Optimal Progressive Income Taxation and Endogenous Marriage and Divorce

Akihisa Kato's job market paper UPenn

Lightly Edited for 712-2022 by Victor February 7, 2022

- The optimal degree of income tax progressivity has been a central issue in policy making.
 - provide social insurance against uninsurable idiosyncratic earning risks
 - most of the works are done with single-earner households.
- U.S. income tax unit is mostly a household due to joint filing
 - differential tax treatment across marital status (marriage non-neutrality)
 - rewards asymmetric earning couples (marriage bonus), penalizes symmetric earning couples (marriage penalty)
 - higher marginal tax rate on the secondary earners
 - they are typically wives, and their labor supplies are more elastic.

- Construct a model in which both single and married households exist and income taxes affect
 - the secondary earner labor supply
 - household formation decisions of singles
 - allocations/divorce decisions within married couples
- Estimate parameters that replicate individual's marriage/divorce and time allocation patterns.
- Compute the welfare-maximizing income tax progressivity when married households file jointly and when the tax unit shifts to an individual

Literature

- Progressive income taxation with two-earner households
 - Kleven et al. (2009), Guner et al. (2012), Gayle and Shephard (2019), Siassi (2019), Obermeier (2019), Wu and Krueger (2021), Leung (2019), Holter et al. (2019)
 - Aki's Contribution: tax reforms affect household formation/dissolution in a dynamic general equilibrium model
- Taxes and female labor supply
 - Keane (2011), Blundell et al. (2016a), Kaygusuz (2010), Crossley and Jeon (2007), Bosworth and Burtless (1992), Triest (1990), Eissa (1995)
 - Aki's Contribution: allow interaction between labor supply pattern and intra-household decision power
- Taxes and marriage patterns
 - Alm and Whittington(1995,1997,1999), Chade and Ventura (2002), Chade and Ventura (2005), Frankel (2014) **Empirical**
 - Aki's Contribution: quantify impacts of income tax reform on marriage and divorce and labor supply patterns in a dynamic model

- The sensitivity of marriage patterns to the tax code through a policy experiment
- Endogenous household formation/dissolution and intra-household allocation decisions are quantitatively important
- Optimal progressivity
 - under joint filing is higher for singles but is lower for married households than current US tax code
 - under individual taxation is much higher than the current US tax code of singles

Model

- OLG model. Agents/Households are indexed by
 - age: $j \in \{1, ..., J\}$, sex: $g \in \{m, f\}$, education: $e \in \{nc, co\}$, time-variant productivity: $z \in \mathcal{Z}$, children: $d \in \{0, 1\}$, asset: $a \in [0, \overline{A}]$
- Individuals can form either a single household or a married household with a spouse.
- Upon divorce, assets are split equally and children belong to females.
- Fertility is an exogenous event, but the arrival rate depends on the marital status, and education if single.
 - Children affects (i) home good production, (ii) childcare cost, (iii) return from leisure

- Agents enjoy consumption, leisure, and home production goods, $u(c, \ell, Q)$
 - For married individuals, c and ℓ are private goods, while Q is public within a couple.
- They can choose time allocation across leisure ℓ, market work h, and house work n from the discrete choice set (ℓ, h, n) ∈ T.
- Q is produced by house work, n

- 1. Learn fertility and labor productivity shocks.
- 2. Marriage pool or Negotiation
 - singles go to the marriage pool and randomly meet with a potential spouse
 - married couples decide the current period Pareto weight/divorce through the negotiation
- 3. Solve the decision problem. Allocations within a married household depend on the current period Pareto weight.

- Solve consumption and saving problem conditional on the time allocation $t \in \mathcal{T}_f$
- States: (a, s), where s includes all the individual state variables other than asset.
- If no childcare cost

$$\max_{\substack{c,a' \ge 0}} u(c, \ell_t, Q) + \beta E \widetilde{V}^g(a', s')$$

s.t. $c + a' = y - \tau^S(y) + a$

- taxable income $y = \widehat{w}(s)h_t + ra$, home goods $Q = Q(n_t)$

- Solve consumption and saving problem conditional on the time allocation $t\in\mathcal{T}_f$
- States: (a, s), where s includes all the individual state variables other than asset.
- If pays childcare cost

$$\max_{\substack{c,a' \ge 0}} u(c, \ell_t, Q) + \beta E \widetilde{V}^g(a', s')$$

s.t. $c + a' = y - \tau^S(y) + a \underbrace{-\widehat{w}(s)\chi h_t}_{\text{childcare cost}}$

- taxable income $y = \widehat{w}(s)h_t + ra$, home goods $Q = Q(n_t)$

- Conditional on $t\in \mathcal{T}_{\mathit{f}}\times \mathcal{T}_{\mathit{m}},$ with no childcare cost

$$\max_{c^{f},c^{m},a'\geq 0} \lambda \Big[u(c^{f},\ell_{t}^{f},Q) + \beta E\widetilde{W}^{f}(a',\mathbf{s}') \Big] \\ + (1-\lambda) \Big[u(c^{m},\ell_{t}^{m},Q) + \beta E\widetilde{W}^{m}(a',\mathbf{s}') \Big]$$

s.t. $c^{f} + c^{m} + a' = y - \tau^{M}(y) + a$

- taxable income $y = \widehat{w}^m(s^m) h^m_{\mathbf{t}} + \widehat{w}^f(s^f) h^f_{\mathbf{t}} + ra$
- Negotiation pins down the current period Pareto weight (λ not a state variable)

- Conditional on $\mathbf{t} \in \mathcal{T}_f \times \mathcal{T}_m$, if pays childcare cost

$$\max_{c^{f}, c^{m}, a' \geq 0} \lambda \Big[u(c^{f}, \ell_{t}^{f}, Q) + \beta E \widetilde{W}^{f}(a', \mathbf{s}') \Big] \\ + (1 - \lambda) \Big[u(c^{m}, \ell_{t}^{m}, Q) + \beta E \widetilde{W}^{m}(a', \mathbf{s}') \Big] \\ \text{s.t. } c^{f} + c^{m} + a' = y - \tau^{M}(y) + a - \widehat{w}^{f}(s^{f})\chi h_{t}^{f}$$

- taxable income $y = \widehat{w}^m(s^m) h^m_{\mathbf{t}} + \widehat{w}^f(s^f) h^f_{\mathbf{t}} + ra$
- Negotiation pins down the current period Pareto weight (λ not a state variable)

Start-of-Period Problem: Single Working-age Household

- When a single working-age female enters the marriage pool, she
 - 1. meets a mate with probability p_j
 - Marriage: both agree to form a married household
 - No marriage: at least one decline the proposal (bilateral)
 - 2. cannot find a potential spouse $(1 p_j)$, and stay being a single
- Start-of-period expected value $E \widetilde{V}^{f}(a^{f}, s^{f})$ depends on
 - distribution of single men
 - errors to the values of each marital status

[▶] Value at Marriage Pool

Start-of-Period Problem: Married Working-age Household

- Potentially two-stage game
 - 1. Choose Satisfied (S) or Challenge (C)
 - If both choose S, set $\lambda=\lambda^{SS}$ and stay married
 - If both choose C, get divorce.
 - If one of them chooses C, go to the next stage.
 - 2. The one who chooses C offer new λ , and the other decides whether accept or reject (=divorce) it
- Challenge and high λ offer may result in better allocations for the Challenger, but it also increases the risk of being rejected and divorce.
- Start-of-period expected value \widetilde{EW} depends on the expected value from choosing *Satisfied* and *Challenge*

Parameterization and Estimation

Preference

- Following Shephard (2019), per-period utility function:

$$u^{g}(c, \ell, Q) = \frac{c^{1-\sigma} \exp\left[(1-\sigma)(v_{g}(\ell) + \beta_{Q}Q^{1-\sigma_{Q}}/(1-\sigma_{Q}))\right]}{1-\sigma}$$

- Following Benabou (2002) and Guner et al. (2014), income tax amount paid by households are

$$au(y) = (1 - au \widetilde{y}^{-\kappa})y$$

- where \tilde{y} is a multiple of mean household income, and (τ, κ) differs across marital status.
- Home production functions

$$Q^{S}(n,d) = \eta^{S}_{d}n, \ Q^{M}(n_{f},n_{m},d) = \eta^{M}_{d}n^{\alpha}_{f}n^{1-\alpha}_{m}$$

- Some parameters are estimated outside the model or taken directly from the literature
 - AR (1) Labor process for each education level, Correlation of labor shock across spouses, Age profile, Survival rate, etc.
- Other parameters are estimated within the model to minimize the distance between the moments from the model and those calculated from the data.
 - Aggregate variables, such as K/Y, Marital sorting patterns, Frac. single mothers and married households w/ children
 - Marriage and divorce hazard rates
 - Hours worked, employment rates, home time of each type of individuals

Preference			
Discount factor eta (1 year)	0.984		
Cost of Challenge κ	1.23		
Extreme Value shocks			
Marital status specific error s.d. σ_ϵ	2.321		
Time allocation choice specific error s.d. $\sigma_{arepsilon}$			
Demographic			
Single e^{nc} Fertility Rate $\pi^{S,nc}$	0.27		
Single e^{co} Fertility Rate $\pi^{S,co}$	0.06		
Married Fertility Rate π^M	0.81		
Childcare cost χ	0.082		

Table 1: Marital Sorting Pattern: ACS (2017) vs Model

			Female	
		single	e ^{nc}	e ^{co}
	single		0.1779	0.0973
			[0.1568]	[0.0959]
Mala	e ^{nc}	0.1762	0.3043	0.1113
Iviale		[0.1610]	[0.3174]	[0.1134]
	e ^{co}	0.0990	0.0632	0.2460
		[0.0917]	[0.0712]	[0.2453]

1-Year Marriage Hazard Rate

40-49

50-59

60+

30-39

1-Year Divorce Hazard Rate

Description	Target	Model
Capital-to-Output Ratio	2.8	2.79
Frac. with Children Single Female nc	0.345	0.352
Frac. with Children Single Female co	0.092	0.105
Frac. with Children Married Household	0.779	0.761
M Female Emp Rate w/o children	79.2%	78.1%
M Female Emp Rate w/ children	69.5%	73.7%
M Male Emp Rate	88.7%	90.2%
M Female Hours Worked w/o children	0.353	0.360
M Female Hours Worked w/ children	0.321	0.361
M Male Hours	0.398	0.413

Policy Experiment

Policy Experiments : Individual Taxation

- Before computing the optimal progressivity of income taxes, we conduct a policy experiment.
- Apply a current US tax code of singles to all the individuals regardless of their marital status to see
 - the sensitivity of marriage/divorce patterns to the tax code
 - how endogenous household formation/dissolution and limited commitment framework are quantitatively important
- To quantify the importance of model aspects, we consider
 - CF1: full model (marital patterns and Pareto weights respond to the policy reform)
 - CF2: model with fixed marital patterns and Pareto weights at the baseline

Policy Experiments : Individual Taxation

Description	Baseline	CF1	CF2
Aggregate number of married HH	0.7472	0.7723	0.7472
Average Marriage Age	30.77	29.64	30.77
Capital-to-Output ratio	2.79	-9.3%	-8.6%
Y	0.63	-5.2%	-4.4%
L	0.83	-0.6%	-1.0%
M Female Emp Rate w/o children	78.1%	+4.8%	+3.6%
M Female Emp Rate w/ children	73.7%	+4.7%	+3.6%
M Male Emp Rate	90.2%	-1.2%	-0.7%
M avg. Female Hours Worked w/o children	0.360	+4.0%	+2.1%
M avg. Female Hours Worked w/ children	0.361	+3.8%	+2.8%
M Male Hours	0.413	-4.7%	-3.9%
Avg. home production (married)	0.32	-2.1%	-1.4%
Avg. Female Pareto Weight	0.424	0.458	0.424
Welfare	_	+0.5%	+0.1%
Welfare (female,male)	_	(+1.1%,+0.2%)	(-0.8%,+0.9%)

Policy Experiments: Individual Taxation

CF1 vs CF2 (=Baseline) Sorting Patterns

			Fen	Female	
			e ^{nc}	e ^{co}	
			0.1407	0.0870	
			[0.1568]	[0.0959]	
Mala	e ^{nc}	0.1441	0.3263	0.1214	
Iviale		[0.1610]	[0.3174]	[0.1134]	
	e ^{co}	0.0836	0.0784	0.2462	
		[0.0917]	[0.0712]	[0.2453]	

- For example, (e^{nc}, e^{nc}) couples \uparrow by 2.8%

Policy Experiment : CF1 vs CF2

- In CF1, we have 3.4% increase in number of married households and 1.1 years decrease in avg. marriage age than baseline.
- Increase in avg. female hours worked are 3.9% (CF1) vs 2.5% (CF2), their employment rate 4.8% vs 3.6%.
 - lower marginal tax rates on the secondary earner encourages to work in the market.
 - the avg. Pareto weight on female conditional on stay married changes from 0.424 to 0.458 in CF1
- Improvement of female Pareto weights in CF1 comes from intra-household allocations through negotiation
 - Probability of Challenge: male 0.73 to 0.64, female 0.44 to 0.47
 - Avg. offer of Pareto weight (numbers are on female): male 0.38 to 0.41, female 0.45 to 0.48

Why female works more with higher Pareto weight

- Women value leisure more than men.
- After the reform,
 - male engages home production more, female less.
 - female works to complement income.
 - female leisure slightly goes up (home production to labor/leisure), while male leisure does not change so much
- Male's marginal return of home production is high but low marginal return from working with higher marginal tax rate
- Change in Pareto weight is reflected mainly in home production and leisure

Optimal Progressive Income Taxation

Welfare-Maximizing Optimal Progressive Income Taxations

- We compute the optimal income tax progressivity under two types of system
 - (Scenario 1): singles vs married (joint)
 - (Scenario 2): individual taxation
- Recall the tax function: $au(y) = (1 au \widetilde{y}^{-\kappa})y$
- Control curvature parameter κ^{ms} to search optimal progressivity, and adjust level parameter τ^{ms} to achieve the same amount of revenue through income tax
- In each scenario, we evaluate both CF1 (full model) and CF2 (fixed marital/Pareto weight) cases

Optimal Joint Filing Income Tax Progressivity (S1) Measure Def. Sorting

Description	Baseline	CF1	CF2	-
Avg. Tax Rate (at $\widetilde{y} = 1$)	(10.3%,8.7%)	(11.8%,8.2%)	(12.0%,7.9%)	-
Mar. Tax Rate (at $\widetilde{y}=1$)	(13.3%,14.2%)	(14.4%,12.9%)	(15.0%,14.1%)	
Aggregate $\#$ of married hh	0.7472	0.7508	0.7472	
Avg. Married Age	30.77	30.25	30.77	
K/Y	2.79	-6.3%	-7.1%	
Y	0.63	-4.2%	-4.9%	
L	0.83	-1.1%	-1.9%	
M Female Emp Rate w/o children	78.1%	-0.6%	-0.2%	
M Female Emp Rate w/ children	73.7%	-0.6%	-0.3%	
M Male Emp Rate	90.2%	-0.9%	-1.1%	
M Female Hours Worked w/o children	0.360	-0.8%	-0.4%	
M Female Hours Worked w/ children	0.361	-0.9%	-0.5%	
M Male Hours	0.413	-1.1%	-1.8%	
Avg. Female Pareto Weight	0.424	0.458	0.424	
Welfare (CEV)	_	+1.4%	+1.1%	
Welfare (female,male)	_	(+1.1%,+1.7%)	(+0.4%,+1.8%)	26

- Compute welfare-maximizing income tax progressivity under joint filing
 - optimal progressivity is higher for singles but lowers for married households than current US tax code
 - Welfare gains of 1.4% through reductions of labor and increase in leisure
 - number of married households increases by 0.4%
 - Married females: hours work decreases by 0.9%, employment rates by 0.5%
 - married females enjoys better allocations within married households by higher relative size of earnings and thus larger decision weight

- Stronger marriage non-neutrality in CF1
 - larger subsidization to married households
- On the other hand, lower marginal tax rates for married households
 - females have tax incentives to work, which increase their Pareto weight and *Challenge* probability
- In CF2, males challenge too often than CF1
 - his Pareto weight tends to be higher than optimal
 - male works less and female works more than CF1

Optimal Individual Income Tax Progressivity (S2) Sorting

Description	Baseline	CF1	CF2	-
Avg. Tax Rate (at $\widetilde{y} = 1$)	(10.3%,8.7%)	(10.1%)	(9.6%)	_
Mar. Tax Rate (at $\widetilde{y}=1$)	(13.3%,14.2%)	(14.6%)	(15.3%)	
Aggregate $\#$ of married hh	0.7472	0.7675	0.7472	
Avg. Married Age	30.77	29.69	30.77	
K/Y	2.79	-7.7%	-8.6%	
Y	0.63	-5.6%	-6.7%	
L	0.83	-2.1%	-2.6%	
M Female Emp Rate w/o children	78.1%	-0.8%	-0.2%	
M Female Emp Rate w/ children	73.7%	-1.2%	-0.3%	
M Male Emp Rate	90.2%	-1.3%	-1.8%	
M Female Hours Worked w/o children	0.360	-1.1%	-0.2%	
M Female Hours Worked w/ children	0.361	-1.3%	-0.5%	
M Male Hours	0.413	-1.8%	-2.3%	
Avg. Female Pareto Weight	0.424	0.439	0.424	
Welfare (CEV)	_	+1.9%	+1.5%	
Welfare (female,male)	_	(+1.7%,+2.1%)	(+0.7%,+2.3%)	29 / 33

- Compute welfare-maximizing income tax progressivity under individual taxation
 - optimal progressivity is much higher than the current US tax code of singles
 - number of married households increases by 2.7%
 - Welfare gains of around 2.0%, with larger reductions in labor supply than joint filing
 - Married females: hours work drops by 1.2%, employment rates by 1.0%

- Individual taxation lowers marginal tax rates on the secondary earner (given her earning is low)
 - encourages females to work more
 - larger Pareto weight on her and lower tax rates on earnings, less market works
- Overall, the latter effect is stronger as we can see in $\ensuremath{\mathsf{CF1}}$
- In CF2, we don't have such an effect
 - married female labor supply does not respond so much

- Construct a model in which both single and married households exist, and taxes affect labor supply patterns and household formations.
- Tax reform impacts marriage and divorce patterns
 - who get married to whom due to the differential tax treatment between singles and married households
 - labor supply patterns of the secondary earner because of marginal tax rates
 - intra-household allocations relative size of income and division of labor

- We show that endogenous household formation/dissolution and within-household allocation choice is quantitatively important
 - changes in female labor supply (hours worked, employment rates) are underestimated if those are absent
 - cannot capture the changes in marriage and divorce patterns after the reform
- Welfare maximizing income tax progressivity
 - Joint Filing: higher for singles and lower for married than current tax code
 - Individual Tax: higher than the current US tax code of singles

Appendix

Empirical Evidence of Effects of Tax reform on Marriage

- Marriage rate (Alm and Whittington (1995), Alm and Whittington (1999))
 - regress the percentage of married female 15-44 on difference of tax burdens
 - marriage-tax elasticity is statistically significant, but is less than -0.05 (1% increase by 20% tax fall)
 - however, the elasticity of marriage w.r.t. the marriage penalty is -1.25 at the extreme penalty
- Marriage decisions (Alm and Whittington (1997))
 - delay of marriage decisions on changes in income tax burden upon marriage
 - if the average marriage penalty to a couple doubles, the probability of delaying marriage increases by around 1%.

- marital sorting (Chade and Ventura (2002), Siassi (2019))
 - Their theoretical model predicts that the separate filing induce stronger marital sorting (education, income)
 - But taxes do not affect intra-household allocations

End-of-period Problem: Single Working-age Female Household

- Summarize state variables $(a, s^{f}) = (a, j, e, z, d)$.
- Conditional on the time allocation $t \in \mathcal{T}$, with no childcare cost

$$V^{f}(t_{f}; a, s_{f}) + \varepsilon_{t} = \max_{c, a' \ge 0} u^{f}(c, \ell_{t}, Q) + \varepsilon_{t} + \beta \xi^{j} E \widetilde{V}^{f}(a', s'_{f})$$

s.t. $(1 + \tau_{c})c + a' = y - \tau^{S}(y) + a$

- taxable income $y = (1 - 0.5 au_{ss}) \widehat{w}^f(s^f) h^f_t + ra$

- Solution to the Time allocation :
$$t^*(a, s^f) = \arg \max_t \left\{ V^f(t; a, s_f) + \varepsilon_t \right\}$$

End-of-period Problem: Single Working-age Female Household

- Summarize state variables $(a, s^{f}) = (a, j, e, z, d)$.
- Conditional on the time allocation $t \in \mathcal{T}$, if pays childcare cost

$$V^{f}(t_{f}; a, s_{f}) + \varepsilon_{t} = \max_{c, a' \ge 0} u^{f}(c, \ell_{t}, Q) + \varepsilon_{t} + \beta \xi^{j} E \widetilde{V}^{f}(a', s'_{f})$$

s.t. $(1 + \tau_{c})c + a' = y - \tau^{S}(y) + a \underbrace{-\widehat{w}^{f}(s^{f})\chi h_{t}^{f}}_{\text{childcare cost}}$

- taxable income $y = (1 - 0.5 au_{ss}) \widehat{w}^f(s^f) h^f_t + ra$

- Solution to the Time allocation :
$$t^*(a, s^f) = \arg \max_t \left\{ V^f(t; a, s_f) + \varepsilon_t \right\}$$

End-of-period Problem: Married Working-age Household

- Conditional on $\textbf{t}\in\mathcal{T}_{f}\times\mathcal{T}_{m},$ with no childcare cost

$$\begin{aligned} \max_{c^{f},c^{m},a'\geq 0}\lambda\Big[u(c^{f},\ell_{\mathbf{t}}^{f},Q)+\theta+\varepsilon_{\mathbf{t}}+\beta\xi^{j}\widetilde{EW}^{f}(a',\mathbf{s}')\Big]\\ &+(1-\lambda)\Big[u(c^{m},\ell_{\mathbf{t}}^{m},Q)+\theta+\varepsilon_{\mathbf{t}}+\beta\xi^{j}\widetilde{EW}^{m}(a',\mathbf{s}')\Big]\\ \text{s.t.}\ (1+\tau_{c})(c^{f}+c^{m})+a'=y-\tau^{M}(y)+a\end{aligned}$$

- taxable income $y = (1 0.5 au_{ss})(\widehat{w}^m(s^m) h_{\mathbf{t}}^m + \widehat{w}^f(s^f) h_{\mathbf{t}}^f) + ra$
- $\varepsilon_{\mathbf{t}}$ and match quality θ are common across spouses

- Conditional on $\textbf{t}\in\mathcal{T}_{\textit{f}}\times\mathcal{T}_{\textit{m}},$ if pays childcare cost

$$\begin{aligned} \max_{c^{f},c^{m},a'\geq 0}\lambda\Big[u(c^{f},\ell_{t}^{f},Q)+\theta+\varepsilon_{t}+\beta\xi^{j}E\widetilde{W}^{f}(a',\mathbf{s}')\Big]\\ &+(1-\lambda)\Big[u(c^{m},\ell_{t}^{m},Q)+\theta+\varepsilon_{t}+\beta\xi^{j}E\widetilde{W}^{m}(a',\mathbf{s}')\Big]\\ \text{s.t.}\ (1+\tau_{c})(c^{f}+c^{m})+a'=y-\tau^{M}(y)+a-\widetilde{w}^{f}\chi h_{t}^{f}\end{aligned}$$

- taxable income $y = (1 0.5 au_{ss})(\widehat{w}^m(s^m) h_{\mathbf{t}}^m + \widehat{w}^f(s^f) h_{\mathbf{t}}^f) + ra$
- $\varepsilon_{\mathbf{t}}$ and match quality θ are common across spouses

$$\widetilde{\mathcal{V}}^{f}(a^{f}, s^{f}) = \underbrace{(1 - p^{j}) EV^{f}(a^{f}, s^{f})}_{\text{no meet}} + p^{j} \Big[\int_{\mathcal{A} \times \mathcal{S}} \underbrace{(1^{m}(a^{f}, s^{f}, a^{m}, s^{m}) \max\left\{EW^{f}(a^{f} + a^{m}, \mathbf{s}, \lambda) + \epsilon^{f}_{M}, EV^{f}(a^{f}, s^{f}) + \epsilon^{f}_{S}\right\}}_{\text{male agrees}} + \underbrace{(1 - 1^{m}(a^{f}, s^{f}, a^{m}, s^{m}))\left\{EV^{f}(a^{f}, s^{f}) + \epsilon^{f}_{S}\right\}}_{\text{male declines}} d\widetilde{\mu}_{Sm}(a^{m}, s^{m})\Big]$$

Value at Negotiation Stage

$$\widehat{W}^{S,f}(a, \mathbf{s}, \lambda, \epsilon) = \underbrace{\mathbb{1}^{S,m}(a, \mathbf{s}, \lambda, \epsilon^{m}) \Big(EW^{f}(a, \mathbf{s}, 1/2) + \epsilon_{M}^{f} \Big)}_{\text{husband Satisfied}} + \underbrace{\Big\{ 1 - \mathbb{1}^{S,m}(a, \mathbf{s}, \lambda, \epsilon^{m}) \Big\} \Big[\max \Big\{ EW^{f}(a, \mathbf{s}, \lambda^{m}) + \epsilon_{M}^{f}, EV^{f}(a/2, s^{f}) + \epsilon_{S}^{f} \Big\} - \kappa}_{\text{husband Challenge}} \\ \widehat{W}^{C,f}(a, \mathbf{s}, \lambda, \epsilon) = \underbrace{\mathbb{1}^{S,m}(a, \mathbf{s}, \lambda, \epsilon^{m}) \mathbb{1}^{A,m}(a, \mathbf{s}, \lambda^{f}, \epsilon^{m}) \Big(EW^{f}(a, \mathbf{s}, \lambda^{f}) + \epsilon_{M}^{f} \Big)}_{\text{husband Satisfied and Accept}} \\ + \underbrace{\Big\{ 1 - \mathbb{1}^{S,m}(a, \mathbf{s}, \lambda, \epsilon^{m}) \mathbb{1}^{A,m}(a, \mathbf{s}, \lambda^{f}, \epsilon^{m}) \Big\} \Big(EV^{f}(a/2, s^{f}) + \epsilon_{S}^{f} \Big)}_{\text{otherwise}} - \kappa}_{\text{otherwise}}$$

Measure of same education couples is defined as

 $\mu = \alpha_{HH}\alpha_{LL} - \alpha_{HL}\alpha_{LH}$

where α_{HH} is the ratio of (H,H)-type married households among all married households. See Frankel (2014). **Prace**

		Husband		
		Satisfied	Challenge	
\\/:£a	Satisfied	$\lambda = 1/2$	λ^m or Div.	
vvire	Challenge	λ^f or Div.	Divorce	

- First, they choose Satisfied or Challenge

		Husband		
		Satisfied	Challenge	
\\/:£a	Satisfied	$\lambda = 1/2$	λ^m or Div.	
vvite	Challenge	λ^f or Div.	Divorce	

- First, they choose Satisfied or Challenge
 - if both Accept, set PW $\lambda=1/2$

- First, they choose Satisfied or Challenge
 - If both Challenge, they divorce

		Husband		
		Satisfied	Challenge	
۱۸/:۴۰	Satisfied	$\lambda = 1/2$	λ^m or Div.	
vvite	Challenge	λ^f or Div.	Divorce	

- First, they choose Satisfied or Challenge
 - Now suppose wife chooses Challenge but husband selects Satisfied,
- Second, wife offers λ and husband choose Accept or Reject.
 - husband receives new PW (λ^f) offer from wife, and decides accept or reject the offer
 - λ^f is chosen so that it maximizes the expected value of the wife

Sorting under Optimal Joint Filing Tax with Full Model (S1,CF1) vs Baseline

			Fen	Female	
			enc	e ^{co}	
			0.1457	0.0915	
			[0.1568]	[0.0959]	
Mala	e ^{nc}	0.1505	0.3243	0.1179	
Iviale		[0.1610]	[0.3174]	[0.1134]	
	e ^{co}	0.0876	0.0754	0.2452	
		[0.0917]	[0.0712]	[0.2453]	

Sorting under Optimal Individual Income Tax with Full Model (S2,CF1) vs Baseline

			Fen	Female		
			e ^{nc}	e ^{co}		
			0.1443	0.0882		
			[0.1568]	[0.0959]		
Mala	e ^{nc}	0.1472	0.3247	0.1199		
Iviale		[0.1610]	[0.3174]	[0.1134]		
	e ^{co}	0.0853	0.0764	0.2465		
		[0.0917]	[0.0712]	[0.2453]		

Modeling Married Households

- We model the negotiation process of married households with a NEW approach
- Unitary model or collective model with full commitment
 - allocation rule is fixed (allocation does not reflect outside option values)
 - exogenous divorce
- (Traditional) Collective model with limited commitment
 - adjust decision weight when one of the incentive constraints binds
 - decision weight, which depends on the future variables through Lagrangian multipliers, is a state variable (non-Markovian)
 - all the surplus from the match goes to the one with slack constraint

Modeling Married Households

- We model the negotiation process of married households with a NEW approach
- In our approach, married households decide the current period allocation/divorce through the negotiation every period
 - Pareto weight is no longer a state variable and the model is Markovian
 - trade-off between demanding more favorable deals and the risk of divorce
 - spouses split the surplus of thr match
- Resulting allocation is still on the Pareto frontier
- Improvement of outside value may result in better allocations by larger Pareto weight

Reference i

- AIYAGARI, S. R. (1994): "Uninsured idiosyncratic risk and aggregate saving," The Quarterly Journal of Economics, 109, 659-684.
- AIYAGARI, S. R., J. GREENWOOD, AND N. GUNER (2000): "On the State of the Union," Journal of Political Economy, 108, 213-244.
- ALESINA, A., A. ICHINO, AND L. KARABARBOUNIS (2011): "Gender-based taxation and the division of family chores," American Economic Journal: Economic Policy, 3, 1–40.
- ALM, J., AND L. A. WHITTINGTON (1995): "Income taxes and the marriage decision," Applied Economics, 27, 25-31.
- (1997): "Income taxes and the timing of marital decisions," Journal of Public Economics, 64, 219-240.
- (1999): "For love or money? The impact of income taxes on marriage," *Economica*, 66, 297–316.
- ALVES, C. B. M., C. E. D. COSTA, AND H. A. MOREIRA (2021): "Intrahousehold inequality and the joint taxation of household earnings," Technical report.
- ATTANASIO, O., H. LOW, AND V. SÁNCHEZ-MARCOS (2005): "Female labor supply as insurance against idiosyncratic risk," Journal of the European Economic Association, 3, 755–764.
- (2008): "Explaining changes in female labor supply in a life-cycle model," American Economic Review, 98, 1517–52.
- ATTANASIO, O., AND J.-V. RÍOS-RULL (2000): "Consumption smoothing in island economies: Can public insurance reduce welfare?" European economic review, 44, 1225–1258.
- BADEL, A., AND M. HUGGETT (2017): "The sufficient statistic approach: Predicting the top of the Laffer curve," Journal of Monetary Economics, 87, 1-12.
- BAR, M., AND O. LEUKHINA (2009): "To work or not to work: Did tax reforms affect labor force participation of married couples?" The BE Journal of Macroeconomics, 9.
- BASTANI, S. (2013): "Gender-based and couple-based taxation," International tax and public finance, 20, 653-686.
- BENABOU, R. (2002): "Tax and education policy in a heterogeneous-agent economy: What levels of redistribution maximize growth and efficiency?" Econometrica, 70, 481–517.

Reference ii

BICK, A., AND N. FUCHS-SCHÜNDELN (2017): "Taxation and labour supply of married couples across countries: A macroeconomic analysis," The Review of Economic Studies, 85, 1543–1576.

BLUNDELL, R., M. COSTA DIAS, C. MEGHIR, AND J. SHAW (2016a): "Female labor supply, human capital, and welfare reform," Econometrica, 84, 1705–1753.

- BLUNDELL, R., AND T. MACURDY (1999): "Labor supply: A review of alternative approaches," Handbook of labor economics, 3, 1559–1695.
- BLUNDELL, R., L. PISTAFERRI, AND I. SAPORTA-EKSTEN (2016b): "Consumption inequality and family labor supply," *American Economic Review*, 106, 387–435. (2018): "Children, time allocation, and consumption insurance," *Journal of Political Economy*, 126, S73–S115.
- BOSWORTH, B., AND G. BURTLESS (1992): "Effects of tax reform on labor supply, investment, and saving," Journal of Economic Perspectives, 6, 3-25.
- BRONSON, M. A., AND M. MAZZOCCO (2018): "Taxation and Household Decisions: an Intertemporal Analysis," Technical report, Working Paper.

CHADE, H., AND G. VENTURA (2002): "Taxes and marriage: a two-sided search analysis," International Economic Review, 43, 955-985.

- ------ (2005): "Income taxation and marital decisions," Review of Economic Dynamics, 8, 565-599.
- CHIAPPORI, P.-A., B. FORTIN, AND G. LACROIX (2002): "Marriage market, divorce legislation, and household labor supply," Journal of political Economy, 110, 37–72.
- CHIAPPORI, P.-A., AND M. MAZZOCCO (2017): "Static and intertemporal household decisions," Journal of Economic Literature, 55, 985-1045.
- CHOO, E., AND A. SIOW (2006): "Who marries whom and why," Journal of political Economy, 114, 175-201.
- CONESA, J. C., S. KITAO, AND D. KRUEGER (2009): "Taxing capital? Not a bad idea after all!," American Economic Review, 99, 25-48.
- CONESA, J. C., AND D. KRUEGER (2006): "On the optimal progressivity of the income tax code," Journal of Monetary Economics, 53, 1425-1450.
- CROSSLEY, T. F., AND S.-H. JEON (2007): "Joint taxation and the labour supply of married women: evidence from the Canadian tax reform of 1988," Fiscal Studies, 28, 343–365.
- CUBEDDU, L., AND J.-V. RÍOS-RULL (2003): "Families as shocks," Journal of the European Economic Association, 1, 671–682.

Reference iii

DE NARDI, M. (2004): "Wealth inequality and intergenerational links," The Review of Economic Studies, 71, 743-768.

DEVEREUX, K., AND L. TURNER (2016): "Divorce, Remarriage, and Fertility with On-the-Marriage Search."

EISSA, N. (1995): "Taxation and labor supply of married women: the Tax Reform Act of 1986 as a natural experiment," NBER working paper.

FERNANDEZ, R., N. GUNER, AND J. KNOWLES (2005): "Love and money: A theoretical and empirical analysis of household sorting and inequality," The Quarterly Journal of Economics, 120, 273–344.

FRANKEL, A. (2014): "Taxation of couples under assortative mating," American Economic Journal: Economic Policy, 6, 155-77.

GAYLE, G.-L., AND A. SHEPHARD (2019): "Optimal taxation, marriage, home production, and family labor supply," Econometrica, 87, 291-326.

GUNER, N., R. KAYGUSUZ, AND G. VENTURA (2012): "Taxation and household labour supply," The Review of economic studies, 79, 1113-1149.

(2014): "Income taxation of US households: Facts and parametric estimates," Review of Economic Dynamics, 17, 559-581.

- GUNER, N., M. LOPEZ-DANERI, AND G. VENTURA (2016): "Heterogeneity and Government revenues: Higher taxes at the top?" Journal of Monetary Economics, 80, 69–85.
- HEATHCOTE, J., K. STORESLETTEN, AND G. L. VIOLANTE (2017): "Optimal tax progressivity: An analytical framework," The Quarterly Journal of Economics, 132, 1693–1754.

------ (2019): "Optimal progressivity with age-dependent taxation,"Technical report, National Bureau of Economic Research.

- HOLTER, H., D. KRUEGER, AND S. STEPANCHUK (2017): "How do tax progressivity and household heterogeneity affect laffer curves, "Technical report, Working paper.
- HOLTER, H. A., D. KRUEGER, AND S. STEPANCHUK (2019): "How do tax progressivity and household heterogeneity affect Laffer curves?" Quantitative Economics, 10, 1317–1356.

HONG, J. H., AND J.-V. RÍOS-RULL (2007): "Social security, life insurance and annuities for families," Journal of Monetary Economics, 54, 118-140.

Reference iv

------ (2012): "Life insurance and household consumption," American Economic Review, 102, 3701-30.

HUGGETT, M. (1996): "Wealth distribution in life-cycle economies," Journal of Monetary Economics, 38, 469-494.

HYSLOP, D. R. (2001): "Rising US earnings inequality and family labor supply: The covariance structure of intrafamily earnings," American Economic Review, 91, 755–777.

KARABARBOUNIS, M. (2016): "A road map for efficiently taxing heterogeneous agents," American Economic Journal: Macroeconomics, 8, 182-214.

KAYGUSUZ, R. (2010): "Taxes and female labor supply," Review of Economic Dynamics, 13, 725-741.

KEANE, M. P. (2011): "Labor supply and taxes: A survey," Journal of Economic Literature, 49, 961-1075.

KEHOE, P. J., AND F. PERRI (2002): "International business cycles with endogenous incomplete markets," Econometrica, 70, 907-928.

KINDERMANN, F., AND D. KRUEGER (2014): "High marginal tax rates on the top 1%? Lessons from a life cycle model with idiosyncratic income risk," Technical report, National Bureau of Economic Research.

KLEVEN, H. J., C. T. KREINER, AND E. SAEZ (2009): "The optimal income taxation of couples," Econometrica, 77, 537-560.

KOCHERLAKOTA, N. R. (1996): "Implications of efficient risk sharing without commitment," The Review of Economic Studies, 63, 595-609.

KONRAD, K. A., AND K. E. LOMMERUD (2008): "Love and taxes mand matching institutions," Technical report.

- KRUEGER, D., AND A. LUDWIG (2016): "On the optimal provision of social insurance: Progressive taxation versus education subsidies in general equilibrium," Journal of Monetary Economics, 77, 72–98.
- KYDLAND, F. E., AND E. C. PRESCOTT (1980): "Dynamic optimal taxation, rational expectations and optimal control," Journal of Economic Dynamics and control, 2, 79–91.

LEUNG, C. S. D. (2019): "The Optimal Progressivity of Income Taxes for Couples."

MARCET, A., AND R. MARIMON (2019): "Recursive contracts," Working Paper.

Reference v

- MAZZOCCO, M., C. RUIZ, AND S. YAMAGUCHI (2007): "Labor supply, wealth dynamics, and marriage decisions," University of Wisconsin Economics Department Working paper.
- MENDOZA, E. G., A. RAZIN, AND L. L. TESAR (1994): "Effective tax rates in macroeconomics: Cross-country estimates of tax rates on factor incomes and consumption," Journal of Monetary Economics, 34, 297–323.
- MIRRLEES, J. A. (1971): "An exploration in the theory of optimum income taxation," The review of economic studies, 38, 175-208.
- NISHIYAMA, S., AND K. SMETTERS (2005): "Consumption taxes and economic efficiency with idiosyncratic wage shocks," *Journal of political Economy*, 113, 1088–1115.
- OBERMEIER, T. (2019): "The Marriage Market, Inequality and the Progressivity of the Income Tax,"Technical report, University of Bonn and University of Mannheim, Germany.
- PIKETTY, T., AND E. SAEZ (2013): "Optimal labor income taxation," in Handbook of public economics Volume 5: Elsevier, 391-474.
- REGALIA, F., J.-V. RÍOS-RULL, AND J. SHORT (2010): "What accounts for the increase in the number of single households?" in 2010 Meeting Papers (995), Society for Economic Dynamics.
- RÍOS-RULL, J.-V., S. SEITZ, AND S. TANAKA (2013): "Sex Ratios and Long-Term Marriage Trends," in 2013 Meeting Papers. No. 1349. Society for Economic Dynamics.
- RUPERT, P., AND G. ZANELLA (2015): "Revisiting wage, earnings, and hours profiles," Journal of Monetary Economics, 72, 114-130.
- SHEPHARD, A. (2019): "Marriage market dynamics, gender, and the age gap."
- SIASSI, N. (2019): "Inequality and the marriage gap," Review of Economic Dynamics, 31, 160-181.
- SJOQUIST, D. L., AND M. B. WALKER (1995): "The marriage tax and the rate and timing of marriage," National Tax Journal, 48, 547-558.
- TRIEST, R. K. (1990): "The effect of income taxation on labor supply in the United States," Journal of Human Resources, 491-516.
- VENTURA, G. (1999): "Flat tax reform: A quantitative exploration," Journal of Economic dynamics and Control, 23, 1425-1458.
- WHITTINGTON, L. A., AND J. ALM (1997): "'Til death or taxes do us part: the effect of income taxation on divorce," Journal of Human Resources, 388-412.
- WU, C., AND D. KRUEGER (2021): "Consumption insurance against wage risk: Family labor supply and optimal progressive income taxation," American Economic Journal: Macroeconomics, 13, 79–113.