is the no-arbitrage

condition:

∑
zt+1

qt(z t , zt+1) = 1

Exercise 4 Describe the AD problem, in particular the consumption possibility set X and the produc-

tion set Y .

Exercise 5 Every equilibrium achieved in AD settings can also be achieved in a SM setting, by the

relation where

qt(z t , zt+1) = p1t+1(z t , zt+1)/p1t(z t),

Rt(z t) = p2t(z t)/p1t(z t),

and

wt(z t) = p3t(z t)/p1t(z t).

Check that from the FOC’s, the same allocations result in the two settings.

Exercise 6 The problem above state contingent goods are delivered in terms of consumption goods.

Instead of this assume they are delivered in terms of capital goods. Show that the same allocation

would be achieved in both settings.
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3.2.3 Recursive Competitive Equilibrium

Assume that households can trade state contingent assets, as in the sequential market case. We can

write a household’s problem in recursive form as:

V (K , z , a) = max
c,k ′,d(z ′)

{
u (c) + β

∑
z ′

Γzz ′V (K ′, z ′, a′ (z ′))

}
s.t. c + k ′ +

∑
z ′

d (z ′) qz ′ (K , z) = w (K , z) + aR (K , z)

K ′ = G (K , z)

a′ (z ′) = k ′ + d (z ′) .

Exercise 7 Write the first order conditions for this problem, given prices and the law of motion for

aggregate capital.

Solving this problem gives policy functions. So, a RCE in this case is a collection of functions V , c , k ′,

d , G , w , and R , so that

1. given G , w , and R , V solves household’s functional equation, with c , k ′ and d as the associated

policy function,

2. d (K , z , K , z ′) = 0, for all z ′,

3. k ′ (K , z , K ) = G (K , z),

4. w (K , z) = zFn (K , 1) and R (K , z) = zFk (K , 1),

5. and
∑

z ′ qz ′ (K , z) = 1.

The last condition is known as the no-arbitrage condition (recall that we had this equation in the case

of sequential markets as well). To see why this is a necessary equation in the equilibrium, note that an

agent can either save in the form of capital, or Arrow securities. However, these two choices must cost

the same. This implies Condition 4 above.
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Remark 2 Note that in a sequence version of the household problem in SME, in order for households

not to achieve infinite consumption, we need a no-Ponzi condition; a condition that prevents Ponzi

schemes is

lim
t→∞

at∏t
s=0 Rs

<∞.

This is the weakest condition that imposes no restrictions on the first order conditions of the household’s

problem. It is harder to come up with its analogue for the recursive case. One possibility is to assume

that a′ lies in a compact set A, or a set that is bounded from below.3

3.3 Economy with Government Expenditures

3.3.1 Lump Sum Tax

The government levies each period T units of goods in a lump sum way and spends it in a public good,

say medals. Assume consumers do not care about medals. The household’s problem becomes:

V (K , a) = max
c,a′

{u (c) + βV (K ′, a′)}

s.t. c + a′ + T = w (K ) + aR (K )

K ′ = G (K ) .

A solution of this problem are functions g ∗a (K , a; G , M , T ) and Ω(K , a; G ) and the equilibrium can be

characterized by G ∗(K , M , T ) = g ∗a (K , K ; G ∗, M , T ) and M∗ = T (the government budget constraint

is balanced period by period). We will write a complete definition of equilibrium for a version with

government debt (below).

Note that the equilibrium will be optimal. But if consumers cared about medals, the equilibrium will

not be optimal in general.

3 We must specify A such that the borrowing constraint implicit in A is never binding.

18



Exercise 8 Define f̂ (K , 1) = f (K , 1)−M for the planner. Show that the equilibrium is optimal when

consumers do not care about medals.

3.3.2 Labor Income Tax

We have an economy in which the government levies tax on labor in order to purchase medals. Medals

are goods which provide utility to the consumers.

V (K , a) = max
c,a′

{u (c , M) + βV (K ′, a′)}

s.t. c + a′ = (1− τ(K )) w (K ) + aR (K )

K ′ = G (K ) ,

given M = τ(K )w (K ).

Since leisure is not valued, the labor decision stays trivial. Hence, there is no distortion due to taxes

and CE is Pareto optimal. This will also hold when medals do not provide any utility to the consumers.

Exercise 9 Is there any change in the above implications of optimality if the tax rate is a function of

aggregate capital?

Exercise 10 Suppose medals do not provide utility to agents but leisure does. Is CE optimal now? Is

it distorted? What if medals also provide utility?
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3.3.3 Capital Income Tax

Now let us look at an economy in which the government levies tax on capital in order to purchase

medals. Medals are goods which provide utility to the consumers.

V (K , a) = max
c,a′

{u (c , M) + βV (K ′, a′)}

s.t. c + a′ = w (K ) + a[1 + r (K ) (1− τ(K ))]

K ′ = G (K ) ,

given M = τ(K )r (K ) K and R (K ) = 1 + r (K ). Now, the First Welfare Theorem is no longer

applicable; the CE will not be Pareto optimal anymore (if τ > 0 there will be a wedge, and the

efficiency conditions will not be satisfied).

Exercise 11 Derive the first order conditions in the above problem to see the wedge introduced by

taxes.

3.3.4 Taxes and Debt

Assume that government can issue debt and use taxes to finance its expenditures, and these expenditures

do affect the utility.

A government policy consists of taxes, spending (medals) as well as bond issuance. When the aggregate

states are K and B , as you will see why, then a government policy (in a recursive world!) is

τ (K , B) , M (K , B) and B ′ (K , B) .

For now, we shall assume these values are chosen so that the equilibrium exists. In this environment,

debt issued is relevant for the household because it permits him to correctly infer the amount of taxes.

Therefore the household needs to form expectations about the future level of debt from the government.
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The government budget constraint now satisfies (with taxes on labor income):

M(K , B) + R (K ) · B = τ (K , B) w(K ) + B ′ (K , B)

Notice that the household does not care about the composition of his portfolio as long as assets have

the same rate of return which is true because of the no arbitrage condition. Therefore, the problem of

a household with assets equal to a is given by:

V (K , B , a) = max
c,a′

{u (c , M (K , B)) + βV (K ′, B ′, a′)}

s.t. c + a′ = w (K ) [1− τ (K , B)] + aR (K )

K ′ = G (K , B)

B ′ = H (K , B) .

Let g (K , B , a) be the policy function associated with this problem. Then, we can define a RCE as

follows.

Definition 4 A Rational Expectations Recursive Competitive Equilibrium, given policies M(K , B) and

τ(K , B) is a set of functions V , g , G , H, w, and R, such that

1. V and g solve household’s functional equation,

2. w(K ) = F2(K , 1) and R(K ) = F1(K , 1),

3. g(K , B , K + B) = G (K , B) + H(K , B),

4. Government’s budget constraint is satisfied

H (K , B) = R (K ) B + M (K , B)− τ (K , B) w (K ) ,

5. and, government debt is bounded; i.e. there exists some B̄ so that for all K ∈
[

0, k̃
)

, H (K , B) ≤

B̄.
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4 Some Other Examples

4.1 A Few Popular Utility Functions

Consider the following three utility forms:

1. u (c , c−): this function is called habit formation utility function; utility is increasing in con-

sumption today, but, decreasing in the deviations from past consumption (e.g. u (c , c−) =

v (c)− (c − c−)2). In this case, the aggregate states in a standard growth model are K and C−,

and individual states are a and c−. Is the equilibrium optimum in this case?

2. u (c , C−); this form is called catching up with Jones; there is an externality from the aggregate

consumption to the payoff of the agents. Intuitively, in this case, agents care about what their

neighbors consume. Aggregate states in this case are K and C−. But, c− is no longer an

individual state.

3. u (c , C ): the last function is called keeping up with Jones. Here, the aggregate state is K ; C is

no longer a pre-determined variable to appear as a state.

4.2 An Economy with Capital and Land

Consider an economy with capital and land but without labor; a firm in this economy buys and installs

capital. They also own one unit of land, that they use in production, according to the production

function F (K , L). In other words, a firm is a “chunk of land of are one”, in which firm installs its

capital. Share of these firms are traded in a stock market.

A household’s problem in this economy is given by:
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V (K , a) = max
c,a′

{u (c) + βV (K ′, a′)}

s.t. c + a′ = R (K ) a.

K ′ = G (K )

On the other hand, a firm’s problem is

Ω (K , k) = max
k ′

{F (k , 1)− k ′ + q (K ′) Ω (K ′, k ′)}

s.t. K ′ = G (K ) .

Ω here is the value of the firm, measured in units of output, today. Therefore, the value of the firm,

tomorrow, must be discounted into units of output today. This is done by a discount factor q (K ′).

A Recursive Competitive Equilibrium consists of functions, V , Ω, g , h, q, G , and R , so that:

1. V and g solve household’s problem,

2. Ω and h solve firm’s problem,

3. G (K ) = h (K , K ), and,

4. q (G (K )) Ω (G (K ) , G (K )) = g (K , Ω (K , K )).

Exercise 12 One condition is missing in the definition of the RCE above. Find it! [Hint: it relates

the rate of return on the household’s assets to the discount rate of firm’s value.]

5 Adding Heterogeneity

In the previous section we looked at situations in which recursive competitive equilibria (RCE) were

useful. In particular these were situations in which the welfare theorems failed and so we could not use
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the standard dynamic programming techniques learned earlier. In this section we look at another way

in which RCE are helpful, in models with heterogeneous agents.

5.1 Heterogeneity in Wealth

First, let us consider a model in which we have two types of households that differ only in the amount

of wealth they own. Say there are two types of agents, labeled type 1 and 2, of equal measure of 1/2.

Agents are identical other than their initial wealth position and there is no uncertainty in the model.

The problem of an agent with wealth a is given by

V
(
K 1, K 2, a

)
= max

c,a′

{
u (c) + βV

(
K ′1, K ′2, a′

)}
s.t. c + a′ = R

(
K 1 + K 2

2

)
a + W

(
K 1 + K 2

2

)
K ′i = G i

(
K 1, K 2

)
, i = 1, 2.

Remark 3 Note that (in general) the decision rules of the two types of agents are not linear (even

though they might be almost linear); therefore, we cannot add the two states, K 1 and K 2, to write the

problem with one aggregate state, in the recursive form.

Definition 5 A Rational Expectations Recursive Competitive Equilibrium is a set of functions V , g ,

R, w, G 1, and G 2, so that:

1. V solves the household’s functional equation, with g as the associated policy function,

2. w and R are the marginal products of labor and capital, respectively (watch out for arguments!),

3. representative agent conditions are satisfied; i.e.

g(K 1, K 2, K 1) = G 1(K 1, K 2),
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and

g(K 1, K 2, K 2) = G 2(K 1, K 2).

Remark 4 Note that G 1 (K 1, K 2) = G 2 (K 2, K 1) (why?).

Remark 5 This is a variation of the simple neoclassical growth model; what does the growth model

say about inequality?

In the steady state of a neoclassical growth model, Euler equations for the two types simplify to

u′
(
c1
)

= βRu′
(
c1
)

, and u′
(
c2
)

= βRu′
(
c2
)

.

Therefore, we must have βR = 1, where

R = FK

(
K 1 + K 2

2
, 1

)
.

Finally, by the household’s budget constraint, we must have:

k iR + W = c i + k i ,

where k i = K i , by representative agent’s condition. Therefore, we have three equation, with four

unknowns (k i and c i ’s). This means, this theory is silent about the distribution of wealth in the steady

state!

5.2 Heterogeneity in Skills

Now, consider a slightly different economy where type i has labor skill εi . Measures of agents’ types,

µ1 and µ2, satisfy µ1ε1 + µ2ε2 = 1 (below we will consider the case where µ1 = µ2 = 1/2).

The question we have to ask ourselves is, would the value functions of two types remain to be the
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same, as in the previous subsection? The answer turns out to be no!

The problem of the household i ∈ {1, 2} can be written as follows:

V i
(
K 1, K 2, a

)
= max

c,a′

{
u (c) + βV i

(
K ′1, K ′2, a′

)}
s.t. c + a′ = R

(
K 1 + K 2

2

)
a + W

(
K 1 + K 2

2

)
εi

K ′j = G j
(
K 1, K 2

)
, j = 1, 2.

Notice that we have indexed the value function by the agent’s type; the reason is that the marginal

product of the labor supplied by each of these types is different.

Remark 6 We can rewrite this problem as

V i (K ,λ, a) = max
c,a′

{
u (c) + βV i (K ′,λ′, a′)

}
s.t. c + a′ = R (K ) a + W (K ) εi

K = G (K ,λ)

λ′ = H (K ,λ) ,

where K is the total capital in this economy, and λ is the share of one type in this wealth (e.g. type

1).

Then, if g i is the policy function of type i , in the equilibrium, we must have:

G (K ,λ) = g 1 (K ,λ,λK ) + g 2 (K ,λ, (1− λ) K ) ,

and

H (K ,λ) = g 1 (K ,λ,λK ) /G (K ,λ) .
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5.3 An International Economy Model

In an international economy model the specifications which determine the definition of country is an

important one; we can introduce the idea of different locations or geography; countries can be victims

of different policies; trade across countries maybe more difficult due to different restrictions.

Here we will see a model with two countries, 1 and 2, such that labor is not mobile between the

countries, but with perfect capital markets. However, in order to use a product in production, it must

have been installed in advanced. So the resource constraint is:

C 1 + C 2 + K ′1 + K ′2 = F (K 1, 1) + F (K 2, 1)

Suppose that there is a mutual fund that owns the firms in each country and its shares are traded in

the market. So, as in the economy with capital and land, individuals own shares of this mutual fund.

The first question to ask, as usual, is what are the appropriate states in this world? As it is apparent

from the resource constraint and production functions, we need the capital in each country. Moreover,

we need to know total wealth in each country. Therefore, we need an additional variable as the

aggregate state; shares owned by country 1.

As a result, we can write the country i’s problem as:

V i (z1, z2, K1, K2, A, a) = max
c,a′(z)

{
u (c) + β

∑
~z ′

Γ~z~z ′V
i
(
~z′, ~K

′, A′(~z ′), a′(~z ′)
)}

s.t. c +
∑
~z ′

q(~z , ~K , A,~z ′)a′(~z ′) = w i (zi , Ki) + aΦ(~z , ~K )

K ′i = Gi

(
~z , ~K , A

)
, i = 1, 2

A(~z ′) = H
(
~z , ~K , A,~z ′

)

where A is the total amount of shares that individuals in country 1 own and a is the share that an
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individual owns in country i.

Exercise 13 Write this economy with state contingent consumption good claims in own country.

Exercise 14 Write this economy where individuals can move in advanced freely, but there is incomplete

market.

Since labor is immobile and capital installed in advanced and wage is simply marginal return to pro-

duction it only depends on country level shock and capital: w i(zi , Ki) = ziFN(Ki , 1)

Let hi be the optimal choice of share holding. By market clearing condition sum of shares must be 1:

h1
(
~z , ~K , A, A,~z ′

)
+ h2

(
~z , ~K , A, 1− A,~z ′

)
= 1 ∀~z ′

In rational expectations equilibrium, representative agent condition must hold:

H
(
~z , ~K , A, A,~z ′

)
= h1

(
~z , ~K , A, A,~z ′

)

Now let’s look at the net present value of the mutual fund:

Φ(~z , ~K , A) =
∑
zi

[
ziF (Ki , 1)− w i(zi , Ki)

]
−
∑
i

Gi(~z , ~K , A)+
∑
zi

Γ~z~z ′Q(~z ′, ~G (K ), H(.))Φ(~z ′, ~G (K ), H(.))

(2)

where Q is inter temporal prices. In the equilibrium, this should satisfy:

q(~z , ~K , A,~z ′) = Q(~z ′, ~G (K ), H(.))Φ(~z ′, ~G (K ), H(.))
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We also need feasibility condition for consumption and investment:

∑
i

[
ziF (Ki , 1)− Gi(~z , ~K , A)− ci

]
= 0

Exercise 15 There is one more condition for Gi that equates expected return in each country. Can

you write it?

Definition 6 A Recursive Competitive Equilibrium for the (world’s) economy is a set of functions, V i ,

hi , w i , and Φ for i ∈ {1, 2}, and q, G ,H and Q, such that the following conditions hold:

1. V i and hi solve the household’s problem in country i (i ∈ {1, 2}),

2. h1
(
~z , ~K , A, A,~z ′

)
+ h2

(
~z , ~K , A, 1− A,~z ′

)
= 1 ∀~z ′,

3. H
(
~z , ~K , A, A,~z ′

)
= h1

(
~z , ~K , A, A,~z ′

)
,

4. w i is equated to the marginal products of labor in each country,

5. q(~z , ~K , A,~z ′) = Q(~z ′, ~G (K ), H(.))Φ(~z ′, ~G (K ), H(.)),

6. Φ satisfies 2

7. Resource constraint,

8. Expected rate of return on capital is same across countries

5.4 Heterogeneity in Wealth and Skills with Complete Markets

Now, let us consider a model in which we have two types of households that care about leisure differ

in the amount of wealth they own and labor skill. Also, there is uncertainty and Arrow securities like

we have seen before.

Let A1 and A2 be the aggregate asset holdings of the two types of agents. These will now be state

variables for the same reason that K 1 and K 2 were state variables earlier. The problem of an agent

29



i ∈ {1, 2} with wealth a is given by

V i
(
z , A1, A2, a

)
= max

c,n,a′(z ′)

{
u (c , n) + β

∑
z ′

Γzz ′V
(
z ′, A′1, A′2, a′(z ′)

)}
s.t. c +

∑
z ′

a′ (z ′) qz ′
(
z , A1, A2

)
= R (z , K , N) a + W (z , K , N) nεi

A′i(z ′) = G i
(
z , A1, A2, z ′

)
, i = 1, 2, ∀z ′

N = H
(
z , A1, A2

)
K =

A1 + A2

2
.

Let g i and hi be the asset and labor policy functions be the solution to this problem. Then, we can

define the RCE as below.

Definition 7 A Recursive Competitive Equilibrium with Complete Markets is a set of functions V i ,

g i , hi , G i , R, w, H, and q, so that:

1. V i , g i and hi solve the problem of household i (i ∈ {1, 2}),

2. H (z , A1, A2) = ε1h1 (z , A1, A2, A1) + ε2h2 (z , A1, A2, A2),

3. G i (z , A1, A2, z ′) = g i
(
z , A1, A2, Ai , z ′

)
i = 1, 2, ∀z ′

4.
∑

z ′ qz ′ (z , A1, A2, z ′) = 1,

5. G 1 (z , A1, A2, z ′) + G 2 (z , A1, A2, z ′) is independent of z ′ (due to market clearing).

6. R and W are the marginal products of capital and labor.

Exercise 16 Write down the household problem and the definition of RCE with non-contingent claims

instead of complete markets.
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6 Asset Pricing: Lucas Tree Model

We now turn to the simplest of all models in term of allocations as they are completely exogenous,

the Lucas tree model. We want to characterize the properties of prices that are capable of inducing

households to consume the endowment.

6.1 The Lucas Tree with Random Endowments

Consider an economy in which the only asset is a tree that gives fruit. The agents problem is

V (z , s) = max
c,s′

{
u (c) + β

∑
z ′

Γzz ′V (z ′, s ′)

}
s.t. c + p (z) s ′ = s [p (z) + d (z)] ,

where p (z) is the price of the shares (to the tree), in state z , and d (z) is the dividend associated with

state z .

Definition 8 A Rational Expectations Recursive Competitive Equilibrium is a set of functions, V , g ,

d, and p, such that

1. V and g solves the household’s problem,

2. d (z) = z, and,

3. g(z , 1) = 1, for all z.

To explore the problem more, note that the first order conditions for the household’s problem imply:

uc (c (z , 1)) = β
∑
z ′

Γzz ′

[
p (z ′) + d (z ′)

p (z)

]
uc (c (z ′, 1)) .
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As a result, if we let uc (z) := uc (c (z , 1)), we get:

p (z) uc (z) = β
∑
z ′

Γzz ′uc (z ′) [p (z ′) + z ′] .

Exercise 17 Derive the Euler equation for household’s problem.

Notice that this is just a system of n equations with unknowns {p (zi)}ni=1. We can use the power of

matrix algebra to solve it. To do so, let:

p :=


p (z1)

...

p (zn)

 ,

and

uc :=


uc (z1) · · · 0

...
. . .

...

0 · · · uc (zn)

 .

Then

uc .p =


p (z1) uc (z1)

...

p (zn) uc (zn)

 ,

and

uc .z =


z1uc (z1)

...

znuc (zn)

 ,
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Now, rewrite the system above as

ucp = βΓucz + βΓucp,

where Γ is the transition matrix for z , as before. Hence, the price for the shares is given by

ucp = (I− βΓ)−1 βΓucz,

or

p =


uc (z1) · · · 0

...
. . .

...

0 · · · uc (zn)


−1

(I− βΓ)−1 βΓucz.

6.2 Asset Pricing

Consider our simple model of Lucas tree with fluctuating output; what is the definition of an asset in

this economy? It is “a claim to a chunk of fruit, sometime in the future”.

If an asset, a, promises an amount of fruit equal to at (z t) after history z t = (z0, z1, ... , zt) of shocks,

after a set of (possible) histories in H , the price of such an entitlement in date t = 0 is given by:

p (a) =
∑
t

∑
z t∈H

q0
t (z t) at (z t) ,

where q0
t (z t) is the price of one unit of fruit after history z t , in today’s “dollars”; this follows from

a no-arbitrage argument. If we have the date t = 0 prices, {qt}, as functions of histories, we can

replicate any possible asset by a set of state-contingent claims, and use this formula to price that asset.
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To see how we can find prices at date t = 0, consider a world in which the agent wants to solve

max
ct(z t)

{
∞∑
t=0

βt
∑
z t

πt (z t) u (ct (z t))

}

s.t.
∞∑
t=0

∑
z t

q0
t (z t) ct (z t) ≤

∞∑
t=0

∑
ht

q0
t (z t) zt .

This is the familiar Arrow-Debreu market structure, where the household owns a tree, and the tree can

yield z ∈ Z amount of fruit in each period. The first order condition for this problem implies:

q0
t (z t) = βtπt (z t)

uc (zt)

uc (z0)
.

This enables us to price the good in each history of the world, and price any asset accordingly.

Comment 1 What happens if we add state contingent shares into our recursive model? Then the

agent’s problem becomes:

V (z , s, b) = max
c,s′,b′(z ′)

{
u (c) + β

∑
z ′

Γzz ′V (z ′, s ′, b′ (z ′))

}
s.t. c + p (z) s ′ +

∑
z ′

q (z , z ′) b′ (z ′) = s [p (z) + z ] + b.

A characterization of q can be written as:

q (z , z ′) uc (z) = βΓzz ′uc (z ′) .

We can price all types of securities using p and q in this economy.

To see how we can price an asset, consider the option to sell tomorrow at price P , if today’s shock is

z , as an example; the price of such an asset today is

q̂ (z , P) =
∑
z ′

max {P − p (z ′) , 0} q (z , z ′) .
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The American option to sell at price P either tomorrow or the day after tomorrow is priced as:

q̃ (z , P) =
∑
z ′

max {P − p (z ′) , q̂ (z ′, P)} q (z , z ′) .

Similarly, a European option to buy at price P the day after tomorrow is priced as:

q̄ (z , P) =
∑
z ′

∑
z ′′

max {p (z ′′)− P , 0} q (z ′, z ′′) q (z , z ′) .

Note that R (z) = [
∑

z ′ q (z , z ′)]−1 is the gross risk free rate, given today’s shock is z . The uncondi-

tional gross risk free rate is then given as R f =
∑

z µ
∗
zR(z) where µ∗ is the steady-state distribution

of the shocks defined earlier.

The average gross rate of return on the stock market is
∑

z µ
∗
z

∑
z ′ Γzz ′

[
p(z ′)+z ′

p(z)

]
and the risk premium

is the difference between this rate and the unconditional gross risk free rate.

Exercise 18 Use the expressions for p and q and the properties of the utility function to show that

risk premium is positive.

6.3 Taste Shocks

Consider an economy in which the only asset is a tree that gives fruits. The fruit is constant over time

(normalized to 1) but the agent is subject to preference shocks for the fruit each period, θ ∈ Θ. The

agent’s problem in this economy is

V (θ, s) = max
c,s′

{
θu (c) + β

∑
θ′

Γθθ′V (θ′, s ′)

}
s.t. c + p (θ) s ′ = s [p (θ) + d (θ)] .
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The equilibrium is defined as before; the only difference is that, now, we must have d (θ) = 1. What

does it mean that the output of the economy is constant, and fixed at one, but, the tastes in this

output changes? In this settings, the function of the price is to convince agents keep their consumption

constant.

All the analysis follows through, once we write the FOC’s characterizing price, p (θ), and state contin-

gent prices q (θ, θ′).

This is a simple model, in a sense that household does not have a real choice. Due to market clearing,

household consumes what nature provides her. In each period, according to state productivity z and

taste θ, price adjusts such that household would like to consume z , amount of fruit that nature provides.

Hence output is equal to z . If we look at the business cycle in this economy, only fluctuation for the

output would be caused by nature. Here everyting is determined by the supply side, demand side has

no impact.

In next section, we are going to introduce search friction to incroporate demand side into the model.

7 Endogenous Productivity in a Product Search Model

Let’s model the situation where households need to find the fruit before consuming it;4 assume that

households have to find the tree in order to consume the fruit. Finding trees is characterized by a

constant returns to scale (increasing) matching function M (T , D),5 where T is the number of trees

and D is the shopping effort, exerted by households when searching. Thus, the probability that a tree

finds a shopper is M (T , D) /T ; total number of matches, divided by the number of trees. And, the

probability that a unit of shopping effort finds a tree is M (T , D) /D.

We further assume that M takes the form DϕT 1−ϕ, and denote the probability of finding a tree

4 Think of fields in The Land of Apples, full of apples, that are owned by firms; agents have to buy the apples. In
addition, they have to search for them as well!

5 What does the fact that M is constant returns to scale imply?
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by Ψd (Q) := Q1−ϕ, where 1/Q := D/T is the ratio of shoppers per trees, capturing the market

tightness; the more the number of people searching, the smaller the probability of finding a tree. Then,

Ψt (Q) := Q−ϕ. Note that, in this economy, the number of trees is constant, and equal to one.6

The household’s problem can be written as:

V (θ, s) = max
c,d ,s′

{
u (c , d , θ) + β

∑
θ′

Γθθ′V (θ′, s ′)

}
(3)

s.t. c = dΨd (Q (θ)) (4)

c + P (θ) s ′ = P (θ) [s (1 + R (θ))] , (5)

where P is the price of tree relative to that of consumption, and R is the dividend income (in units of

tree). d is the amount of search the individual household exerts to acquire fruit.

We could also write the household budget constraint in terms of the price of consumption relative to

that of the tree P̂(θ) = 1
P(θ)

as cP̂(θ) + s ′ = s (1 + R (θ)). Also, let u (c , d , θ) = u (θc , d) from here

on. If we substitute the constraints into the objective and solve for d , we get the Euler equation for

the household. Using the market clearing in equilibrium, the problem reduces to one equation and two

unknowns, P̂ and Q (other objects, C ,D and R , are known functions of P̂ and Q). We still need

another functional equation to find an equilibrium. We now turn to one way of doing so.

Exercise 19 Derive the Euler equation of the household from the problem defined above.

6 It is easy to find the statements for Ψt and Ψd , given the Cobb-Douglas matching function;

Ψd (Q) =
DϕT 1−ϕ

D
=

(
T

D

)1−ϕ

= Q1−ϕ,

Ψt (Q) =
DϕT 1−ϕ

T
=

(
T

D

)−ϕ
= Q−ϕ.

The question is, is Cobb-Douglas an appropriate choice for the matching function, or its choice is a matter of simplicity?
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7.1 Competitive Search

Competitive search is a particular search protocol of what is called non-random (or directed) search.

To understand this protocol, consider a world consisting a large number of islands. Each island has

a sign that reads two number, W and Q. W is the wage rate on the island, and Q is a measure of

market tightness in that island, or the number of workers on the island divided by the number of job

opportunities. Both, workers and firms have to decide to go to one island. In an island with higher

wage, the worker might be happier, conditioned on finding a job. However, the probability of finding

a job might be low on the island, depending on the tightness of the labor market on that island. The

same story holds for the job owners, who are searching to hire workers.

In our economy, both firms and workers search for specic markets indexed by price P and market

tightness Q. A pair of P , Q is operational if there exist some consumer and firm that choose that

market. Therefore, an agent should choose P and Q such that it gives sufficient profit to firm, which

will be determined in the equilibirum. Competitive search is magic. It does not presuppose a particular

pricing protocol (wage posting, bargaining) that other search protocols need.

We can define househol problem as:

V (θ, s) = max
c,d ,s′,P,Q

{
u (c , d , θ) + β

∑
θ′

Γθθ′V (θ′, s ′)

}
(6)

s.t. c = dΨd (Q) (7)

c + Ps ′ = P [s (1 + R (θ))] , (8)

Ψt (Q)

P
≥ R(θ) (9)

Last constraint provides that firms would prefer this market to other markets, in which they would get

R(θ).

To solve the problem, let’s take the first order conditions. To do this, first plug first two constraints in
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to the objective function and then take derivative with respect to d (recall that Ψd = Q1−ϕ):

θQ1−ϕuc(θdQ1−ϕ, d) + ud(θdQ1−ϕ, d) = β
∑
θ′

Γθθ′V2

(
θ′, s(1 + R(θ))− dQ1−ϕ

P

)
Q1−ϕ

P
(10)

To find V2 consider the original problem where constraints are not plugged into the objective function.

Using envelope theorem we can get:

V2(θ, s) =

[
θuc(θdQ1−ϕ, d) +

ud(θdQ1−ϕ, d)

Q1−ϕ

]
P(1 + R(θ))

Conbining these two would lead to Euler equation:

θuc(θdQ1−ϕ, d)+
ud(θdQ1−ϕ, d)

Q1−ϕ = β
∑
θ′

Γθθ′
P ′(1 + R(θ′))

P

[
θ′uc(θ′d ′Q ′

1−ϕ
, d ′)) +

ud(θ′d ′Q ′1−ϕ, d ′)

Q ′1−ϕ

]
(11)

Observe that this equation is same with the Euler equation of random search model. This equation

gives us the optimal search and saving behaviour for a given market tightness Q and price level P . To

understand which market to search we need to look at FOC’s regarding to Q and P . Let’s λ denote

the Lagrange multiplier for profit constraint, then FOC’s with respect to Q and P are:

θd(1− ϕ)Q−ϕuc(θdQ1−ϕ, d) = β
∑
θ′

Γθθ′V2

(
θ′, s(1 + R(θ))− dQ1−ϕ

P

)
d(1− ϕ)Q−ϕ

P
+ λ

ϕQ−ϕ−1

P

(12)

β
∑
θ′

Γθθ′V2

(
θ′, s(1 + R(θ))− dQ1−ϕ

P

)
dQ = λ (13)

Combining these two equation would give us:

θuc(θdQ1−ϕ, d) = β
∑
θ′

Γθθ′V2

(
θ′, s(1 + R(θ))− dQ1−ϕ

P

)[
1

(1− ϕ)P

]
(14)
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Now we can define the equilibrium:

Definition 9 An equilibrium with competitive search consists of V,c, d, s, P, Q and R that satisfy:

1. household’s shopping constraint, (condition 7)

2. budget constraint, (condition 8)

3. Euler equation, (condition 11)

4. Market condition, (condition 14)

5. Firm’s participation constraint, (condition 9)

6. Market clearing, s = 1, Q = 1/d

7. Dividend payment is the profit of the firm, R(θ) = Q−ϕ/P

8 Measure Theory

This section will be a quick review of measure theory to be able to use it in the subsequent sections.

Definition 10 For a set S, S is a family of subsets of S, if B ∈ S implies B ⊆ S (but not the other

way around).

Definition 11 A family of subsets of S, S, is called a σ-algebra in S if

1. S , ∅ ∈ S;

2. A ∈ S ⇒ Ac ∈ S (i.e. S is closed with respect to complements); and,

3. for {Bi}i∈N, Bi ∈ S for all i implies
⋂

i∈N Bi ∈ S (i.e. S is closed with respect to countable

intersections).
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Example 1

1. The power set of S (i.e. all the possible subsets of a set S), is a σ-algebra in S.

2. {∅, S} σ-algebra in S.

3.
{
∅, S , S1/2, S2/2

}
, where S1/2 means the lower half of S (imagine S as an closed interval in R),

σ-algebra in S.

4. If S = [0, 1], then

S =

{
∅,
[

0,
1

2

)
,

{
1

2

}
,

[
1

2
, 1

]
, S

}

is not a σ-algebra in S.

Remark 7 Note that, a convention is to

1. use small letters for elements,

2. use capital letters for sets, and

3. use fancy letters for a set of subsets (or families of subsets).

Now, we are ready to define a measure.

Definition 12 Suppose S is a σ-algebra in S. A measure is a function x : S → R+, that satisfies

1. x (∅) = 0;

2. B1, B2 ∈ S and B1 ∩ B2 = ∅ implies x (B1 ∪ B2) = x (B1) + x (B2) (additivity); and,

3. {Bi}i∈N ∈ S and Bi ∩ Bj = ∅, for all i 6= j , implies x (∪iBi) =
∑

i x (Bi) (countable additivity).7

7 Countable additivity means that the measure of the union of countable disjoint sets is the sum of the measure of these
sets.
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A set S , a σ-algebra in it, S, and a measure on S, define a measure space, (S ,S, x).

Definition 13 Borel σ-algebra is a σ-algebra generated by the family of all open sets (generated by a

topology).

Since a Borel σ-algebra contains all the subsets generated by the intervals, you can recognize any subset

of a set using Borel σ-algebra. In other words, Borel σ-algebra corresponds to complete information.

Definition 14 A probability (measure) is a measure with the property that x (S) = 1.

Definition 15 Given a measure space (S ,S, x), a function f : S → R is measurable (with respect to

the measure space) if, for all a ∈ R, we have

{b ∈ S | f (b) ≤ a} ∈ S.

One way to interpret a σ-algebra is that it describes the information available based on observations; a

structure to organize information, and how fine are the information that we receive. Suppose that S is

comprised of possible outcomes of a dice throw. If you have no information regarding the outcome of

the dice, the only possible sets in your σ-algebra can be ∅ and S . If you know that the number is even,

then the smallest σ-algebra given that information is S = {∅, {2, 4, 6} , {1, 3, 5} , S}. Measurability has

a similar interpretation. A function is measurable with respect to a σ-algebra S, if it can be evaluated

under the current measure space (S ,S, x).

We can also generalize Markov transition matrix to any measurable space. This is what we do next.

Definition 16 A function Q : S × S → [0, 1] is a transition probability if

1. Q (·, s) is a probability measure for all s ∈ S; and,

2. Q (B , ·) is a measurable function for all B ∈ S.

Intuitively, given B ∈ S and s ∈ S , Q (B , s) gives the probability of being in set B tomorrow, given
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that the state is s today. Consider the following example: a Markov chain with transition matrix given

by

Γ =


0.2 0.2 0.6

0.1 0.1 0.8

0.3 0.5 0.2

 ,

on the set S = {1, 2, 3}, with the σ-algebra S = P (S) (where P (S) is the power set of S). If Γij

denotes the probability of state j happening, given a present state i , then

Q ({1, 2} , 3) = Γ31 + Γ32 = 0.3 + 0.5 .

As another example, suppose we are given a measure x on S; xi gives us the fraction of type i , for

i ∈ S . Given the previous transition function, we can calculate the fraction of types tomorrow using

the following formulas:

x ′1 = x1Γ11 + x2Γ21 + x3Γ31,

x ′2 = x1Γ12 + x2Γ22 + x3Γ32,

x ′3 = x1Γ13 + x2Γ23 + x3Γ33.

In other words

x′ = ΓTx,

where xT = (x1, x2, x3).

To extend this idea to a general case with a general transition function, we define an updating operator
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as T (x , Q), which is a measure on S with respect to the σ-algebra S, such that

x ′ (B) =T (x , Q) (B)

=

∫
S

Q (B , s) x (ds) , ∀B ∈ S.

A stationary distribution is a fixed point of T , that is x∗ so that

x∗ (B) = T (x∗, Q) (B) , ∀B ∈ S.

We know that, if Q has nice properties,8 then a unique stationary distribution exists (for example, we

discard flipping from one state to another), and

x∗ = lim
n→∞

T n (x0, Q) ,

for any x0 in the space of measures on S.

Exercise 20 Consider unemployment in a very simple economy (we have an exogenous transition

matrix). There are two states; employed and unemployed. The transition matrix is given by

Γ =

 0.95 0.05

0.50 0.50

 .

Compute the stationary distribution corresponding to this Markov transition matrix.

8 See Chapter 11 in [6].
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9 Industry Equilibrium

9.1 Preliminaries

Now we are going to study a type of models initiated by [2]. We will abandon the general equilibrium

framework from the previous section to study the dynamics of distribution of firms in a partial equilibrium

environment.

To motivate things, let’s start with the problem of a single firm that produces a good using labor input

according to a technology described by the production function f . Let us assume that this function is

increasing, strictly concave, with f (0) = 0. A firm that hires n units of labor is able to produce sf (n),

where s is a productivity parameter. Markets are competitive, in the sense that a firm takes prices as

given and chooses n in order to solve

π (s, p) = max
n≥0
{psf (n)− wn} .

The first order condition implies that in the optimum, n∗,

psfn (n∗) = w .

Let us denote the solution to this problem as a function n∗ (s, p).9 Given the above assumptions, n∗ is

an increasing function of s (i.e. more productive firms have more workers), as well as p.

Suppose now there is a mass of firms in the industry, each associated with a productivity parameter

s ∈ S ⊂ R+, where

S := [s, s̄] .

Let S denote a σ-algebra on S (Borel σ-algebra for instance). Let x be a measure defined over the

9 As we declared in advance, this is a partial equilibrium analysis. Hence, we ignore the dependence of the solution on
w to focus on the determination of p.

45



space (S ,S) that describes the cross sectional distribution of productivity among firms. Then, for any

B ⊂ S with B ∈ S, x (B) is the mass of firms having productivities in S .

We will use x to define statistics of the industry. For example, at this point, it is convenient to define

the aggregate supply of the industry. Since individual supply is just sf (n∗ (s, p)), the aggregate supply

can be written as10

Y S (p) =

∫
S

sf (n∗ (s, p)) x (ds) .

Observe that Y S is a function of the price p; for any price, p, Y S (p) gives us the supply in this

economy.

Exercise 21 Search Wikipedia for an index of concentration in an industry, and adopt it for our

economy.

Suppose now that the demand of the market is described by some function Y D (p). Then the equilibrium

price, p∗, is determined by the market clearing condition

Y D (p∗) = Y S (p∗) . (15)

So far, everything is too simple to be interesting. The ultimate goal here is to understand how the

object x is determined by the fundamentals of the industry. Hence, we will be adding tweaks to this

basic environment in order to obtain a theory of firms’ distribution in a competitive environment. Let’s

start by allowing firms to die.

9.2 A Simple Dynamic Environment

Consider now a dynamic environment, in which the situation above repeats every period. Firms discount

profits at rate rt , which is exogenously given. In addition, assume that a single firm, in each period,

10 S in Y S stands for supply.
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faces a probability 1− δ of disappearing! We will focus on stationary equilibria; i.e. equilibria in which

the price of the final output p, the rate of return, r , and the productivity of firm, s, stay constant

through time.

Notice first that firm’s decision problem is still a static problem; we can easily write the value of an

incumbent firm as

V (s, p) =
∞∑
t=0

(
δ

1 + r

)t

π (s, p)

=

(
1 + r

1 + r − δ

)
π (s, p)

Note that we are considering that p is fixed (therefore we can omit it from the expressions above).

Observe that every period there is positive mass of firms that die. Therefore, how can this economy be

in a stationary equilibrium? To achieve that, we have to assume that there is a constant flow of firms

entering the economy in each period, as well.

As before, let x be the measure describing the distribution of firms within the industry. The mass of

firms that die is given by (1− δ)x (S). We will allow these firms to be replaced by new entrants. These

entrants draw a productivity parameter s from a probability measure γ.

One might ask what keeps these firms out of the market in the first place? If

π (s, p) = psf (n∗ (s, p))− wn∗ (s, p) > 0,

which is the case for the firms operating in the market, then all the (potential) firms with productivities

in S would want to enter the market!

We can fix this flaw by assuming that there is a fixed entry cost that each firm must pay in order to

operate in the market, denoted by cE . Moreover, we will assume that the entrant has to pay this cost
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before learning s. Hence the value of a new entrant is given by the following function:

V E (p) =

∫
S

V (s, p) γ (ds)− cE . (16)

Entrants will continue to enter if V E is greater than 0, and decide not to enter if this value is less

than zero. As a result, stationarity occurs when V E is exactly equal to zero (this is the free entry

assumption, and we are assuming that there is an infinite number (mass) of prospective firms).

Let’s analyze how this environment shapes the distribution of firms in the market. Let xt be the cross

sectional distribution of firms in period t. For any B ⊂ S , portion 1− δ of the firms with productivity

s ∈ B will die, and that will attract some newcomers. Hence, next period’s measure of firms on set B

will be given by:

xt+1 (B) = δxt (B) + mγ (B) .

That is, mass m of firms would enter the market in t + 1, and only fraction γ (B) of them will have

productivities in the set B . As you might suspect, this relationship must hold for every B ∈ S.

Moreover, since we are interested in stationary equilibria, the previous expression tells us that the cross

sectional distribution of firms will be completely determined by γ.

If we let mapping T be defined by

Tx (B) = δx (B) + mγ (B) , ∀B ∈ S, (17)

a stationary distribution of productivity is the fixed point of the mapping T ; i.e. x∗ with Tx∗ = x∗,

implying:

x∗ (B ; m) =
m

1− δ
γ (B) , ∀B ∈ S.
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Now, note that the demand and supply relation in (15) takes the form:

yd (p∗ (m)) =

∫
S

sf (n∗ (s, p)) dx∗ (s; m) , (18)

whose solution, p∗ (m), is continuous function under regularity conditions stated in [6].

We have two equations, (16) and (18), and two unknowns, p and m. Thus, we can defined the

equilibrium as:

Definition 17 A stationary distribution for this environment consists of functions p∗, x∗, and m∗, that

satisfy:

1. yd (p∗ (m)) =
∫
S

sf (n∗ (s, p)) dx∗ (s; m);

2.
∫
s

V (s, p) γ (ds)− cE = 0; and,

3. x∗ (B) = δx∗ (B) + m∗γ (B) , ∀B ∈ S.

9.3 Introducing Exit Decisions

We want to introduce more (economic) content by making the exit of firms endogenous (a decision of

the firm). One way to do so is to assume that the productivity of the firms follow a Markov process

governed by a transition function, Γ. This would change the mapping T in Equation (17), as:

Tx (B) = δ

∫
S

Γ (s, B) x (ds) + mγ (B) , ∀B ∈ S.

But, this wouldn’t add much economic content to our environment; firms still do not make any (inter-

esting) decision. To change this, let’s introduce cost of operation into the model; suppose firms have

to pay cv each period in order to stay in the market. In this case, when s is low, the firm’s profit

might not cover its cost of operation. So, the firm might decide to leave the market. However, firm
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has already paid (a sunk cost of) cE , and, since s changes according to a Markov process, prospects

of future profits might deter the firm from quitting. Therefore, negative profit in one period does not

imply immediately that the firm’s optimal choice is to leave the market.

By adding such a minor change, the solution will have a reservation productivity property under some

conditions (to be discussed in the comment below). In words, there will be a minimum productivity,

s∗ ∈ S , above which it is profitable for the firm to stay in the market.

To see this, note that the value of a firm with productivity s ∈ S in a period is given by

V (s, p) = max

{
0, π (s, p) +

1

(1 + r)

∫
S

Γ (s, ds ′) V (s ′, p)− cv

}
.

Exercise 22 Show that the firm’s decision takes the form of a reservation productivity strategy, in

which, for some s∗ ∈ S, s < s∗ implies that the firm would leave the market.

In this case, the transition of the distribution of productivities on S will be:

x ′ (B) = mγ (B ∩ [s∗, s̄]) +

∫ s̄

s∗
Γ (s, B ∩ [s∗, s̄]) x (ds) , ∀B ∈ S.

A stationary distribution of the firms in this economy, x∗, is the fixed point of this equation.

Example 2 How productive does a firm have to be, to be in the top 10% largest firms in this economy?

The answer to this question is the solution to the following equation, ŝ:

∫ s̄

ŝ
x∗ (ds)∫ s̄

s∗
x∗ (ds)

= 0.1 .

Then, the fraction of the labor force in the top 10% largest firms in this economy, is

∫ s̄

ŝ
n∗ (s, p) x∗ (ds)∫ s̄

s∗
n∗ (s, p) x∗ (ds)

.

Exercise 23 Compute the average growth rate of the smallest one third of the firms. What would be

the fraction of firms in the top 10% largest firms in the economy that remain in the top 10% in next
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period?

Comment 2 To see that this will be the case you should prove that the profit before variable cost

function π (s, p) is increasing in s. Hence the productivity threshold is given by the s∗ that satisfies the

following condition:

π (s∗, p) = cv

for an equilibrium price p. Now instead of considering γ as the probability measure describing the

distribution of productivities among entrants, you must consider γ̂ defined as follows

γ̂ (B) =
γ (B ∩ [s∗, s])

γ ([s∗, s])

for any B ∈ S.

One might suspect that this is an ad hoc way to introduce the exit decision. To make things more

concrete and easier to compute, we will assume that s is a Markov process. To facilitate the exposition,

let’s make S finite and assume s has transition matrix Γ. Assume further that Γ is regular enough so

that it has a stationary distribution γ∗. For the moment we will not put any additional structure on Γ.

The operation cost cv is such that the exit decision is meaningful. Let’s analyze the problem from the

perspective of the firm’s manager. He has now two things to decide. First, he asks himself the question

“Should I stay or should I go?”. Second, conditional on staying, he has to decide how much labor to

hire. Importantly, notice that this second decision is still a static decision. Later, we will introduce

adjustment cost that will make this decision a dynamic one.

Let φ (s, p) be the value of the firm before having decided whether to stay or to go. Let V (s, p) be

the value of the firm that has already decided to stay. V (s, p) satisfies

V (s, p) = max
n

{
spf (n)− n − cv +

1

1 + r

∑
s′∈S

Γss′φ (s ′, p)

}
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Each morning the firm chooses d in order to solve

φ (s, p) = max
d∈{0,1}

dV (s, p)

Let d∗ (s, p) be the optimal decision to this problem. Then d∗ (s, p) = 1 means that the firm stays in

the market. One can alternatively write:

φ (s, p) = max
d∈{0,1}

d

[
π (s, p)− cv +

1

1 + r

∑
s′∈S

Γss′φ (s ′, p)

]

or even

φ (s, p) = max

[
π (s, p)− cv +

1

1 + r

∑
s′∈S

Γss′φ (s ′, p) , 0

]
(19)

All these are valid. Additionally, one can easily add minor changes to make the exit decision more

interesting. For example, things like scrap value or liquidation costs will affect the second argument of

the max operator above, which so far is just zero.

What about d∗ (s, p)? Given a price, this decision rule can take only finitely many values. Moreover,

if we could ensure that this decision is of the form “stay only if the productivity is high enough and go

otherwise” then the rule can be summarized by a unique number s∗ ∈ S. Without doubt, that would

be very convenient, but we don’t have enough structure to ensure that such is the case. Because,

although the ordering of s (lower s are ordered before higher s) gives us that the value of s today

is bigger than value of smaller s ′, depending on the Markov chain, on the other hand, the value of

productivity level s tomorrow may be lower than the value of s ′ (note s ′ < s) tomorrow. Therefore we

need some additional regularity conditions.

In order to get a cutoff rule for the exit decision, we need to add an assumption about the transition

matrix Γ. Let the notation Γ (s) indicate the probability distribution over next period state conditional

on being on state s today. You can think of it as being just a row of the transition matrix. Take s and

ŝ. We will say that the matrix Γ displays first order stochastic dominance (FOSD) if s > ŝ implies∑
s′≤b Γ (s ′ | s) ≤

∑
s′≤b Γ (s ′ | ŝ) for any b ∈ S. It turns out that FOSD is a sufficient condition for
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having a cutoff rule. You can prove that by using the same kind of dynamic programming tricks that

have been used in a different course for obtaining the reservation wage property in search problems.

Try it as an exercise. Also note that this is just a sufficient condition.

Finally, we need to mention something about potential entrants. Since we will assume that they have

to pay the cost cE before learning their s, they can leave the industry even before producing anything.

That requires us to be careful when we describe industry dynamics.

Now the law of motion becomes:

x ′ (B) = mγ (B ∩ [s∗, s̄]) +

∫ s̄

s∗
Γ (s, B ∩ [s∗, s̄]) x (ds) , ∀B ∈ S.

9.4 Stationary Equilibrium

Now that we have all the ingredients in the table, let’s define the equilibrium formally.

Definition 18 A stationary equilibrium for this environment consists of a list of functions (φ, n∗, d∗),

a price p∗ and a measure x∗ such that

1. Given p∗, the functions φ, n∗, d∗ solve the problem of the incumbent firm

2. V E (p∗) = 0

3. For any B ∈ S (assuming we have a cut-off rule with s∗ is cut-off in stationary distribution)11

11 If we do not have such cut-off rule we have to define

x∗ (B) =

∫
S

∑
s′∈S

Γss′1{s′∈B}1{d(s′,p∗)=1}x
∗ (ds) + µ∗

∫
S

1{s∈B}1{d(s,p∗)=1}γ (ds)

where

µ∗ =

∫
S

∑
s′∈S

Γss′1{d(s′,p∗)=0}x
∗ (ds)
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x∗ (B) = mγ (B ∩ [s∗, s̄]) +

∫ s̄

s∗
Γ (s, B ∩ [s∗, s̄]) x∗ (ds) .

4. Market clearing:

Y d(p?) =

∫ s̄

s?
sf (n?(s, p?))dx?(ds)

You can think of condition (2) as a “no money left over the table” condition, which ensures additional

entrants find unprofitable to participate in the industry.

We can use this model to compute interesting statistics. For example the average output of the firm

is given by

Y

N
=

∑
sf (n∗(s))x∗(ds)∑

x∗(ds)

Next, suppose that we want to compute the share of output produced by the top 1% of firms. To do

this we first need to compute s̃ such that

∑s̄
s̃ x∗(ds)

N
= .01

where N is the total measure of firms. Then the share output produced by these firms is given by

∑s̄
s̃ sf (n∗(s))x∗(ds)∑s̄
s sf (n∗(s))x∗(ds)

Suppose now that we want to compute the fraction of firms who are in the top 1% two periods in a

row. This is given by

∑
s≥s̃

∑
s′≥s̃

Γss′x
∗(ds)
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We can use this model to compute a variety of other statistics including the Gini coefficient.

9.5 Adjustment Costs

To end with this section it is useful to think about environments in which firm’s productive decisions

are no longer static. A simple way of introducing dynamics is by adding adjustment costs.

We will consider labor adjustment costs.12 Consider a firm that enters period t with nt−1 units of

labor, hired in the previous period. We can consider three specifications for the adjustment costs, due

to hiring nt units of labor in t, c (nt , nt−1):

• Convex Adjustment Costs: if the firm wants to vary the units of labor, it has to pay α (nt − nt−1)2

units of the numeraire good. The cost here depends on the size of the adjustment.

• Training Costs or Hiring Costs: if the firm wants to increase labor, it has to pay α [nt − (1− δ) nt−1]2

units of the numeraire good, only if nt > nt−1; we can write this as

1{nt>nt−1}α [nt − (1− δ) nt−1]2 ,

where 1 is the indicator function, and δ measures the exogenous attrition of workers in each

period.

• Firing Costs.

The recursive formulation of the firm’s problem would be:

V (s, n−, p) = max

{
0, max

n≥0
sf (n)− wn − cv − c (n, n−) +

1

(1 + r)

∑
s′∈S

Γss′V (s ′, n, p)

}
, (20)

where c gives the specified cost of adjusting n− to n. Note that due to limited liability of the firm, the

12 These costs work pretty much like capital adjustment costs, as one might suspect.
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exit value of the firm is 0 and not −c (0, n−).

Now, a firm is characterized by both its productivity s and labor n− in the previous period. Note that

since the production function f has decreasing returns to scale, there exists an amount of labor N̄ such

that none of the firms hire labor greater than N̄ . So, n− ∈ N := [0, N̄]. Let N be a σ-algebra on N .

If the labor policy function is n = g(s, n−), then the law of motion now becomes:

x ′
(
BS , BN

)
= mγ

(
BS ∩ [s∗, s̄]

)
1{0∈BN} +

∫ s̄

s∗

∫ N̄

0

1{g(s,n−)∈BN}Γ
(
s, BS ∩ [s∗, s̄]

)
x (ds, dn−) ,

∀BS ∈ S, ∀BN ∈ N .

Exercise 24 Write the first order conditions for the problem in (20).

Define the recursive competitive equilibrium for this economy.

Exercise 25 Another example of labor adjustment costs is when the firm has to post vacancies to

attract labor. As an example of such case, suppose the firm faces a firing cost according to the

function c. The firm also pays a cost κ to post vacancies, and after posting vacancies, it takes one

period for the workers to be hired. How can we write the problem of firms in this environment?
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10 Incomplete Market Models

10.1 A Farmer’s Problem

Consider the following problem of a farmer:

V (s, a) = max
c,a′

{
u (c) + β

∑
s′

Γss′V (s ′, a′)

}
(21)

s.t. c + qa′ = a + s

c ≥ 0

a′ ≥ 0,

where a is his holding of coconuts, which can only take positive values, c is his consumption, and s is

amount of coconuts that he produces. s follows a Markov chain, taking values in a finite set S . q is

the price of coconuts. Note that, the constraint on the holding of coconuts tomorrow, is a constraint

imposed by nature; nature allows the farmer to store coconuts at rate 1/q, but, it does not allow him

to transfer coconuts from tomorrow to today.

We are going to consider this problem in the context of a partial equilibrium, where q is given. The

first question is, what can be said about q?

Remark 8 Assume there are no shocks in the economy, so that s is a fixed number. Then, we could

write the problem of the farmer as:

V (a) = max
c,a′≥0

{u (a + s − qa′) + βV (a′)} .

If u is assumed to be logarithmic, the first order condition for this problem implies:

c ′

c
≥ β

q
,
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with equality if a′ > 0. Therefore, if q > β (i.e. nature is more stingy than farmer’s patience), then

c ′ < c, and the farmer dis-saves (at least, as long as a′ > 0). But, when q < β, consumption grows

without bound. This is the reason we put this assumption on the model, in what follows.

A crucial assumption for generating a bounded asset space is β/q < 1, stating that agents are sufficiently

impatient so they tend to consume more and decumulate their asset when they get richer and far away

from the non-negativity constraint, a′ ≥ 0. However, this does not mean that, when faced with a

possibility of very low consumption, agents would not save, even though the rate of return, 1/q, is

smaller than the rate of impatience 1/β.

The first order condition for farmer’s problem (21) is given by:

uc (c (s, a)) ≥ β

q

∑
s′

Γss′uc (c (s ′, a′ (s, a))) ,

with equality when a′ (s, a) > 0, where c (·) and a′ (·) are policy functions from the farmer’s prob-

lem. Notice that a′ (s, a) = 0 is possible, if we assume appropriate shock structure in the economy.

Specifically, it depends on the value of smin := minsi∈S si .

The solution to the problem of the farmer, for a given value of q, implies a distribution of coconut

holdings in each period. This distribution, together with the Markov chain describing the evolution of

s, can be summed together as a single probability measure for the distribution of shocks and assets

(coconut holdings) over the product space E = S × R+, and its σ-algebra, B, which we denote by X .

The evolution of this probability measure is given by:

X ′ (B) =
∑
s′∈Bs

∫
Γss′1{a′(s,a)∈Ba}dX (s, a) , ∀B ∈ B, (22)

where Bs and Ba are the S-section and R-section of B (projections of B on S and R+), respectively, and

1 is the indicator function. Let T̃ (Γ, a′, ·) be the mapping associated with (22) (the adjoint operator),
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so that:

X ′ (B) = T̃ (Γ, a′, X ) (B) , ∀B ∈ B.

Define T̃ n (Γ, a′, ·) as:

T̃ n (Γ, a′, X ) = T̃
(

Γ, a′, T̃ n−1 (Γ, a′, X )
)

.

Then, we have the following theorem.

Theorem 3 Under some conditions on T̃ (Γ, a′, ·), there is a unique probability measure X ∗, so that:

X ∗ (B) = lim
n→∞

T̃ n (Γ, a′, X0) (B) , ∀B ∈ B,

for all initial probability measures X0 on (E ,B).

A condition that makes things considerably easier for this theorem to hold is that E is a compact set.

Then, we can use Theorem (12.12) in [6], to show this result holds. Given that S is finite, this is

equivalent to a compact support for the distribution of asset holdings. We discuss this in detail in

Appendix A.

10.2 Huggett’s Economy[3]

Now we modify the farmer’s problem in (21) a little bit:

V (s, a) = max
c,a′

{
u (c) + β

∑
s′

Γss′V (s ′, a′)

}
(23)

s.t. c + qa′ = a + s

c ≥ 0

a′ ≥ a,
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where a < 0, so now farmers can borrow and lend with each other, but with a borrowing limit. We

continue to make the same assumption on q; i.e. β/q < 1. Solving this problem gives the policy

function a′ (s, a) . It is easy to extend the analysis in the last section to show that there is an upper

bound of the asset space, which we denote by ā, so that for any a ∈ A := [a, ā], a′ (s, a) ∈ A, for any

s ∈ S .

Remark 9 One possibility for a is what we call the natural borrowing constraint. This is the constraint

that ensures the agent can pay back his debt for sure, no matter what the nature reveals (whatever

sequence of idiosyncratic shocks is realized). This is given by

an := − smin(
1
q
− 1
) .

If we impose this constraint on (23), even when the farmer receives an infinite sequence of bad shocks,

he can pay back his debt by setting his consumption equal to zero, forever.

But, what makes this problem more interesting is to tighten this borrowing constraint; the natural

borrowing constraint is very unlikely to be hit. One way to restrict borrowing is no borrowing at all, as

in the previous section. Another case is to choose 0 > a > an. This is the case that we consider in this

section.

Now suppose there is a (unit) mass of farmers with distribution function X (·) , where X (D, B) denotes

fraction of people with shock s ∈ D and a ∈ B , where D in an element of the power set of S , P (S)

(which, when S is finite, is the natural σ-algebra over S) and B is a Borel subset of A, B ∈ A. Then

the distribution of farmers tomorrow is given by:

X ′ (S ′, B ′) =

∫
A×S

1{a′(s,a)∈B′}
∑
s′∈S ′

Γss′dX (s, a) , (24)

for any S ′ ∈ P (S) and B ′ ∈ A.

Implicitly this defines an operator T such that T (X ) = X ′. If T is sufficiently nice, then there exits

a unique X ∗ such that X ∗ = T (X ∗) and X ∗ = limn→∞ T n (X0), for any initial distribution over the
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product space S×A, X0. Note that the decision rule is obtained given q. Hence, the resulting stationary

distribution X ∗ also depends on q. So, let us denote it by X ∗ (q).

To determine the equilibrium value of q, in a general equilibrium setting, consider the following variable

(as a function of q):

∫
A×S

adX ∗ (q) .

This expression give us the average asset holdings, given the price, q.

We want to determine an endogenous q, so that the asset market clears; we assume that there is no

storage technology so that asset supply is 0 in equilibrium. Hence, price q should be such that asset

demand equals asset supply; i.e.

∫
A×S

adX ∗ (q) = 0.

In this sense, equilibrium price q is the price that generates the stationary distribution that clears the

asset market.

We can show that a solution exists by invoking intermediate value theorem, by showing that the

following three conditions are satisfied (note that q ∈ [β,∞]):

1.
∫
A×S adX ∗ (q) is a continuous function of q;

2. limq→β
∫
A×S adX ∗ (q)→∞; (Intuitively, as q → β, interest rate increases. Hence, agents would

like to save more. Together with precautionary savings motive, they accumulate unbounded

quantities of assets in the stationary equilibrium, in this case.) and,

3. limq→∞
∫
A×S adX ∗ (q) < 0. (This is also intuitive; as q → ∞, interest rate converges to 0.

Hence, everyone would rather borrow.)
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10.3 Aiyagari’s Economy[1]

In an Aiyagari Economy, there is physical capital. In this sense, the average asset holdings in the

economy must be equal to the average (physical) capital. So, if we keep denoting the stationary

distribution of assets by X ∗, we must have:

∫
A×S

adX ∗ (q) = K ,

where A is the support of the distribution of wealth. (It is not difficult to see that this set is compact.)

On the other hand, the shocks affect the labor income; we can think of these shocks as fluctuations

in the employment status of individuals. Thus, the problem of an individual in this economy can be

written as:

V (s, a) = max
c,a′

{
u (c) + β

∑
s′

Γss′V (s ′, a′)

}
(25)

s.t. c + a′ = (1 + r) a + ws

c ≥ 0

a′ ≥ a,

where, here, r is the return to savings, and w is the wage rate. Therefore,

∫
A×S

sdX ∗ (q)

gives the average labor in this economy. If we decide to think of agents supplying one unit of labor,

then, we may think of the expression as determining the effective labor supply.

We assume the standard constant returns to scale production technology for the firm, of the form:

F (K , L) = AK 1−αLα,
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with the rate of depreciation δ. Hence:

r =Fk (K , L)− δ

= (1− α) A

(
K

L

)−α
− δ

=:r

(
K

L

)
,

and

w =Fl (K , L)

=αA

(
K

L

)1−α

=:w

(
K

L

)
.

In terms of Huggett [3], q, the price of assets, is given by

q =
1

(1 + r)
=

1

[1 + Fk (K , L)− δ]
.

Therefore, prices faced by agents are all functions of the capital-labor ratio. As a result, we may write

the stationary distribution of assets as a function of capital-labor ratio as well, X ∗
(
K
L

)
. Thus, the

equilibrium condition becomes:

K

L
=

∫
A×S adX ∗

(
K
L

)∫
A×S sdX ∗

(
K
L

) .

Using this condition, one can solve for the equilibrium capital-labor ratio.

10.3.1 Policy

In Aiyagari [1] [or Huggett [3]] economy, model parameters can be summarized by θ = {u, β, s, Γ, F}.

In stationary equilibrium, value function v (s, a; θ) as well as X ∗ (θ) can be obtained, where X ∗ (θ)
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is a mapping from model parameters to stationary distribution of agent’s asset holding and shocks.

Suppose now there is a policy change that shifts θ to θ̂ = {u, β, s, Γ̂, F}. Associated with this new

environment there is a new value function v
(

s, a; θ̂
)

and X ∗
(
θ̂
)

. Define η (s, a) to be the solution

of:

v
(

s, a + η (s, a) , θ̂
)

= v (s, a, θ)

which is the transfer payment necessary to the households so that they are indifferent between living

in the old environment and in the new one. Hence total payment needed to compensate households

for this policy change is given by:

∫
A×S

η (s, a) dX ∗ (θ)

Notice that the changes do not take place when the government is trying to compensate the households.

Hence we use the original stationary distribution associated with θ to aggregate the households.

If
∫
A×S v (s, a) dX ∗

(
θ̂
)
>
∫
A×S v (s, a) dX ∗ (θ) , does this necessarily mean that households are willing

to accept this policy change? The answer is not necessarily because the economy may well spend a

long time in the transition path to the new steady state, during which there may be severe welfare loss.

10.3.2 Aggregate Shocks

In this section, we consider an economy that is subject to both aggregate and idiosyncratic shocks, at

the same time; consider Aiyagari’s [1] economy again, now, with a production function that is subject

to an aggregate shock; zF
(
K , N̄

)
.

Let X be the distribution of types; then the aggregate capital is given by:

K =

∫
adX (s, a) .
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K ′ = G (z , K )

The question is what are the sufficient statistics for predicting the aggregate capital stock and, con-

sequently, prices tomorrow? Are z and K sufficient detemine capital tomorrow? The answer to these

questions is no, in general; this is true if, and only if, the decision rules are linear. Therefore, X , the

distribution of types becomes a state variable (even in the stationary equilibrium) for this economy.

Then, the problem of an individual becomes:

V (z , X , s, a) = max
a′

{
u (c) + β

∑
z ′,s′

Πzz ′Γ
z ′

ss′V (z ′, X ′, s ′, a′)

}

s.t. c + a′ = azfk
(
K , N̄

)
+ szfn

(
K , N̄

)
K =

∫
adX (s, a)

X ′ = G (z , X )

c , a′ ≥ 0.

Computationally, this problem is a beast! So, how can we solve it? To provide some idea, we will first

consider an economy with dumb agents!

Consider an economy in which people are stupid; people believe tomorrow’s capital depends only on

K , and not X . This, obviously, is not an economy in which expectations are rational. Nevertheless,

people’s problem in such settings becomes:

Ṽ (z , X , s, a) = max
a′

{
u (c) + β

∑
z ′,s′

Πzz ′Γ
z ′

ss′V (z ′, X ′, s ′, a′)

}

s.t. c + a′ = azfk
(
K , N̄

)
+ szfn

(
K , N̄

)
K =

∫
adX (s, a)

X ′ = G̃ (z , K )

c , a′ ≥ 0.
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Next step is to allow people become slightly smarter; they now can use extra information, like mean

and variance of X , to predict X ′. Does this economy work better than our dumb benchmark? Compu-

tationally no! This answer, as stupid as it may sound, has an important message: people actually act

linearly in the economy; decision rules are approximately linear. Therefore, we may use Aiyagari’s [1]

results without fear; the approximations are quite reliable!

11 Wage Distribution

In Aiyagari model labor market is competitive. If we know total capital and total efficiency of labor we

can pin down the wage rate. Hence wage rate is same for every agent and there is no dispersion. Wage

might fluctuate across time due to some exogenous shock, but everyone would face with same wage

rate in a period. Though, empirically, there are people with same characteristics that earn different

wage.

There might be several reason why homogeneous agents would have different wage. Firstly, firms might

differ in their productivities. Since high productive firms have higher marginal return to labor, these

may lead to higher wage rate for those working in these firms. However this is same with assuming

heterogeneity in agents skill level. But we want to understand why similar people earn different wages.

So there is not much insight we can get from such model. Hence we will assume identical firms.

Second reason might be different wealth level of individuals. If wage rate is determined as a result of

a bargaining between the employee and employer then a rich worker have a better outside option than

the poor worker, hence have a higher income. Though, where does this bargaining power comes from

is unclear. We do not have a good way to measure bargaining power of firms and workers. Therefore

this is not an ideal way to analyze wage dispersion.

Another reason might be related to directed search. Recall that in directed search unemployed people

choose in which submarket, characterized by market tightness and wage rate, to search for a job. Here

trade off is between higher wage and waiting time for a match. In such environment, rich people could
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afford waiting for a job with higher wage since they can consume their savings in the meantime. Since

they are not in a hurry they can choose high wage and high market tightness. On the other hand, poor

people need to find job in a short period of time, so that they would prefer to search in low market

tightness where wage rate is also low.

11.1 model

There is measure 1 of risk averse agents with different level of wealth. Let a denote the agent’s wealth

level. There is an incomplete bond market, where individuals can buy and sell bonds that pays one

unit of consumption good next period at a price q. However, as in the Huggets’ model, there is a

borrowing limit, a0. Individuals can be in two state: employed or unemployed. Along with the choice of

consumption and saving, unemployed also chooses in which market to search for a job. Let Q denotes

to market tightness and ψh(Q) be the probability of matching with a firm.

Firms, on the other hand, choose submarket to open a vacancy. Because of free entry condition,

return for opening a vacancy should be equal to cost of posting it, cv . The value of a filled job in the

submarket (Q, w) is given by:

Ω(w) =
∞∑
t=0

(y − w)(1− δ)tqt (26)

Then, expected return to vacancy is ψf (Q)Ω(Q, w) where ψf (Q) is probability of matching with a

worker. Using free entry condition, ψf (Q)Ω(w) = cv . Observe that this equation gives us one to one

relation between Q and w , hence we can characterize possible markets available in the equilibrium using

this condition. Let denote this relation by Q = Ψ(w). So, instead of choosing Q and w , unemployed

people would only choose w and Q would be the associated tightness.

Exercise 26 Show that relation between Q and w is monotonic, i.e as w increases Q increases.

By free entry condition, ψf (Q)
∑∞

t=0(y − w)(1 − δ)tqt = cv . Right hand side is fixed and second
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term in the left hand side is increasing in decreasing in w. Hence probability to match with a worker

should be higher for a higher wage, so higher market tightness Q. Therefore Ψ(w) is monotonically

increasing.

Let V (s, a, w) be the value function of an agent, where s ∈ {0, 1} indicates whether he is working or

not, a is the asset holding and w is the wage rate. Then, problem of unemployed is:

V (0, a, 0) = max
c,a′,w

u(c) + β
[

[1− ψ(Ψ(w))]V (0, a′, 0) + ψ(Ψ(w))V (1, a′, w)
]

s.t. c + a′q ≤ a + b

a′ ≥ a0

Similarly, problem of employed is:

V (1, a, w) = max
c,a′,w

u(c) + β
[
δV (0, a′, 0) + (1− δ)V (1, a′, w)

]
s.t. c + a′q ≤ a + w

a′ ≥ a0

Exercise 27 Show that rich people would go higher w and Q.

In order for firms to choose optimally, they need to know the distribution of wealth, occupation status

and wage. This is a complicated problem. Hence, instead of looking recursive equilibrium, following [4],

we will focus on block recursive equilibrium, where agent’s value and policy function does not depend

on distribution of workers. As long as people with different asset holdings choose different submarkets,

once firm chooses a submarket he knows which type of agent he is going to meet, so that firm does

not care about the distribution of agents.

Now we can define block recursive equilibrium formally:
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A block recursive equilibrium is policy function for consumption, gc : A ×W → R+, policy function

for saving ga : A ×W → [a0,∞), choice of wage rate w ? : A → R+, value function for household

V : {0, 1}×A×W :→ R, value function for firm Ω :W → R+, market tightness for a submarket with

wage rate w is Ψ : R+ → R+, price of bond q? ∈ R+, distribution of agents Φ? : {0, 1} ×A×W :→

[0, 1] such that

1. V (0, ., 0), gc(., 0), ga(., 0), w ?(.) are solution for problem of unemployed,

2. V (1, ., .), gc(., .), ga(., .) are solution for problem of employmed,

3. Firm value function Ω(w) =
∑∞

t=0(y − w)(1− δ)tqt ,

4. Free entry condition ψf (Ψ(w))Ω(w) = cv ,

5. Stationary distribution Φ,

6. Market clearing for assets:
∫

adΦ =
∫

Ω(w)dΦ.

Exercise 28 Drive first order conditions for household.

FOC and envelope theorem for unemployed agent:

[c] : uc(c) = λ

[a′] : β
[

[1− ψ(Ψ(w))]V2(0, a′, 0) + ψ(Ψ(w))V2(1, a′, w)
]
− λq + µ = 0

[w ] : β
[
− ψw (Ψ(w))Ψw (w)V (0, a′, 0) + ψ(Ψ(w))V3(1, a′, w) + ψw (Ψ(w))Ψw (w)V (1, a′, w)

]
= 0

[ET ] : V2(0, a, 0) = uc(c?(a))
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FOC and envelope theorem for employed agent:

[c] : uc(c) = λ

[a′] : β
[
δV2(0, a′, 0) + (1− δ)V2(1, a′, w)

]
− λq + µ = 0

[ET ] : V2(1, a, w) = uc(c?(a, w))

[ET 2] : V3(1, a, w) = β(1− δ)V3(1, ga(a, w), w) + uc(c?(a, w))

Using FOC of w and ET of w we can get:

ψw (Ψ(w))Ψw (w)[V (0, a′, 0)− V (1, a′, w)] = ψ(Ψ(w))
V3(1, a, w)− uc(c?(a, w))

β(1− δ)

So we can get:

ψw [Ψ(w ?[a′])]Ψw (w ?[a′])[V (0, a′, 0)− V (1, a′, w)] =

Ψ(w ?[a′])
[β(1− δ)ψw (Ψ(w ?[a′′])Ψw (w ?(a′′))[V (0, a′, 0)− V (1, a′, w)]

ψ(Ψ(w ?[a′′])) + uc [gc(a′, w)]

]

With this model, we can generate wage dispersion since unemployed people with different wealth level

would search different markets and in return earn different wage rates.

There are two reason to save: first reason is precautionary and second reason is to search for better

job. First is because of risk aversion and borrowing limit. Second reason comes from search friction.

To find a better paying job, individuals need to save before hand so that they can afford searching for

tighter but higher wage market.

We could add on job searching to the model, where not only unemployed but also employed people can

search for a job. It would increase the wage dispersion since wage rate would not be fixed for employed

agent, they can climb the wage ladder by searching while they are working and matching with higher

paying firm. Moreover, we could add search effort, so that poor people would search hard but wealthy
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people would not. But these extensions would complicate the problem, so that we do not consider

those aspects here.

12 Monopolistic Competition, Endogenous Growth and R&D

So far, we have seen the neoclassical growth model as our benchmark model, and built on it for

the analysis of more interesting economic questions. One peculiar characteristic of our benchmark

model, unlike its name suggests, is the lack of growth (after reaching the steady state), whereas, many

interesting questions in economics are related to the cross-country differences of growth rates. To see

why this is the case, consider the standard neoclassical technology:

F (K , N) = AK θ1Lθ2 ,

for some θ1, θ2 ≥ 0. We already know that the only possible case that is consistent with the notion

of competitive equilibrium is that θ1 + θ2 = 1. However, this implies a decreasing marginal rate of

product for capital. Given a fixed quantity for labor supply, in the presence of depreciation, this implies

a maximum sustainable capital stock, and puts a limit on the sustainable growth; economy converges

to some steady-state, without exhibiting any balanced growth.

So if our economy is to experience sustainable growth for a long period of time, we either give up the

curvature assumption on our technology, or we have to be able to shift our production function upwards.

Given a fixed amount of labor, this shift is possible either by an increasing (total factor) productivity

parameter or increasing labor productivity. We will cover a model that will allow for growth, so that

we will be able to attempt to answer such questions.

Consider the following economy due to the highly cited model of endogenous growth[5]; there are three

sectors in the economy: a final good sector, an intermediate goods sector, and an R&D sector. Final

goods are produced using labor (as we will see there is only one wage, since there is only one type of
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labor) and intermediate goods according to the production function

Nα
1,t

∫ At

0

xt (i)1−α di

where x (i) denotes the utilization of intermediate good of variety i ∈ [0, At ].
13 Note that marginal

contribution of each variety is decreasing (since α < 1), however, an increase in the number of varieties

would increase the output. We will assume that the final good producers operate in a competitive

market.

Exercise 29 If the price of all varieties are the same, what is the optimal choice of input vector for a

producer?

What if they do not have the same amount? Would a firm decide not to use a variety in the production?

Intermediate producers are monopolists that have access to a differentiated technology of the form:

x (i) =
k (i)

η
.

Therefore, they can end up charging a mark up above the marginal cost for their product. This is the

main force behind research and development in this economy; developer of a new variety is the sole

proprietor of the blue print that allows him earn profit. It is easy to observe that the aggregate demand

of capital from the intermediate sector is
∫ At

0
ηx (i) di .

The R&D sector in the economy is characterized by a flow of intermediate goods in each period; a new

good is a new variety of the intermediate good. The flow of the new intermediate goods is created by

using labor, according to the following production technology:

At+1

At
= 1 + ξN2,t .

Notice that, after some manipulation, one can express growth in the stock of intermediate goods as

13 The function that aggregates consumption of intermediate goods is often referred as Dixit-Stiglitz aggregator.
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follows:

At+1 − At = AtξN2,t . (27)

Hence, the flow of new intermediate goods is determined by the current stock of them in the economy.

This type of externality in the model is the key propeller in the model. This assumption provides us

with a constant returns to scale technology in the R&D sector. In what follows, we will assume that

the inventors act as price takers in the economy.

Remark 10 The reason we see At on the right hand side of (27) as an externality is that it is indeed

used as an input in the process of R&D, while, it is not paid for. Thus, inventors, in a sense, do not

pay the investors of the previous varieties, while using their inventions. They only pay for the labor

they hire. Perhaps, the basic idea of this production function might be traced back to Isaac Newton’s

quote: “ If I have seen further, it is only by standing on the shoulders of giants”.

The preferences of the consumers are represented by the following utility function:

∞∑
t=0

βtu (ct) ,

and their budget constraint in period t is give by:

ct + kt+1 ≤ rtkt + wt + (1− δ) kt .

Remark 11 In this economy, GDP, in terms of gross product, is given by:

Yt = Wt + rtKt + πt ,

where πt is the net profits. On the other hand, in terms of expenditures, GDP is:

Yt = Ct + Kt+1 − (1− δ) Kt + πt ,
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where Kt+1 − (1− δ) Kt is the investment in physical capital. At last, in terms of value added, it is

given by:

Yt = Nα
t

∫ At

0

xt (i)1−α di + pt (At+1 − At) .

Certainly, this is not a model that one can map to the data. Instead it has been carefully crafted to

deliver what is desired and it provides an interesting insight in thinking about endogenous growth.

Solving the Model Let’s first consider the problem of a final good producer; in every period, he

chooses N1,t and xt (i), for every i ∈ [0, At ], in order to solve:

max Nα
1,t

∫ At

0

xt (i)1−α di − wtN1,t −
∫ At

0

qt (i) xt (i) di ,

where qt (i) is the price of variety i in period t. First order conditions for this problem are:

1. N1,t : αNα−1
1,t

∫ At

0
xt (i)1−α di = wt ; and,

2. xt (i): (1− α) Nα
1,txt (i)−α = qt (i), for all i ∈ [0, At ].

From the second condition, one obtains:

xt (i) =

(
(1− α)

qt (i)

) 1
α

N1,t , (28)

which, given N1t , is the demand function for variety i , by the final good producer.

Next, let’s consider the problem of an intermediate firm; these firms acts as price setters. The reason is

the ownership of a differentiated patent, whose sole owner is the intermediate good producer of variety

i . In addition, as long as α < 1, this variety does not have a perfect substitute, and always demanded
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in the equilibrium. Therefore, their problem is to choose qt (i), in order to solve:

πt (i) = max qt (i) xt (qt (i))− rtηxt (qt (i))

s.t. xt (qt (i)) =

(
(1− α)

qt (i)

) 1
α

N1,t ,

where xt (qt (i)) is the demand function, substituted from (28). Notice that we have substituted for

the technology of the monopolist, x (i) = k (i) /η. First order condition for this problem, with respect

to qt (i), is:

xt (qt (i)) + (qt (i)− rtη)
∂xt (qt (i))

∂qt (i)
= 0,

which can be written as

(1− α)
1
α

qt (i)
1
α

N1,t =
(qt (i)− rtη)

α

(1− α)
1
α

qt (i)
1+α
α

N1,t .

Rearranging yields:

qt (i) =
1

(1− α)
rtη. (29)

This is the familiar pricing function of a monopolist; price is marked-up above the marginal cost.

By substituting (29) into (28), we get:

xt (i) =

[
(1− α)2

rtη

] 1
α

N1,t , (30)

and the demand for capital services is simply ηxt (i). In a symmetric equilibrium, where all the inter-

mediate good producers choose the same pricing rule, we have:

∫ At

0

xt (i) di = Atxt =
kt

η
,
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where xt is the common supply of intermediate goods. Therefore:

xt =
kt

ηAt
.

Moreover, if we let Yt be the production of the final good; by plugging (30) we get:

Yt = N1,tAt

[
(1− α)2

rtη

] 1−α
α

. (31)

Hence the model displays constant returns to scale in N1,t and At .

Let us study the problem of the R&D firms, next; a representative firm in this sector (recall that this

is a competitive sector) chooses N2,t , in order to solve the following problem:

max
N2,t

ptAtξN2,t − wtN2,t .

The first order condition for this problem implies:

pt =
wt

Atξ
.

In summary, there are two equations to be solved form; one relating the choice of consumption versus

saving (or capital accumulation), and one dividing labor demand for R&D, and that for final good

production. Consumption-investment decisions result from solving household’s problem in equilibrium,

and the corresponding Euler equation:

u′ (ct) = βu′ (ct+1) [rt+1 + (1− δ)] .

For determining the labor choices N1,t and N2,t , first note that the demand for patterns produced by

R&D sector, is from the prospect monopolists. As long as there is positive profit from buying demand,

the new monopolists would keep entering markets in a given period. This fact derives the profits of

prospect monopolists to zero. So, the lifetime profit of the monopolist, must be equal to the price he

76



pays for the blueprints;

pt =
∞∑
s=t

(
s∏
τ=t

1

1 + rτ − δ

)
πs .

This completes the solution to the model. Notice that output can grow at the same rate as At , from

Equation (31). In addition, Kt grows at the same rate. As a result, the rate of growth of At would

be the important aspect of equilibrium. For instance, if At grows at rate γ in the long-run, we have

a balanced growth path in equilibrium. This growth comes from the externality in the R&D sector.

Without that, we cannot get sustained growth in this model. The nice thing about this model is how

neat is is in delivering the balanced growth, with just enough structure imposed on the economy.

A A Farmer’s Problem: Revisited

Consider the following problem of a farmer that we studied in class:

V (s, a) = max
c,a′

{
u (c) + β

∑
s′

Γss′V (s ′, a′)

}
(32)

s.t. c + qa′ = a + s

c ≥ 0

a′ ≥ 0.

As we discussed, we are in particular interested in the case where β/q < 1. In what follows, we are

going to show that, under monotonicity assumption on the Markov chain governing s, the optimal

policy associated with (32) implies a finite support for the distribution of asset holding of the farmer,

a.14

Before we start the formal proof, suppose smin = 0, and Γssmin
> 0, for all s ∈ S . Then, the agent

14 This section was prepared by Keyvan Eslami, at the University of Minnesota. This section is essentially a slight
variation on the proofs found in [3]. However, he accepts the responsibility for the errors.
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Figure 1: Policy function associated with farmer’s problem.

will optimally always choose a′ > 0. Otherwise, there is a strictly positive probability that the agent

enters tomorrow into state smin, where he has no cash in hand (a′+ smin = 0) and is forced to consume

0, which is extremely painful to him (e.g. when Inada conditions hold for the instantaneous utility).

Hence he will raise his asset holding a′ to insure himself against such risk.

If smin > 0, then the above argument no longer holds, and it is indeed possible for the farmer to choose

zero assets for tomorrow.

Notice that the borrowing constraint a′ ≥ 0 is affecting agent’s asset accumulation decisions, even if

he is away from the zero bound, because he has an incentive to ensure against the risk of getting a

series of bad shocks to s and is forced to 0 asset holdings. This is what we call precautionary savings

motive.

Next, we are going to prove that the policy function associated with (32), which we denote by a′ (·),

is similar to that in Figure 1. We are going to do so, under the following assumption.
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Assumption 1 The Markov chain governing the state s is monotone; i.e. for any s1, s2 ∈ S, s2 > s1

implies E (s|s2) ≥ E (s|s1).

It is straightforward to show that, the value function for Problem (32) is concave in a, and bounded.

Now, we can state our intended result as the following theorem.

Theorem 4 Under Assumption 1, when β/q < 1, there exists some â ≥ 0 so that, for any a ∈ [0, â],

a′ (s, a) ∈ [0, â], for any realization of s.

To prove this theorem, we proceed in the following steps. In all the following lemmas, we will assume

that the hypotheses of Theorem 4 hold.

Lemma 1 The policy function for consumption is increasing in a and s;

ca (a, s) ≥ 0 and cs (a, s) ≥ 0.

Proof 1 By the first order condition, we have:

u′ (c (s, a)) ≥ β

q

∑
s′

Γss′Va

(
s ′,

a + s − c (s, a)

q

)
,

with equality, when a + s − c (s, a) > 0.

For the first part of the lemma, suppose a increases, while c (s, a) decreases. Then, by concavity of

u, the left hand side of the above equation increases. By concavity of the value function, V , the right

hand side of this equation decreases, which is a contradiction.

For the the second part, we claim that Va (s, a) is a decreasing function of s. To show this is the case,
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firs consider the mapping T as follows:

Tv (s, a) = max
c,a′

{
u (c) + β

∑
s′

Γss′v (s ′, a′)

}
s.t. c + qa′ = a + s

c ≥ 0

a′ ≥ 0.

Suppose vn
a (s, a) is decreasing in its first argument; i.e. vn

a (s2, a) < vn
a (s1, a), for all s2 > s1 and

s1, s2 ∈ S. We claim that, vn+1 = Tvn inherits the same property. To see why, note that for

an+1 (s, a) = a′ (where an+1 is the policy function associated with n’th iteration) we must have:

u′ (a + s − qa′) ≥ β

q

∑
s′

Γss′v
n
a (s ′, a′) ,

with strict equality when a′ > 0. For a fixed value of a′, an increase in s leads to a decrease in both

sides of this equality, due to the monotonicity assumption of Γ, and the assumption on vn
a . As a result,

we must have

u′
(
a + s2 − qan+1 (s2, a)

)
≤ u′

(
a + s1 − qan+1 (s1, a)

)
,

for all s2 > s1. By Envelope theorem, then:

vn+1
a (s2, a) ≤ vn+1

a (s1, a) .

It is straightforward to show that vn converges to the value function V point-wise. Therefore,

Va (s2, a) ≤ Va (s1, a) ,

for all s2 > s1.
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Now, note that, by envelope theorem:

Va (s, a) = u′ (c (s, a)) .

As s increases, Va (s, a) decreases. This implies c (s, a) must increase.

Lemma 2 There exists some â ∈ R+, such that ∀a ∈ [0, â], a′ (a, smin) = 0.

Proof 2 It is easy to see that, for a = 0, a′ (a, smin) = 0. First of all, note the first order condition:

uc (c (s, a)) ≥ β

q

∑
s′

Γss′uc (c (s ′, a′ (s, a))) ,

with equality when a′ (s, a) > 0. Under the assumption that β/q < 1, we have:

uc (c (smin, 0)) =
β

q

∑
s′

Γsmins′uc (c (s ′, a′ (smin, 0)))

<
∑
s′

Γss′uc (c (s ′, a′ (smin, 0))) .

By Lemma 1, if a′ = a′ (0, smin) > a = 0, then c (s ′, a′) > c (smin, 0) for all s ′ ∈ S, which leads to a

contradiction.

Lemma 3 a′ (smin, a) < a, for all a > 0.

Proof 3 Suppose not; then a′ (smin, a) ≥ a > 0 and as we showed in Lemma 2:

uc (c (smin, a)) <
∑
s′

Γss′uc (c (s ′, a′ (smin, a))) .

Contradiction, since a′ (smin, a) ≥ a, and s ′ ≥ smin, and the policy function in monotone.

Lemma 4 There exits an upper bound for the agent’s asset holding.
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Proof 4 Suppose not; we have already shown that a′ (smin, a) lies below the 45 degree line. Suppose

this is not true for a′ (smax, a); i.e. for all a ≥ 0, a′ (smax, a) > a. Consider two cases.

In the first case, suppose the policy functions for a′ (smax, a) and a′ (smin, a) diverge as a→∞, so that,

for all A ∈ R+, there exist some a ∈ R+, such that:

a′ (smax, a)− a′ (smin, a) ≥ A.

Since S is finite, this implies, for all C ∈ R+, there exist some a ∈ R+, so that

c (smin, a)− c (smax, a) ≥ C ,

which is a contradiction, since c is monotone in s.

Next, assume a′ (smax, a) and a′ (smin, a) do not diverge as a→∞. We claim that, as a→∞, c must

grow without bound. This is quite easy to see; note that, by envelope condition:

Va (s, a) = u′ (c (s, a)) .

The fact that V is bounded, then, implies that Va must converge to zero as a → ∞, implying that

c (s, a) must diverge to infinity for all values of s, as a→∞. But, this implies, if a′ (smax, a) > a,

uc (c (smax, a′ (smax, a)))→
∑
s′

Γsmaxs′uc (c (s ′, a′ (smax, a))) .

As a result, for large enough values of a, we may write:

uc (c (smax, a)) =
β

q

∑
s′

Γsmaxs′uc (c (s ′, a′ (smax, a)))

<
∑
s′

Γsmaxs′uc (c (s ′, a′ (smax, a)))

≈uc (c (smax, a′ (smax, a))) .
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But, this implies:

c (smax, a) > c (smax, a′ (smax, a)) ,

which, by monotonicity of policy function, means a > a′ (smax, a), and this is a contradiction.
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