Optimal Progressive Income Taxation and Endogenous Marriage and Divorce

Akihisa Kato's job market paper
UPenn
Lightly Edited for 712-2022 by Victor
February 7, 2022

Motivation

- The optimal degree of income tax progressivity has been a central issue in policy making.
- provide social insurance against uninsurable idiosyncratic earning risks
- most of the works are done with single-earner households.
- U.S. income tax unit is mostly a household due to joint filing
- differential tax treatment across marital status (marriage non-neutrality)
- rewards asymmetric earning couples (marriage bonus), penalizes symmetric earning couples (marriage penalty)
- higher marginal tax rate on the secondary earners
- they are typically wives, and their labor supplies are more elastic.

What This Paper Does

- Construct a model in which both single and married households exist and income taxes affect
- the secondary earner labor supply
- household formation decisions of singles
- allocations/divorce decisions within married couples
- Estimate parameters that replicate individual's marriage/divorce and time allocation patterns.
- Compute the welfare-maximizing income tax progressivity when married households file jointly and when the tax unit shifts to an individual
- Progressive income taxation with two-earner households
- Kleven et al. (2009), Guner et al. (2012), Gayle and Shephard (2019), Siassi (2019), Obermeier (2019), Wu and Krueger (2021), Leung (2019), Holter et al. (2019)
- Aki's Contribution: tax reforms affect household formation/dissolution in a dynamic general equilibrium model
- Taxes and female labor supply
- Keane (2011), Blundell et al. (2016a), Kaygusuz (2010), Crossley and Jeon (2007), Bosworth and Burtless (1992), Triest (1990), Eissa (1995)
- Aki's Contribution: allow interaction between labor supply pattern and intra-household decision power
- Taxes and marriage patterns
- Alm and Whittington(1995,1997,1999), Chade and Ventura (2002), Chade and Ventura (2005), Frankel (2014) ©Empirical
- Aki's Contribution: quantify impacts of income tax reform on marriage and divorce and labor supply patterns in a dynamic model

Findings

- The sensitivity of marriage patterns to the tax code through a policy experiment
- Endogenous household formation/dissolution and intra-household allocation decisions are quantitatively important
- Optimal progressivity
- under joint filing is higher for singles but is lower for married households than current US tax code
- under individual taxation is much higher than the current US tax code of singles

Model

Demographics

- OLG model. Agents/Households are indexed by
- age: $j \in\{1, \ldots, J\}$, sex: $g \in\{m, f\}$, education: $e \in\{n c, c o\}$, time-variant productivity: $z \in \mathcal{Z}$, children: $d \in\{0,1\}$, asset: $a \in[0, \bar{A}]$
- Individuals can form either a single household or a married household with a spouse.
- Upon divorce, assets are split equally and children belong to females.
- Fertility is an exogenous event, but the arrival rate depends on the marital status, and education if single.
- Children affects (i) home good production, (ii) childcare cost, (iii) return from leisure

Preference and Time Allocation

- Agents enjoy consumption, leisure, and home production goods, $u(c, \ell, Q)$
- For married individuals, c and ℓ are private goods, while Q is public within a couple.
- They can choose time allocation across leisure ℓ, market work h, and house work n from the discrete choice set $(\ell, h, n) \in \mathcal{T}$.
- Q is produced by house work, n

Timeline within a period

1. Learn fertility and labor productivity shocks.
2. Marriage pool or Negotiation

- singles go to the marriage pool and randomly meet with a potential spouse
- married couples decide the current period Pareto weight/divorce through the negotiation

3. Solve the decision problem. Allocations within a married household depend on the current period Pareto weight.

End-of-period Problem: Single Working-age Household © Full Decision Problem

- Solve consumption and saving problem conditional on the time allocation $t \in \mathcal{T}_{f}$
- States: (a, s), where s includes all the individual state variables other than asset.
- If no childcare cost

$$
\begin{aligned}
& \max _{c, a^{\prime} \geq 0} u\left(c, \ell_{t}, Q\right)+\beta E \widetilde{V}^{g}\left(a^{\prime}, s^{\prime}\right) \\
& \text { s.t. } c+a^{\prime}=y-\tau^{\mathcal{S}}(y)+a
\end{aligned}
$$

- taxable income $y=\widehat{w}(s) h_{t}+r a$, home goods $Q=Q\left(n_{t}\right)$

End-of-period Problem: Single Working-age Household ©Full Decision Problem

- Solve consumption and saving problem conditional on the time allocation $t \in \mathcal{T}_{f}$
- States: (a, s), where s includes all the individual state variables other than asset.
- If pays childcare cost

$$
\begin{aligned}
& \max _{c, a^{\prime} \geq 0} u\left(c, \ell_{t}, Q\right)+\beta E \widetilde{V}^{g}\left(a^{\prime}, s^{\prime}\right) \\
& \text { s.t. } c+a^{\prime}=y-\tau^{\mathcal{S}}(y)+a \underbrace{-\widehat{w}(s) \chi h_{t}}_{\text {childcare cost }}
\end{aligned}
$$

- taxable income $y=\widehat{w}(s) h_{t}+r a$, home goods $Q=Q\left(n_{t}\right)$

End-of-period Problem: Married Working-age Household \subset Full Decision Problem

- Conditional on $\mathbf{t} \in \mathcal{T}_{f} \times \mathcal{T}_{m}$, with no childcare cost

$$
\begin{aligned}
& \max _{c^{f}, c^{m}, a^{\prime} \geq 0} \lambda\left[u\left(c^{f}, \ell_{\mathbf{t}}^{f}, Q\right)\right.\left.+\beta E \widetilde{W}^{f}\left(a^{\prime}, \mathbf{s}^{\prime}\right)\right] \\
&+(1-\lambda)\left[u\left(c^{m}, \ell_{\mathbf{t}}^{m}, Q\right)+\beta E \widetilde{W}^{m}\left(a^{\prime}, \mathbf{s}^{\prime}\right)\right] \\
& \text { s.t. } c^{f}+c^{m}+a^{\prime}=y-\tau^{M}(y)+a
\end{aligned}
$$

- taxable income $y=\widehat{w}^{m}\left(s^{m}\right) h_{\mathbf{t}}^{m}+\widehat{w}^{f}\left(s^{f}\right) h_{\mathbf{t}}^{f}+r a$
- Negotiation pins down the current period Pareto weight (λ not a state variable)

End-of-period Problem: Married Working-age Household \subset Full Decision Problem

- Conditional on $\mathbf{t} \in \mathcal{T}_{f} \times \mathcal{T}_{m}$, if pays childcare cost

$$
\begin{aligned}
& \max _{c^{f}, c^{m}, a^{\prime} \geq 0} \lambda\left[u\left(c^{f}, \ell_{\mathbf{t}}^{f}, Q\right)\right.\left.+\beta E \widetilde{W}^{f}\left(a^{\prime}, \mathbf{s}^{\prime}\right)\right] \\
&+(1-\lambda)\left[u\left(c^{m}, \ell_{\mathbf{t}}^{m}, Q\right)+\beta E \widetilde{W}^{m}\left(a^{\prime}, \mathbf{s}^{\prime}\right)\right] \\
& \text { s.t. } c^{f}+c^{m}+a^{\prime}=y-\tau^{M}(y)+a-\widehat{W}^{f}\left(s^{f}\right) \chi h_{\mathbf{t}}^{f}
\end{aligned}
$$

- taxable income $y=\widehat{w}^{m}\left(s^{m}\right) h_{\mathbf{t}}^{m}+\widehat{w}^{f}\left(s^{f}\right) h_{\mathbf{t}}^{f}+r a$
- Negotiation pins down the current period Pareto weight (λ not a state variable)

Start-of-Period Problem: Single Working-age Household

- When a single working-age female enters the marriage pool, she

1. meets a mate with probability p_{j}

- Marriage: both agree to form a married household
- No marriage: at least one decline the proposal (bilateral)

2. cannot find a potential spouse $\left(1-p_{j}\right)$, and stay being a single

- Start-of-period expected value $E \widetilde{V}^{f}\left(a^{f}, s^{f}\right)$ depends on
- distribution of single men
- errors to the values of each marital status

Start-of-Period Problem: Married Working-age Household

- Potentially two-stage game

1. Choose Satisfied (S) or Challenge (C)

- If both choose S, set $\lambda=\lambda^{S S}$ and stay married
- If both choose C, get divorce.
- If one of them chooses C, go to the next stage.

2. The one who chooses C offer new λ, and the other decides whether accept or reject (=divorce) it

- Challenge and high λ offer may result in better allocations for the Challenger, but it also increases the risk of being rejected and divorce.
- Start-of-period expected value $E \widetilde{W}$ depends on the expected value from choosing Satisfied and Challenge

Parameterization and Estimation

Preference

- Following Shephard (2019), per-period utility function:

$$
u^{g}(c, \ell, Q)=\frac{c^{1-\sigma} \exp \left[(1-\sigma)\left(v_{g}(\ell)+\beta_{Q} Q^{1-\sigma_{Q}} /\left(1-\sigma_{Q}\right)\right)\right]}{1-\sigma}
$$

- Following Benabou (2002) and Guner et al. (2014), income tax amount paid by households are

$$
\tau(y)=\left(1-\tau \widetilde{y}^{-\kappa}\right) y
$$

- where \widetilde{y} is a multiple of mean household income, and (τ, κ) differs across marital status.
- Home production functions

$$
Q^{S}(n, d)=\eta_{d}^{S} n, Q^{M}\left(n_{f}, n_{m}, d\right)=\eta_{d}^{M} n_{f}^{\alpha} n_{m}^{1-\alpha}
$$

Estimation Stratgy

- Some parameters are estimated outside the model or taken directly from the literature
- AR (1) Labor process for each education level, Correlation of labor shock across spouses, Age profile, Survival rate, etc.
- Other parameters are estimated within the model to minimize the distance between the moments from the model and those calculated from the data.
- Aggregate variables, such as K/Y, Marital sorting patterns, Frac. single mothers and married households w/ children
- Marriage and divorce hazard rates
- Hours worked, employment rates, home time of each type of individuals

Parameters Estimated Endogenously (selected)

Preference
Discount factor β (1 year) 0.984
Cost of Challenge κ 1.23
Extreme Value shocks
Marital status specific error s.d. σ_{ϵ} 2.321
Time allocation choice specific error s.d. σ_{ε} 0.948
Demographic
Single $e^{n c}$ Fertility Rate $\pi^{S, n c}$ 0.27
Single $e^{c o}$ Fertility Rate $\pi^{S, c o}$ 0.06
Married Fertility Rate π^{M} 0.81
Childcare cost χ 0.082

Marital Sorting Pattern

Table 1: Marital Sorting Pattern: ACS (2017) vs Model

		Female		
		single	$e^{n c}$	$e^{c o}$
single		0.1779	0.0973	
			$[0.1568]$	$[0.0959]$
	$e^{n c}$	0.1762	0.3043	0.1113
		$[0.1610]$	$[0.3174]$	$[0.1134]$
	$e^{c o}$	0.0990	0.0632	0.2460
		$[0.0917]$	$[0.0712]$	$[0.2453]$

1-Year Marriage Hazard Rate

1-Year Divorce Hazard Rate

Aggregate Variables

Description	Target	Model
Capital-to-Output Ratio	2.8	2.79
Frac. with Children Single Female nc	0.345	0.352
Frac. with Children Single Female co	0.092	0.105
Frac. with Children Married Household	0.779	0.761
M Female Emp Rate w/o children	79.2%	78.1%
M Female Emp Rate w/ children	69.5%	73.7%
M Male Emp Rate	88.7%	90.2%
M Female Hours Worked w/o children	0.353	0.360
M Female Hours Worked w/ children	0.321	0.361
M Male Hours	0.398	0.413

Policy Experiment

Policy Experiments : Individual Taxation

- Before computing the optimal progressivity of income taxes, we conduct a policy experiment.
- Apply a current US tax code of singles to all the individuals regardless of their marital status to see
- the sensitivity of marriage/divorce patterns to the tax code
- how endogenous household formation/dissolution and limited commitment framework are quantitatively important
- To quantify the importance of model aspects, we consider
- CF1: full model (marital patterns and Pareto weights respond to the policy reform)
- CF2: model with fixed marital patterns and Pareto weights at the baseline

Policy Experiments : Individual Taxation

Description	Baseline	CF1	CF2
Aggregate number of married HH	0.7472	0.7723	0.7472
Average Marriage Age	30.77	29.64	30.77
Capital-to-Output ratio	2.79	-9.3%	-8.6%
Y	0.63	-5.2%	-4.4%
L	0.83	-0.6%	-1.0%
M Female Emp Rate w/o children	78.1%	$+4.8 \%$	$+3.6 \%$
M Female Emp Rate w/ children	73.7%	$+4.7 \%$	$+3.6 \%$
M Male Emp Rate	90.2%	-1.2%	-0.7%
M avg. Female Hours Worked w/o children	0.360	$+4.0 \%$	$+2.1 \%$
M avg. Female Hours Worked w/ children	0.361	$+3.8 \%$	$+2.8 \%$
M Male Hours	0.413	-4.7%	-3.9%
Avg. home production (married)	0.32	-2.1%	-1.4%
Avg. Female Pareto Weight	0.424	0.458	0.424
Welfare	-	$+0.5 \%$	$+0.1 \%$
Welfare (female,male)	-	$(+1.1 \%,+0.2 \%)$	$(-0.8 \%,+0.9 \%)$

Policy Experiments: Individual Taxation

CF1 vs CF2 (=Baseline) Sorting Patterns

		Female		
		$e^{n c}$	$e^{c o}$	
			0.1407	0.0870
Male	$e^{n c}$	0.1441	0.3263	0.1214
		$[0.1610]$	$[0.3174]$	$[0.1134]$
	$e^{c o}$	0.0836	0.0784	0.2462
		$[0.0917]$	$[0.0712]$	$[0.2453]$

- For example, $\left(e^{n c}, e^{n c}\right)$ couples \uparrow by 2.8%

Policy Experiment : CF1 vs CF2

- In CF1, we have 3.4\% increase in number of married households and 1.1 years decrease in avg. marriage age than baseline.
- Increase in avg. female hours worked are 3.9\% (CF1) vs 2.5\% (CF2), their employment rate 4.8% vs 3.6%.
- lower marginal tax rates on the secondary earner encourages to work in the market.
- the avg. Pareto weight on female conditional on stay married changes from 0.424 to 0.458 in CF1
- Improvement of female Pareto weights in CF1 comes from intra-household allocations through negotiation
- Probability of Challenge: male 0.73 to 0.64 , female 0.44 to 0.47
- Avg. offer of Pareto weight (numbers are on female): male 0.38 to 0.41 , female 0.45 to 0.48

Why female works more with higher Pareto weight

- Women value leisure more than men.
- After the reform,
- male engages home production more, female less.
- female works to complement income.
- female leisure slightly goes up (home production to labor/leisure), while male leisure does not change so much
- Male's marginal return of home production is high but low marginal return from working with higher marginal tax rate
- Change in Pareto weight is reflected mainly in home production and leisure

Optimal Progressive Income

Taxation

Welfare-Maximizing Optimal Progressive Income Taxations

- We compute the optimal income tax progressivity under two types of system
- (Scenario 1): singles vs married (joint)
- (Scenario 2): individual taxation
- Recall the tax function: $\tau(y)=\left(1-\tau \widetilde{y}^{-\kappa}\right) y$
- Control curvature parameter $\kappa^{m s}$ to search optimal progressivity, and adjust level parameter $\tau^{m s}$ to achieve the same amount of revenue through income tax
- In each scenario, we evaluate both CF1 (full model) and CF2 (fixed marital/Pareto weight) cases

Optimal Joint Filing Income Tax Progressivity (S1)

Description	Baseline	CF1	CF2
Avg. Tax Rate (at $\widetilde{y}=1)$	$(10.3 \%, 8.7 \%)$	$(11.8 \%, 8.2 \%)$	$(12.0 \%, 7.9 \%)$
Mar. Tax Rate $($ at $\widetilde{y}=1)$	$(13.3 \%, 14.2 \%)$	$(14.4 \%, 12.9 \%)$	$(15.0 \%, 14.1 \%)$
Aggregate \# of married hh	0.7472	0.7508	0.7472
Avg. Married Age	30.77	30.25	30.77
K/Y	2.79	-6.3%	-7.1%
Y	0.63	-4.2%	-4.9%
L	0.83	-1.1%	-1.9%
M Female Emp Rate w/o children	78.1%	-0.6%	-0.2%
M Female Emp Rate w/ children	73.7%	-0.6%	-0.3%
M Male Emp Rate	90.2%	-0.9%	-1.1%
M Female Hours Worked w/o children	0.360	-0.8%	-0.4%
M Female Hours Worked w/ children	0.361	-0.9%	-0.5%
M Male Hours	0.413	-1.1%	-1.8%
Avg. Female Pareto Weight	0.424	0.458	0.424
Welfare (CEV)	-	$+1.4 \%$	$+1.1 \%$
Welfare (female,male)	-	$(+1.1 \%,+1.7 \%)$	$(+0.4 \%,+1.8 \%)$

Optimal Joint Filing Income Tax Progressivity (S1 CF1)

- Compute welfare-maximizing income tax progressivity under joint filing
- optimal progressivity is higher for singles but lowers for married households than current US tax code
- Welfare gains of 1.4% through reductions of labor and increase in leisure
- number of married households increases by 0.4%
- Married females: hours work decreases by 0.9%, employment rates by 0.5%
- married females enjoys better allocations within married households by higher relative size of earnings and thus larger decision weight

Optimal Joint Filing Income Tax Progressivity (S1 CF1 vs CF2)

- Stronger marriage non-neutrality in CF1
- larger subsidization to married households
- On the other hand, lower marginal tax rates for married households
- females have tax incentives to work, which increase their Pareto weight and Challenge probability
- In CF2, males challenge too often than CF1
- his Pareto weight tends to be higher than optimal
- male works less and female works more than CF1

Optimal Individual Income Tax Progressivity (S2)

Description	Baseline	CF1	CF2
Avg. Tax Rate (at $\tilde{y}=1)$	$(10.3 \%, 8.7 \%)$	(10.1%)	(9.6%)
Mar. Tax Rate (at $\widetilde{y}=1)$	$(13.3 \%, 14.2 \%)$	(14.6%)	(15.3%)
Aggregate \# of married hh	0.7472	0.7675	0.7472
Avg. Married Age	30.77	29.69	30.77
K/Y	2.79	-7.7%	-8.6%
Y	0.63	-5.6%	-6.7%
L	0.83	-2.1%	-2.6%
M Female Emp Rate w/o children	78.1%	-0.8%	-0.2%
M Female Emp Rate w/ children	73.7%	-1.2%	-0.3%
M Male Emp Rate	90.2%	-1.3%	-1.8%
M Female Hours Worked w/o children	0.360	-1.1%	-0.2%
M Female Hours Worked w/ children	0.361	-1.3%	-0.5%
M Male Hours	0.413	-1.8%	-2.3%
Avg. Female Pareto Weight	0.424	0.439	0.424
Welfare (CEV)	-	$+1.9 \%$	$+1.5 \%$
Welfare (female,male)	-	$(+1.7 \%,+2.1 \%)$	$(+0.7 \%,+2.3 \%)$

Optimal Individual Income Tax Progressivity (S2 CF1)

- Compute welfare-maximizing income tax progressivity under individual taxation
- optimal progressivity is much higher than the current US tax code of singles
- number of married households increases by 2.7%
- Welfare gains of around 2.0%, with larger reductions in labor supply than joint filing
- Married females: hours work drops by 1.2%, employment rates by 1.0%

Optimal Individual Income Tax Progressivity (S2 CF1 vs CF2)

- Individual taxation lowers marginal tax rates on the secondary earner (given her earning is low)
- encourages females to work more
- larger Pareto weight on her and lower tax rates on earnings, less market works
- Overall, the latter effect is stronger as we can see in CF1
- In CF2, we don't have such an effect
- married female labor supply does not respond so much

Conclusion

- Construct a model in which both single and married households exist, and taxes affect labor supply patterns and household formations.
- Tax reform impacts marriage and divorce patterns
- who get married to whom due to the differential tax treatment between singles and married households
- labor supply patterns of the secondary earner because of marginal tax rates
- intra-household allocations relative size of income and division of labor

Conclusion

- We show that endogenous household formation/dissolution and within-household allocation choice is quantitatively important
- changes in female labor supply (hours worked, employment rates) are underestimated if those are absent
- cannot capture the changes in marriage and divorce patterns after the reform
- Welfare maximizing income tax progressivity
- Joint Filing: higher for singles and lower for married than current tax code
- Individual Tax: higher than the current US tax code of singles

Appendix

Empirical Evidence of Effects of Tax reform on Marriage

- Marriage rate (Alm and Whittington (1995), Alm and Whittington (1999))
- regress the percentage of married female 15-44 on difference of tax burdens
- marriage-tax elasticity is statistically significant, but is less than - 0.05 (1% increase by 20% tax fall)
- however, the elasticity of marriage w.r.t. the marriage penalty is -1.25 at the extreme penalty
- Marriage decisions (Alm and Whittington (1997))
- delay of marriage decisions on changes in income tax burden upon marriage
- if the average marriage penalty to a couple doubles, the probability of delaying marriage increases by around 1%.

Existing Studies of Effects of Tax reform on Marriage

- marital sorting (Chade and Ventura (2002), Siassi (2019))
- Their theoretical model predicts that the separate filing induce stronger marital sorting (education, income)
- But taxes do not affect intra-household allocations

End-of-period Problem: Single Working-age Female Household

- Summarize state variables $\left(a, s^{f}\right)=(a, j, e, z, d)$.
- Conditional on the time allocation $t \in \mathcal{T}$, with no childcare cost

$$
\begin{aligned}
& V^{f}\left(t_{f} ; a, s_{f}\right)+\varepsilon_{t}=\max _{c, a^{\prime} \geq 0} u^{f}\left(c, \ell_{t}, Q\right)+\varepsilon_{t}+\beta \xi^{j} E \widetilde{V}^{f}\left(a^{\prime}, s_{f}^{\prime}\right) \\
& \text { s.t. }\left(1+\tau_{c}\right) c+a^{\prime}=y-\tau^{\mathcal{S}}(y)+a
\end{aligned}
$$

- taxable income $y=\left(1-0.5 \tau_{s s}\right) \widehat{w}^{f}\left(s^{f}\right) h_{t}^{f}+r a$
- Solution to the Time allocation : $t^{*}\left(a, s^{f}\right)=\underset{t}{\arg \max }\left\{V^{f}\left(t ; a, s_{f}\right)+\varepsilon_{t}\right\}$

End-of-period Problem: Single Working-age Female Household

- Summarize state variables $\left(a, s^{f}\right)=(a, j, e, z, d)$.
- Conditional on the time allocation $t \in \mathcal{T}$, if pays childcare cost

$$
\begin{aligned}
& V^{f}\left(t_{f} ; a, s_{f}\right)+\varepsilon_{t}=\max _{c, a^{\prime} \geq 0} u^{f}\left(c, \ell_{t}, Q\right)+\varepsilon_{t}+\beta \xi^{j} E \widetilde{V}^{f}\left(a^{\prime}, s_{f}^{\prime}\right) \\
& \text { s.t. }\left(1+\tau_{c}\right) c+a^{\prime}=y-\tau^{\mathcal{S}}(y)+a \underbrace{-\widehat{w}^{f}\left(s^{f}\right) \chi h_{t}^{f}}_{\text {childcare cost }}
\end{aligned}
$$

- taxable income $y=\left(1-0.5 \tau_{s s}\right) \widehat{w}^{f}\left(s^{f}\right) h_{t}^{f}+r a$
- Solution to the Time allocation : $t^{*}\left(a, s^{f}\right)=\underset{t}{\arg \max }\left\{V^{f}\left(t ; a, s_{f}\right)+\varepsilon_{t}\right\}$

End-of-period Problem: Married Working-age Household

- Conditional on $\mathbf{t} \in \mathcal{T}_{f} \times \mathcal{T}_{m}$, with no childcare cost

$$
\begin{aligned}
\max _{c^{f}, c^{m}, a^{\prime} \geq 0} \lambda\left[u\left(c^{f}, \ell_{\mathbf{t}}^{f}, Q\right)\right. & \left.+\theta+\varepsilon_{\mathbf{t}}+\beta \xi^{j} E \widetilde{W}^{f}\left(a^{\prime}, \mathbf{s}^{\prime}\right)\right] \\
& +(1-\lambda)\left[u\left(c^{m}, \ell_{\mathbf{t}}^{m}, Q\right)+\theta+\varepsilon_{\mathbf{t}}+\beta \xi^{j} E \widetilde{W}^{m}\left(a^{\prime}, \mathbf{s}^{\prime}\right)\right]
\end{aligned}
$$

$$
\text { s.t. }\left(1+\tau_{c}\right)\left(c^{f}+c^{m}\right)+a^{\prime}=y-\tau^{M}(y)+a
$$

- taxable income $y=\left(1-0.5 \tau_{s s}\right)\left(\widehat{w}^{m}\left(s^{m}\right) h_{\mathbf{t}}^{m}+\widehat{w}^{f}\left(s^{f}\right) h_{\mathbf{t}}^{f}\right)+r a$
- $\varepsilon_{\mathbf{t}}$ and match quality θ are common across spouses

End-of-period Problem: Married Working-age Household

- Conditional on $\mathbf{t} \in \mathcal{T}_{f} \times \mathcal{T}_{m}$, if pays childcare cost

$$
\begin{aligned}
& \max _{c^{f}, c^{m}, a^{\prime} \geq 0} \lambda\left[u\left(c^{f}, \ell_{\mathbf{t}}^{f}, Q\right)+\theta+\varepsilon_{\mathbf{t}}+\beta \xi^{j} E \widetilde{W}^{f}\left(a^{\prime}, \mathbf{s}^{\prime}\right)\right] \\
& +(1-\lambda)\left[u\left(c^{m}, \ell_{\mathbf{t}}^{m}, Q\right)+\theta+\varepsilon_{\mathbf{t}}+\beta \xi^{j} E \widetilde{W}^{m}\left(a^{\prime}, \mathbf{s}^{\prime}\right)\right] \\
& \text { s.t. }\left(1+\tau_{c}\right)\left(c^{f}+c^{m}\right)+a^{\prime}=y-\tau^{M}(y)+a-\widetilde{w}^{f} \chi h_{\mathrm{t}}^{f}
\end{aligned}
$$

- taxable income $y=\left(1-0.5 \tau_{s s}\right)\left(\widehat{w}^{m}\left(s^{m}\right) h_{\mathbf{t}}^{m}+\widehat{w}^{f}\left(s^{f}\right) h_{\mathbf{t}}^{f}\right)+r a$
- $\varepsilon_{\mathbf{t}}$ and match quality θ are common across spouses

Value at the Marriage Pool

$$
\begin{aligned}
& \widetilde{V}^{f}\left(a^{f}, s^{f}\right)=\underbrace{\left(1-p^{j}\right) E V^{f}\left(a^{f}, s^{f}\right)}_{\text {no meet }} \\
& \quad+p^{j}[\int_{\mathcal{A} \times \mathcal{S}} \underbrace{\left(1^{m}\left(a^{f}, s^{f}, a^{m}, s^{m}\right) \max \left\{E W^{f}\left(a^{f}+a^{m}, \mathbf{s}, \lambda\right)+\epsilon_{M}^{f}, E V^{f}\left(a^{f}, s^{f}\right)+\epsilon_{S}^{f}\right\}\right.}_{\text {male agrees }} \\
& \quad+\underbrace{\left(1-1^{m}\left(a^{f}, s^{f}, a^{m}, s^{m}\right)\right)\left\{E V^{f}\left(a^{f}, s^{f}\right)+\epsilon_{S}^{f}\right\}}_{\text {male declines }}) d \widetilde{\mu} s m\left(a^{m}, s^{m}\right)]
\end{aligned}
$$

Value at Negotiation Stage

$$
\begin{aligned}
& \widehat{W}^{S, f}(a, \mathbf{s}, \boldsymbol{\lambda}, \boldsymbol{\epsilon})=\underbrace{1^{S, m}\left(a, \mathbf{s}, \boldsymbol{\lambda}, \epsilon^{m}\right)\left(E W^{f}(a, \mathbf{s}, 1 / 2)+\epsilon_{M}^{f}\right)}_{\text {husband Satisfied }} \\
& \quad+\underbrace{\left\{1-1^{S, m}\left(a, \mathbf{s}, \boldsymbol{\lambda}, \epsilon^{m}\right)\right\}\left[\max \left\{E W^{f}\left(a, \mathbf{s}, \lambda^{m}\right)+\epsilon_{M}^{f}, E V^{f}\left(a / 2, s^{f}\right)+\epsilon_{S}^{f}\right\}-\kappa\right]}_{\text {husband Challenge }}
\end{aligned}
$$

$$
\widehat{W}^{C, f}(a, \mathbf{s}, \boldsymbol{\lambda}, \boldsymbol{\epsilon})=\underbrace{1^{S, m}\left(a, \mathbf{s}, \boldsymbol{\lambda}, \epsilon^{m}\right) 1^{A, m}\left(a, \mathbf{s}, \lambda^{f}, \epsilon^{m}\right)\left(E W^{f}\left(a, \mathbf{s}, \lambda^{f}\right)+\epsilon_{M}^{f}\right)}_{\text {husband Satisfied and Accept }}
$$

$$
+\underbrace{\left\{1-1^{S, m}\left(a, \mathbf{s}, \boldsymbol{\lambda}, \epsilon^{m}\right) 1^{A, m}\left(a, \mathbf{s}, \lambda^{f}, \epsilon^{m}\right)\right\}\left(E V^{f}\left(a / 2, s^{f}\right)+\epsilon_{S}^{f}\right)}_{\text {otherwise }}-\kappa
$$

Definition of Measure of Same Education Couples

Measure of same education couples is defined as

$$
\mu=\alpha_{H H} \alpha_{L L}-\alpha_{H L} \alpha_{L H}
$$

where $\alpha_{H H}$ is the ratio of (H, H)-type married households among all married households. See Frankel (2014). Back

	Husband		
		Satisfied	Challenge
Wife	Satisfied Challenge	$\lambda=1 / 2$	λ^{m} or Div.
	Divorce		

- First, they choose Satisfied or Challenge

Husband

		Husband	
		Satisfied	Challenge
Wife	Satisfied	$\lambda=1 / 2$	λ^{m} or Div.
	Challenge	λ^{f} or Div.	Divorce

- First, they choose Satisfied or Challenge
- if both Accept, set PW $\lambda=1 / 2$

Husband

		Husband	
		Satisfied	Challenge
Wife	Satisfied	$\lambda=1 / 2$	λ^{m} or Div.
	Challenge	λ^{f} or Div.	Divorce

- First, they choose Satisfied or Challenge
- If both Challenge, they divorce

Husband

		Husband	
		Satisfied	Challenge
Wife	Satisfied	$\lambda=1 / 2$	λ^{m} or Div.
	λ^{f} or Div.	Divorce	

- First, they choose Satisfied or Challenge
- Now suppose wife chooses Challenge but husband selects Satisfied,
- Second, wife offers λ and husband choose Accept or Reject.
- husband receives new PW (λ^{f}) offer from wife, and decides accept or reject the offer
- λ^{f} is chosen so that it maximizes the expected value of the wife

Sorting under Optimal Joint Filing Tax with Full Model (S1,CF1) vs Baseline

			Female	
			$e^{n c}$	$e^{\text {co }}$
Male	$e^{n c}$		0.1457	0.0915
			[0.1568]	[0.0959]
		0.1505	0.3243	0.1179
		[0.1610]	[0.3174]	[0.1134]
	$e^{c o}$	0.0876	0.0754	0.2452
		[0.0917]	[0.0712]	[0.2453]

Sorting under Optimal Individual Income Tax with Full Model (S2,CF1) vs Baseline

			Female	
		$e^{n c}$	$e^{c o}$	
Male	$e^{n c}$	0.1472	0.3247	0.1199
		$[0.1610]$	$[0.3174]$	$[0.1134]$
		$e^{c o}$	0.0853	0.0764
		$[0.0917]$	$[0.0712]$	0.2465
			$0.2453]$	

Modeling Married Households

- We model the negotiation process of married households with a NEW approach
- Unitary model or collective model with full commitment
- allocation rule is fixed (allocation does not reflect outside option values)
- exogenous divorce
- (Traditional) Collective model with limited commitment
- adjust decision weight when one of the incentive constraints binds
- decision weight, which depends on the future variables through Lagrangian multipliers, is a state variable (non-Markovian)
- all the surplus from the match goes to the one with slack constraint

Modeling Married Households

- We model the negotiation process of married households with a NEW approach
- In our approach, married households decide the current period allocation/divorce through the negotiation every period
- Pareto weight is no longer a state variable and the model is Markovian
- trade-off between demanding more favorable deals and the risk of divorce
- spouses split the surplus of thr match
- Resulting allocation is still on the Pareto frontier
- Improvement of outside value may result in better allocations by larger Pareto weight

Reference

Aifagari, S. R. (1994): "Uninsured idiosyncratic risk and aggregate saving," The Quarterly Journal of Economics, 109, 659-684.
Aiyagari, S. R., J. Greenwood, and N. Guner (2000): "On the State of the Union," Journal of Political Economy, 108, $213-244$.
Alesina, A., A. Ichino, and L. Karabarbounis (2011): "Gender-based taxation and the division of family chores," American Economic Journal: Economic Policy, 3, 1-40.

Alm, J., And L. A. Whittington (1995): "Income taxes and the marriage decision," Applied Economics, 27, $25-31$.

- (1997): "Income taxes and the timing of marital decisions," Journal of Public Economics, 64, 219-240.
(1999): "For love or money? The impact of income taxes on marriage," Economica, 66, 297-316.

Alves, C. B. M., C. E. D. Costa, and H. A. Moreira (2021): "Intrahousehold inequality and the joint taxation of household earnings,"Technical report.
Attanasio, O., H. Low, and V. Sánchez-Marcos (2005): "Female labor supply as insurance against idiosyncratic risk," Journal of the European Economic Association, 3, 755-764.

- (2008): "Explaining changes in female labor supply in a life-cycle model," American Economic Review, 98, $1517-52$.

Attanasio, O., AND J.-V. Ríos-Rull (2000): "Consumption smoothing in island economies: Can public insurance reduce welfare?" European economic review, 44, 1225-1258.

Badel, A., and M. Huggett (2017): "The sufficient statistic approach: Predicting the top of the Laffer curve," Journal of Monetary Economics, 87 , 1-12.
Bar, M., AND O. Leukhina (2009): "To work or not to work: Did tax reforms affect labor force participation of married couples?" The BE Journal of Macroeconomics, 9.

Bastani, S. (2013): "Gender-based and couple-based taxation," International tax and public finance, 20, 653-686.
BENABOU, R. (2002): "Tax and education policy in a heterogeneous-agent economy: What levels of redistribution maximize growth and efficiency?" Econometrica, 70, 481-517.

Reference ii

Bick, A., AND N. Fuchs-Schündeln (2017): "Taxation and labour supply of married couples across countries: A macroeconomic analysis," The Review of Economic Studies, 85, 1543-1576.
Blundell, R., M. Costa Dias, C. Meghir, and J. Shaw (2016a): "Female labor supply, human capital, and welfare reform," Econometrica, 84, 1705-1753.
Blundell, R., and T. MaCurdy (1999): "Labor supply: A review of alternative approaches," Handbook of labor economics, 3, 1559-1695.
Blundell, R., L. Pistaferri, and I. Saporta-Eksten (2016b): "Consumption inequality and family labor supply," American Economic Review, 106, $387-435$.
\qquad (2018): "Children, time allocation, and consumption insurance," Journal of Political Economy, 126, S73-S115.

Bosworth, B., and G. Burtless (1992): "Effects of tax reform on labor supply, investment, and saving," Journal of Economic Perspectives, 6, 3-25.
Bronson, M. A., and M. Mazzocco (2018): "Taxation and Household Decisions: an Intertemporal Analysis,"Technical report, Working Paper.
Chade, H., and G. Ventura (2002): "Taxes and marriage: a two-sided search analysis," International Economic Review, 43, 955-985.
-_ (2005): "Income taxation and marital decisions," Review of Economic Dynamics, 8, 565-599.
Chiappori, P.-A., B. Fortin, and G. Lacroix (2002): "Marriage market, divorce legislation, and household labor supply," Journal of political Economy, 110, 37-72.

Chiappori, P.-A., and M. Mazzocco (2017): "Static and intertemporal household decisions," Journal of Economic Literature, 55, 985-1045. Choo, E., AND A. Siow (2006): "Who marries whom and why," Journal of political Economy, 114, 175-201.

Conesa, J. C., S. Kitao, and D. Krueger (2009): "Taxing capital? Not a bad idea after all!," American Economic Review, 99, 25-48.
Conesa, J. C., and D. Krueger (2006): "On the optimal progressivity of the income tax code," Journal of Monetary Economics, 53, 1425-1450.
Crossley, T. F., And S.-H. Jeon (2007): "Joint taxation and the labour supply of married women: evidence from the Canadian tax reform of 1988," Fiscal Studies, 28, 343-365.

Cubeddu, L., and J.-V. Ríos-Rull (2003): "Families as shocks," Journal of the European Economic Association, 1, 671-682.

Reference ifi

De Nardi, M. (2004): "Wealth inequality and intergenerational links," The Review of Economic Studies, 71, 743-768.
Devereux, K., and L. Turner (2016): "Divorce, Remarriage, and Fertility with On-the-Marriage Search."
EISSA, N. (1995): "Taxation and labor supply of married women: the Tax Reform Act of 1986 as a natural experiment," NBER working paper.
Fernandez, R., N. Guner, and J. Knowles (2005): "Love and money: A theoretical and empirical analysis of household sorting and inequality," The Quarterly Journal of Economics, 120, 273-344.
Frankel, A. (2014): "Taxation of couples under assortative mating," American Economic Journal: Economic Policy, 6, 155-77.
Gayle, G.-L., and A. Shephard (2019): "Optimal taxation, marriage, home production, and family labor supply," Econometrica, 87, 291-326.
Guner, N., R. Kaygusuz, and G. Ventura (2012): "Taxation and household labour supply," The Review of economic studies, 79, 1113-1149.

- (2014): "Income taxation of US households: Facts and parametric estimates," Review of Economic Dynamics, 17, 559-581.

Guner, N., M. Lopez-Daneri, and G. Ventura (2016): "Heterogeneity and Government revenues: Higher taxes at the top?" Journal of Monetary Economics, 80, 69-85.

Heathcote, J., K. Storesletten, and G. L. Violante (2017): "Optimal tax progressivity: An analytical framework," The Quarterly Journal of Economics, 132, 1693-1754.
(2019): "Optimal progressivity with age-dependent taxation,"Technical report, National Bureau of Economic Research.

Holter, H., D. Krueger, and S. Stepanchuk (2017): "How do tax progressivity and household heterogeneity affect laffer curves,"Technical report, Working paper.
Holter, H. A., D. Krueger, and S. Stepanchuk (2019): "How do tax progressivity and household heterogeneity affect Laffer curves?" Quantitative Economics, 10, 1317-1356.
Hong, J. H., and J.-V. Ríos-Rull (2007): "Social security, life insurance and annuities for families," Journal of Monetary Economics, 54, 118-140.

Reference iv

(2012): "Life insurance and household consumption," American Economic Review, 102, 3701-30.

Huggett, M. (1996): "Wealth distribution in life-cycle economies," Journal of Monetary Economics, 38, 469-494.
HySLOP, D. R. (2001): "Rising US earnings inequality and family labor supply: The covariance structure of intrafamily earnings," American Economic Review, 91, 755-777.

Karabarbounis, M. (2016): "A road map for efficiently taxing heterogeneous agents," American Economic Journal: Macroeconomics, 8, 182-214.
Kaygusuz, R. (2010): "Taxes and female labor supply," Review of Economic Dynamics, 13, 725-741.
Keane, M. P. (2011): "Labor supply and taxes: A survey," Journal of Economic Literature, 49, 961-1075.
Kehoe, P. J., and F. Perri (2002): "International business cycles with endogenous incomplete markets," Econometrica, 70, 907-928.
Kindermann, F., and D. Krueger (2014): "High marginal tax rates on the top 1\%? Lessons from a life cycle model with idiosyncratic income risk,"Technical report, National Bureau of Economic Research.
Kleven, H. J., C. T. Kreiner, and E. Saez (2009): "The optimal income taxation of couples," Econometrica, 77, 537-560.
Kocherlakota, N. R. (1996): "Implications of efficient risk sharing without commitment," The Review of Economic Studies, 63, 595-609.
Konrad, K. A., and K. E. Lommerud (2008): "Love and taxes mand matching institutions,"Technical report.
Krueger, D., and A. Ludwig (2016): "On the optimal provision of social insurance: Progressive taxation versus education subsidies in general equilibrium," Journal of Monetary Economics, 77, 72-98.
Kydland, F. E., and E. C. Prescott (1980): "Dynamic optimal taxation, rational expectations and optimal control," Journal of Economic Dynamics and control, 2, 79-91.
Leung, C. S. D. (2019): "The Optimal Progressivity of Income Taxes for Couples."
Marcet, A., and R. Marimon (2019): "Recursive contracts," Working Paper.

Reference v

Mazzocco, M., C. Ruiz, and S. Yamaguchi (2007): "Labor supply, wealth dynamics, and marriage decisions," University of Wisconsin Economics Department Working paper.
Mendoza, E. G., A. Razin, and L. L. Tesar (1994): "Effective tax rates in macroeconomics: Cross-country estimates of tax rates on factor incomes and consumption," Journal of Monetary Economics, 34, 297-323.
Mirrlees, J. A. (1971): "An exploration in the theory of optimum income taxation," The review of economic studies, 38, 175-208.
Nishiyama, S., and K. Smetters (2005): "Consumption taxes and economic efficiency with idiosyncratic wage shocks," Journal of political Economy, 113, 1088-1115.
Obermeier, T. (2019): "The Marriage Market, Inequality and the Progressivity of the Income Tax,"Technical report, University of Bonn and University of Mannheim, Germany.
Piketty, T., and E. SaEz (2013): "Optimal labor income taxation," in Handbook of public economics Volume 5: Elsevier, $391-474$.
Regalia, F., J.-V. Ríos-Rull, and J. Short (2010): "What accounts for the increase in the number of single households?" in 2010 Meeting Papers (995), Society for Economic Dynamics.
Ríos-Rull, J.-V., S. Seitz, and S. Tanaka (2013): "Sex Ratios and Long-Term Marriage Trends," in 2013 Meeting Papers. No. 1349. Society for Economic Dynamics.
Rupert, P., and G. Zanella (2015): "Revisiting wage, earnings, and hours profiles," Journal of Monetary Economics, 72, 114-130.
SHEPHARD, A. (2019): "Marriage market dynamics, gender, and the age gap."
SiAssi, N. (2019): "Inequality and the marriage gap," Review of Economic Dynamics, 31, 160-181.
Sjoquist, D. L., And M. B. Walker (1995): "The marriage tax and the rate and timing of marriage," National Tax Journal, 48, 547-558.
Triest, R. K. (1990): "The effect of income taxation on labor supply in the United States," Journal of Human Resources, $491-516$.
Ventura, G. (1999): "Flat tax reform: A quantitative exploration," Journal of Economic dynamics and Control, 23, $1425-1458$.
Whittington, L. A., And J. Alm (1997): "'Til death or taxes do us part: the effect of income taxation on divorce," Journal of Human Resources, $388-412$.
Wu, C., And D. Krueger (2021): "Consumption insurance against wage risk: Family labor supply and optimal progressive income taxation," American Economic Journal: Macroeconomics, 13, 79-113.

