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This article studies the impact of changing job skills on career earnings dy-
namics for college graduates. We measure changes in the skill content of occupa-
tions between 2007 and 2019 using detailed job descriptions from a near universe
of online job postings. We then develop a simple model where the returns to work
experience are a race between on-the-job learning and skill obsolescence. Ob-
solescence lowers the return to experience, flattening the age-earnings profile in
faster-changing careers. We show that the earnings premium for college graduates
majoring in technology-intensive subjects such as computer science, engineering,
and business declines rapidly, and that these graduates sort out of faster-changing
occupations as they gain experience. JEL Codes: J24, I26.

I. INTRODUCTION

A vast body of work in economics finds that technological
change increases relative demand for educated workers, which
leads to rising wage inequality when the supply of skills grows
more slowly (e.g., Katz and Murphy 1992; Berman, Bound, and
Griliches 1994; Autor, Levy, and Murnane 2003; Acemoglu and
Autor 2011). This race between education and technology (RBET)
framework does a good job of explaining changes in the economic
return to different levels of education in the United States over
the past century (Goldin and Katz 2008; Autor, Goldin, and Katz
2020).1 Yet the RBET literature typically abstracts away from
heterogeneity in the curricular content of college majors and in
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returns to field of study.2 There is little direct evidence linking
changes in skill demands to the specific human capital learned
in school, and the process of skill-biased technological change re-
mains mostly a “black box.”

In this article, we study the impact of changing job skills on
the labor market returns to field of study over a worker’s career.3

Using online job vacancy data collected between 2007 and 2019 by
the employment analytics firm Burning Glass Technologies (BG),
we show that many job ads in 2019 required skills that did not
exist or were highly infrequent in 2007. Similarly, some skills
required in 2007 became obsolete by 2019. How do new job skill
requirements affect earnings for workers who learned older skills
in school?

We construct a new measure of job skill change using the
BG data. Science, technology, engineering, and math (STEM) oc-
cupations have the highest rates of change, followed by some
technology-intensive business occupations in fields such as adver-
tising, market research, and logistics. We combine our occupation-
level measure with the actual jobs held by early career college
graduates to construct a college major–specific measure of job skill
change. College graduates majoring in applied subjects such as
computer science, engineering, and business work in occupations
with much faster rates of job skill change than graduates major-
ing in broader fields like biology, economics, political science, and
history.

We develop a simple model that explores the implications of
job skill change for returns to field of study and work experience
over time. In our model, careers vary in the rate at which new job
tasks replace old job tasks. Workers learn career-specific skills in
school but can also learn on the job, and experience performing a

2. There is a large literature studying heterogeneity in returns to field of study
(e.g., Arcidiacono 2004; Pavan 2011; Altonji, Blom, and Meghir 2012; Carnevale,
Cheah, and Strohl 2012; Kinsler and Pavan 2015; Altonji, Arcidiacono, and Maurel
2016; Kirkeboen, Leuven, and Mogstad 2016). Few studies connect technological
change to changes in the returns to specific skills. One exception is the literature
studying general versus more vocational educational systems across countries,
which generally finds that youth in countries with a more vocational focus have
higher employment and earnings initially, but lower wage growth (Golsteyn and
Stenberg 2017; Hanushek et al. 2017).

3. Lemieux (2014) estimates that occupational choice and matching to field of
study can explain about half of the total return to a college degree, and Kinsler
and Pavan (2015) find that science majors who work in science-related jobs earn
about 30% more than science majors working in unrelated jobs.
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particular task increases productivity in that task. Workers have
higher productivity in older-vintage tasks, but must learn new
tasks from scratch. Rapidly changing careers require workers to
learn many new tasks each year. This diminishes the gains from
learning and lowers the return to experience. The result is a flat-
ter age-earnings profile and a relatively high exit rate of college
graduates from fast-changing careers.

We test the model’s predictions using data from the 2009–
2017 American Community Survey (ACS). College graduates in
all fields experience rapid earnings growth. Yet the relative earn-
ings advantage for graduates majoring in applied subjects such
as computer science, engineering, and business is highest at la-
bor market entry and declines rapidly over time. Flatter wage
growth for technology-intensive majors coincides with their faster
exit from career-specific occupations. This basic pattern holds in
multiple data sources and subsamples and is robust to controlling
for academic ability and to different assumptions about dynamic
selection into full-time work and graduate school.

We also find that STEM majors with higher scores on the
Armed Forces Qualifying Test (AFQT)—a widely used proxy
for academic aptitude—leave STEM careers more often and at
younger ages. Within the framework of the model, this is ex-
plained by differences across fields in the relative return to on-
the-job learning. High-ability workers are faster learners, in all
jobs. However, the relative return to ability is higher in careers
that change less, because learning gains accumulate. Consistent
with this prediction, we find that workers with one standard de-
viation higher ability are 5 percentage points more likely to work
in STEM at age 24, but no more likely to work in STEM by age
40. We also show that the wage return to ability decreases with
age for STEM majors.

Although the BG data only go back to 2007, we calculate a
similar measure of job skill change using a historical data set
of classified job ads assembled by Atalay et al. (2020). The com-
puter and IT revolution of the 1980s coincided with higher rates
of technological change in STEM jobs, and young STEM work-
ers were also paid relatively high wages during this same period.
This matches the pattern of evidence for the 2007–2019 period
and confirms that the relationship between job skill change and
age-earnings profiles is not specific to the most recent decade.

This article makes three main contributions. First, we present
new evidence on declining life cycle returns to career-oriented
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fields of study, and we connect this descriptive pattern to the novel
mechanism of job skill change.4 Applied majors such as computer
science, engineering, and business teach vintage-specific skills
that become less valuable as new skills are introduced to the
workplace over time.5

Second, the results enrich our understanding of the effect of
technology on labor markets. Past work either assumes that tech-
nological change benefits skilled workers because they adapt more
quickly or links a priori theories about the impact of computeriza-
tion to shifts in relative employment and wages across occupations
with different task requirements (e.g., Galor and Tsiddon 1997;
Caselli 1999; Autor, Levy, and Murnane 2003; Firpo, Fortin, and
Lemieux 2011; Deming 2017). We measure changing job task re-
quirements directly and within narrowly defined occupation cat-
egories, rather than inferring them indirectly from changes in
relative wages and skill supplies (Card and DiNardo 2002).6

Third, our results provide an empirical foundation for work
on vintage capital and technology diffusion (e.g., Griliches 1957;
Chari and Hopenhayn 1991; Parente 1994; Jovanovic and Nyarko
1996; Violante 2002; Kredler 2014). In vintage capital models,
the rate of technological change governs the diffusion rate and
the extent of economic growth (Chari and Hopenhayn 1991;
Kredler 2014). We provide direct empirical evidence on this
important parameter, and our results match some of the key

4. Weiss and Lillard (1978) and Lillard and Weiss (1979) compare scientists
with similar levels of work experience and find greater earnings growth for grad-
uates of a more recent vintage.

5. Most existing work focuses on the determinants of college major choice when
students have heterogeneous preferences and/or learn over time about their ability
(e.g., Altonji, Blom, and Meghir 2012; Webber 2014; Silos and Smith 2015; Altonji,
Arcidiacono, and Maurel 2016; Arcidiacono, Aucejo, and Hotz 2016; Ransom 2016;
Leighton and Speer 2020). An important exception is Kinsler and Pavan (2015),
who develop a structural model with major-specific human capital and show that
science majors earn much higher wages in science jobs even after controlling for
SAT scores, high school GPA, and worker fixed effects. Hastings, Neilson, and
Zimmerman (2013) and Kirkeboen, Leuven, and Mogstad (2016) find large effects
of major choice on earnings after accounting for self-selection, although neither
study explores the career dynamics of earnings gains from majoring in STEM
fields.

6. Our article is also related to a large body of literature studying the economics
of innovation at the technological frontier (e.g., Wuchty, Jones, and Uzzi 2007;
Jones 2009). STEM jobs may have higher rates of change because they are heavily
concentrated in the “innovation sector” of the economy (Stephan 1996; Moretti
2012).
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predictions of these classic models.7 Consistent with our findings,
Krueger and Kumar (2004) show that an increase in the rate
of technological change increases the optimal subsidy for general
versus vocational education, because general education facilitates
the learning of new technologies.

This article builds on a line of work studying skill obsoles-
cence, beginning with Rosen (1975).8 Our results are also related
to a small number of studies of the relationship between age and
technology adoption. MacDonald and Weisbach (2004) develop a
“has-been” model where skill obsolescence among older workers
is increasing in the pace of technological change, and they use the
inverted age-earnings profile of architects as a motivating exam-
ple.9 Friedberg (2003) and Weinberg (2004) study age patterns of
computer adoption in the workplace, while Aubert, Caroli, and
Roger (2006) find that innovative firms are more likely to hire
younger workers.

Advanced economies differ widely in the policies and insti-
tutions that support school-to-work transitions for young people
(Ryan 2001). Hanushek et al. (2017) find that countries empha-
sizing apprenticeships and vocational training have lower youth
unemployment rates at labor market entry but higher rates later
in life, suggesting a trade-off between general and specific skills.
Our results show that this trade-off also holds for certain fields of
study in U.S. four-year colleges. Four-year degrees in applied sub-
jects provide high-skilled vocational education, which pays off in
the short run because it is at the technological frontier. However,
technological progress erodes the value of these skills over time.
Thus the long-run payoff to career-oriented majors is still high,
but smaller than short-run comparisons suggest.

7. In Chari and Hopenhayn (1991) and Kredler (2014), new technologies re-
quire vintage-specific skills, and an increase in the rate of technological change
raises the returns for newer vintages and flattens the age-earnings profile. In
Gould, Moav, and Weinberg (2001), workers make precautionary investments in
general education to insure against obsolescence of technology-specific skills.

8. McDowell (1982) studies the decay rate of citations to academic work in
different fields, finding higher decay rates for physics and chemistry compared
with history and English. Neuman and Weiss (1995) infer skill obsolescence from
the shape of wage profiles in “high-tech” fields, and Thompson (2003) studies
changes in the age-earnings profile after the introduction of new technologies in
the Canadian Merchant Marine in the late nineteenth century.

9. Similarly, Galenson and Weinberg (2000) show that changing demand for
fine art in the 1950s caused a decline in the age at which successful artists typically
produced their best work.
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The remainder of the article proceeds as follows. Section II
describes the data. Section III documents changes in job skill
requirements and introduces our measurement approach. Section
IV presents a simple model and a set of empirical predictions.
Section V presents the main results. Section VI studies job task
change in earlier periods. Section VII concludes.

II. DATA

II.A. Job Vacancies

We study changing job requirements using data from BG,
an employment analytics and labor market information firm
that scrapes job vacancy data from more than 40,000 online job
boards and company websites. BG applies an algorithm to the raw
scraped data that removes duplicate postings and parses the data
into a number of fields, including job title and six-digit Standard
Occupational Classification (SOC) code, industry, firm, location,
and education and work experience.

BG translates key words and phrases from job ads into a large
number of unique skill requirements. More than 93% of all job ads
have at least one skill requirement, and the average number is
nine. These range from vague and general (e.g., detail-oriented,
problem-solving, communication skills) to detailed and job-specific
(e.g., phlebotomy, Javascript, truck driving). BG began collecting
data in 2007, and our data span the 2007–2019 period. Hershbein
and Kahn (2018) and Deming and Kahn (2018) discuss the cover-
age of BG data and comparisons to other sources such as the Job
Openings and Labor Force Turnover survey. BG data provide good
coverage of professional occupations, especially those requiring a
bachelor’s degree, but are less comprehensive for occupations with
lower educational requirements.

Following Hershbein and Kahn (2018) we exclude vacancies
with missing employers. This leaves us with a total sample of
22,683,822 vacancies in 2007 and 2019 combined. About 80% come
from 2019, due to the overall increase in online job posting, as
well as a higher share of vacancies with nonmissing employers
and education requirements. There are 15,003 unique skills in
our analysis data set.

We group the large number of distinct skill requirements in
the BG data into a smaller number of distinct and nonexhaus-
tive categories. The Online Appendix provides a full list of skill
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categories and the words and phrases we used to construct them.
We undertake this classification exercise partly to make the data
easier to understand but also to avoid confusing the changing pop-
ularity of certain phrases (e.g., “teamwork” versus “collaboration”)
with true changes in job skills.

Online Appendix Tables A1 and A2 show baseline rates of
job skill requirements in 2007 and 2019, by broad occupation
groups.10 The pattern of job skill requirements broadly lines up
with expectations as well as external data sources such as the Oc-
cupational Information Network (O*NET). Financial knowledge
is more commonly required in management and business occupa-
tions. Art, design, and media occupations are much more likely to
require skills like writing and creativity. Sales and administrative
support occupations are more likely to require customer service.
STEM jobs are much more likely than other categories to require
technical skills such as data analysis, machine learning, and ar-
tificial intelligence, as well as specific software such as Python or
AutoCAD.

II.B. Employment and Earnings

Our main data source for employment and earnings is the
2009–2017 ACS, extracted from the Integrated Public Use Micro-
data Series (IPUMS) 1% samples (Ruggles et al. 2017). We classify
occupations according to the SOC system, and use the 2010 Cen-
sus Bureau definition of STEM occupations.

We also use data from the 1993–2017 waves of the National
Survey of College Graduates (NSCG) and the 1971–2019 Annual
Social and Economic Supplement (ASEC) of the Current Popula-
tion Survey (CPS). The NSCG is a stratified random sample of
college graduates which employs the decennial census as an ini-
tial frame, while oversampling individuals in STEM majors and
occupations. The CPS covers the longest time period but does not
collect data on college major.

10. Comparing Online Appendix Table A1 to Table A2 shows how job skill
requirements have changed over a 10-year period. There are especially large in-
creases in the share of vacancies requiring machine learning and artificial intel-
ligence. This increase is heavily concentrated in STEM occupations, where the
share of vacancies requiring ML/AI skills increased from 3.9% in 2007 to 20.4% in
2019, consistent with the rapid diffusion of automation technologies documented
by Brynjolfsson, Mitchell, and Rock (2018).
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Finally, we include data from the 1979 and 1997 waves of the
National Longitudinal Survey of Youth (NLSY), two nationally
representative longitudinal surveys that include detailed mea-
sures of pre-market skills, schooling experiences and wages. The
NLSY-79 starts with a sample of youth aged 14–22 in 1979, while
the NLSY-97 starts with youth aged 12–16 in 1997. The NLSY-79
was collected annually from 1979 to 1993 and biannually there-
after, whereas the NLSY-97 was always biannual. We restrict our
NLSY analysis sample to ages 23–34 to exploit the age overlap
across waves.

Our main outcome in each data source is the natural log of
inflation-adjusted annual wage and salary income, although our
results are not sensitive to alternative approaches such as using
data on hours worked to compute wage rates. We use respon-
dents’ standardized scores on the AFQT to proxy for ability, fol-
lowing many other studies (e.g., Neal and Johnson 1996; Altonji,
Bharadwaj, and Lange 2012).11 We follow the major classification
scheme for the NLSY used by Altonji, Kahn, and Speer (2016),
and we generate consistent occupation codes across NLSY waves
using the census occupation crosswalks developed by Autor and
Dorn (2013). Because of the lack of consistent coding of occupa-
tions in the NLSY across waves, we are unable to measure skill
change for detailed occupation codes with the same precision as
in the ACS.

III. THE CHANGING SKILL REQUIREMENTS OF WORK

III.A. Descriptive Patterns of Job Change, 2007–2019

Vacancy data are ideal for measuring the changing skill re-
quirements of jobs. Vacancies directly measure employer demand
for specific skills, and vacancy data are sufficiently detailed to
measure changing skill demands within occupations over time.
Because of data limitations, most prior work in economics studies
changes in demand across occupations. Autor, Levy, and Murnane
(2003) show how the falling price of computing power lowered
the demand for routine tasks, causing the number of jobs that

11. Altonji, Bharadwaj, and Lange (2012) construct a mapping of the AFQT
score across NLSY waves that is designed to account for differences in age at
test, test format, and other idiosyncrasies. We take the raw scores from Altonji,
Bharadwaj, and Lange (2012) and normalize them to have mean zero and standard
deviation one.
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are routine-task intensive to decline. Deming (2017) conducts a
similar analysis studying rising demand for social skill–intensive
occupations since 1980. Both studies rely on certain occupations
becoming more or less numerous over time.

One natural way to measure job skill change is to study the
appearance of new skills and the disappearance of old skills over
time. We define old skills as those with at least 1,000 appearances
in 2007 and that either no longer exist or are one-fifth as frequent
in 2019. Similarly, we define new skills as those with at least
1,000 appearances in 2019, and that either did not exist in 2007
or were 20 times more frequent in 2019 compared with 2007.
These thresholds are arbitrary, but the results are not sensitive
to different choices.

Figure I shows the change in the share of job ads that re-
quested old skills and new skills in 2019, by two-digit SOC codes.12

To account for changes over time in the sample of jobs and firms
that post vacancies online, we estimate vacancy-level regressions
of the frequency of each skill category on an indicator for 2007 or
2019, the total number of skills listed in the vacancy (to control
for any trend in the length and specificity of job ads), education
and experience requirements, and occupation (six-digit SOC) by
city (MSA) by employer fixed effects. This compares the same nar-
rowly defined jobs posted in the same labor market by the same
employer a decade later.

There are three main lessons from Figure I. First, the overall
rate of skill turnover is high. Among vacancies posted by the same
firm for the same six-digit occupation, about 29% contained at
least one new skill requirement in 2019.

Second, occupations vary systematically in the amount of skill
turnover. 47 percent of computer and mathematical jobs required
at least one new skill in 2019, compared to less than 20% for
jobs in fields such as education, law, and community and social
services. Other job categories with high rates of skill change in-
clude design/media, business, and management. Third, jobs with
a high share of new skills also experience faster skill obsolescence.
About 16% of computer and mathematical job vacancies in 2007
listed a skill that had become obsolete by 2019. Design/media and

12. To conserve space, we group SOC codes 21 and 23 together as “Legal, Com-
munity, and Social Service,” codes 31 through 39 together as “Health, Protective,
and Personal Services,” codes 41 and 43 as “Sales and Administrative Support,”
and codes 47 to 53 as “Construction, Production, Transportation.”
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Management

Business and Financial

Computer and Mathematical

Engineering and Architecture

Life/Physical/Social Science

Legal, Community, and Social Service

Education and Training

Arts, Design and Media

Healthcare

Health, Protective, and Personal Services

Sales and Administrative Support

Construction, Production, Transportation

-.2 0 .2 .4 .6

Share of job ads with new skill requirements in 2019

Share of job ads with old skill requirements in 2019

FIGURE I

Turnover of Skill Requirements by Occupation Category

The bars show the share of jobs in each occupation category that required an
“old” skill in 2007 (the light gray bars) and a “new” skill in 2019 (the black bars).
Old skills are defined as those with at least 1,000 appearances in 2007 but are
either five times less frequent or do not exist in 2019. New skills are defined as
those with at least 1,000 appearances in 2019 that either did not exist in 2007
or are 20 times more frequent in 2019 than 2007. The values of each bar are
coefficients from a vacancy-level regression of the frequency of old and new skill
requirements on an indicator for 2019, the total number of skills listed in each
vacancy, education and experience requirements, and occupation-city-employer
fixed effects. Occupations are grouped according to two-digit Standard Occupation
Classification (SOC) codes. Some two-digit SOC codes are grouped together to
conserve space (see text for details).

business also have relatively high rates of skill obsolescence, and
education and healthcare the lowest.

Software-intensive jobs have the highest rates of skill
turnover, and about a third of the overall changes shown
in Figure I are driven by changes in requirements for spe-
cific software.13 Business innovation is increasingly driven by

13. Dillender and Forsythe (2019) show that when firms adopt new software
requirements in online job vacancies for office and administrative support occupa-
tions, they also increase education and skill requirements. In results not reported,
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improvements in software, both in the IT sector and in more tradi-
tional areas such as manufacturing (Arora, Branstetter, and Drev
2013; Branstetter, Drev, and Kwon 2018). Moreover, software re-
quirements are specific and verifiable, and thus likely to signal
substantive changes in job skills. The fastest-growing software
skills between 2007 and 2019 include Python, R, Apache Hadoop,
and Revit. Software that was relatively common in 2007 but ob-
solete by 2019 includes QuarkXpress, Adobe Flash, ActionScript,
Solaris, and IBM Websphere.14

Another important contributor to job change is skills that
are not specific software but are clearly related to technological
change. For business and management occupations, the nonsoft-
ware skills that are growing most rapidly include digital market-
ing, social media, and software as a service (SaaS). For technology-
intensive jobs, we see rapid increases in skills such as data science,
machine learning, artificial intelligence, and DevOps. In health-
care, electronic medical records and ICD-10 (a classification sys-
tem for medical billing that changed in 2015) are important con-
tributors, as is point-of-sale system for sales jobs. Likewise, the
obsolete nonsoftware skills include job functions that are being
replaced by technology, such as print advertising, category man-
agement (a concept in retail sales that aligns product categories
between retailers and suppliers), technical translation, and ana-
log design.

III.B. Measuring Changes in the Skill Content of Jobs

We construct a formal measure of changes in the skill content
of jobs between 2007 and 2019. For each year, we collect all the
skill requirements that ever appear in a job vacancy for a partic-
ular occupation. We then calculate the share of job ads in which
each skill appears in each year. This includes zeroes—skills that
are new in 2019 or that existed in 2007 but then disappeared alto-
gether. We compute the absolute value of the difference in shares

we compare our list of fastest-growing software skills to trend data from Stack
Overflow, a website where software developers ask and answer questions and share
information. We find a very close correspondence between the fastest-growing soft-
ware requirements in BG data and the software packages experiencing the highest
growth in developer queries.

14. Horton and Tambe (2019) study the impact of Apple’s announcement that
they would no longer support Adobe Flash and find that demand for the skill died
quickly but that programmer wages did not suffer because they quickly picked up
other technical skills.
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for each skill, and then sum them up by occupation to obtain an
overall measure of change:15

(1)

SkillChangeo =
S∑

s=1

{
Abs

[(
Skills

o

JobAdso

)
2019

−
(

Skills
o

JobAdso

)
2007

]}
.

Conceptually, equation (1) measures the amount of net skill
change in an occupation.

Table I presents the three-digit (SOC) occupation codes
with the highest and lowest measures of SkillChangeo. Online
Appendix Table A3 presents the same results, but for all three-
digit SOC codes. Online Appendix Table A4 shows results for six-
digit SOC codes. We restrict the sample to occupations with at
least 25,000 total vacancies in the three-digit case and 10,000 to-
tal vacancies in the six-digit case. This is for ease of presentation
only, and we include all occupations codes in our analysis. The
vacancy-weighted mean value for SkillChangeo is 3.01, and the
standard deviation for six- (three-) digit occupations is 1.03 (0.93).

The jobs with the highest rates of skill change include com-
puter occupations, engineers, scientists and science technicians,
business and financial specialists, and managers in technology-
intensive fields such as advertising, marketing, and operations.
The jobs with the least amount of skill change include drivers,
teachers, and food preparation and personal service workers.

The professional, high-skilled jobs with the lowest rates of
change are almost entirely in education and healthcare. Many
of these jobs require some form of occupational license or certifi-
cation. In jobs with formal barriers to entry, skill change might
manifest through changes in training rather than changes in skill
requirements. For example, if medical schools change the way they
train doctors over time, it might not be necessary to ask for new
skills in job ads because employers know that younger workers
have learned them in school. Our approach may understate job
change in these cases. However, the main results are robust to
excluding education and healthcare jobs entirely.

15. To account for differences over the decade in the frequency of job vacancies
and skills per vacancy, we multiply equation (1) by the ratio of total skills in 2007
to total skills in 2019, for each occupation. This accounts for compositional changes
in the BG data and prevents us from confusing changes in the frequency of job
postings with changes in the average skill requirements of any given job posting.
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TABLE I
OCCUPATIONS WITH THE HIGHEST AND LOWEST RATES OF SKILL CHANGE

Occupation title
SOC
code

Rate of
skill

change

Panel A: Fastest-changing professional occupations
Computer occupations 151 4.795
Advertising, marketing, and sales managers 112 4.043
Sales representatives, services 413 3.923
Operations specialties managers 113 3.913
Life, physical, and social science technicians 194 3.910
Electronic equipment mechanics 492 3.828
Engineers 172 3.772
Financial specialists 132 3.751
Business operations specialists 131 3.666
Supervisors of installation, maintenance, and repair workers 491 3.628
Supervisors of sales workers 411 3.546
Life scientists 191 3.544
Mathematical science occupations 152 3.511
Top executives 111 3.490
Media and communication workers 273 3.469
Supervisors of office and administrative support workers 431 3.451
Secretaries and administrative assistants 436 3.435
Physical scientists 192 3.418

Panel B: Slowest-changing professional occupations
Motor vehicle operators 533 1.269
Other food preparation and serving related workers 359 1.375
Cooks and food preparation workers 352 1.377
Personal appearance workers 395 1.396
Building cleaning and pest control workers 372 1.591
Primary and secondary school teachers 252 1.639
Food processing workers 513 1.715
Baggage porters, bellhops, and concierges 396 1.731
Entertainment attendants and related workers 393 1.747
Material moving workers 537 1.749
Food and beverage serving workers 353 1.768
Other teachers and instructors 253 1.781
Grounds maintenance workers 373 1.792
Other transportation workers 536 1.824
Textile, apparel, and furnishings workers 516 1.859
Other personal care and service workers 399 1.946
Postsecondary teachers 251 2.046
Metal workers and plastic workers 514 2.146

Notes. This table uses online job vacancy data from Burning Glass Technologies (BG) to calculate the rate
of skill change between 2007 and 2019 for each three-digit SOC code. The average value of the skill change
measure is 3.01 (see the text for details).
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FIGURE II

New Skills Required by Job Experience

This figure shows how new skill requirements change along with required years
of experience in computer and engineering occupations (defined as SOC two-digit
codes 15 and 17), compared with all other occupations. Each point in the figure is
the coefficient (and associated 95% confidence interval) on the relevant experience
category from a vacancy-level regression of the frequency of new skill requirements
on experience categories, the total number of skills listed in the vacancy, education
requirements, and employer-by-MSA fixed effects. New skills are defined as those
with at least 1,000 appearances in 2019 that either did not exist in 2007 or are
20 times more frequent in 2019 than 2007.

Table I suggests that workers in technology-intensive fields
may have to acquire more new skills over the course of their career
than do workers in other occupations. To investigate this further,
we study how job skills change with experience requirements.
First we replicate the calculation of the skill change measure in
equation (1), restricting the sample to jobs that require zero to
two years of work experience. The occupation-level correlation
between the two measures is 0.94.

Second, we directly study changes in job skill requirements
by work experience. Figure II presents results from a regression
of new skills (defined as in Section III.A) on years of experience
required, controlling for education requirements, the number of
skills in each posting (since ads for more experienced workers
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might be longer and more complex), and firm-occupation-MSA
fixed effects. This shows how job skill requirements change with
work experience, across vacancies listed by the same firm in the
same labor market. We compare computer, mathematical, engi-
neering, and architecture jobs to all other occupations.

As in Figure I, technology-intensive jobs are more likely than
others to require new skills. However, the pattern by experience
requirements is quite different. The share of technology-intensive
jobs requiring new skills is roughly constant at around 41%, for
entry-level jobs as well as jobs requiring 12 or more years of expe-
rience. This means that experienced STEM workers seeking em-
ployment in 2019 are often required to possess skills that were not
required when they entered the labor market in 2007 or earlier.
In contrast, the share of other jobs requiring new skills declines
from 29% for entry-level jobs to 24% for jobs that require four or
more years of experience.

III.C. College Majors and Career Paths

Job skills change much faster in technology-intensive careers.
What is the role of education in teaching new, highly demanded
skills? We study career choices using data from the ACS, which
has collected information on the major field of study for bachelor’s
degree recipients since 2009. Figure III presents information on
the early career occupations of college graduates by major. We
restrict the sample to full-time workers between the aged of 23
and 26 with nonmissing occupations.

Panel A shows the distribution of occupations for computer
science majors. Of these, 58% work in a computer-related occupa-
tion, compared to only 3% for the second and third most common
jobs (business operations specialists and other management occu-
pations). This suggests that computer science majors learn specific
skills in school that are relevant in computer-related jobs. Panel
B shows similar results for engineering majors; 42% of them work
in engineering jobs, and another 13% in computer occupations. In
contrast, life sciences and social sciences majors (Panels C and D,
respectively) go into a broad range of jobs, with no single three-
digit occupation code accounting for more than 10% of graduates
in either case. Online Appendix Figure A1 shows results for other
major categories. Business and education majors are concentrated
in a small number of occupations, whereas other majors (such as
psychology and humanities) are dispersed across a wide range of
jobs.
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FIGURE III

Early Career Occupations of College Graduates, by Major

Each panel shows frequency distributions of the five most common occupations
held by full-time working college graduates age 23–26 in the 2009–2017 waves of
the American Community Survey who majored in the indicated subject. Occupa-
tions are defined here as three-digit SOC codes. The “Other” category comprises all
three-digit SOC codes other than the top five. Social science majors are economics,
political science, sociology, and similar subjects.

Figure III shows that college majors vary in their specificity,
with some offering narrow preparation for a few careers and some
being much broader. We can combine this information on career
paths with our measure SkillChangeo in equation (1) to compute
a data-driven measure of expected job skill change by college
major. As above, we restrict the ACS sample to full-time work-
ers aged 23–26 with nonmissing occupations, and then construct
a weighted average of SkillChangeo by college major (which we
call SkillChangeM

O ), based on the actual jobs held by early career
graduates.

The results from this calculation are in Table II. For ease
of presentation we restrict the sample to majors with at least
1,000 respondents. The two majors with the fastest rate of skill
change are computer science and engineering, followed by busi-
ness, communications, and architecture. Figure III shows that
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TABLE II
MAJOR CATEGORIES IN ORDER OF SKILL CHANGE

Major category Rate of skill change

Computer and information sciences 4.06
Engineering 3.52
Military technologies 3.33
Engineering technologies 3.31
Business 3.30
Construction services 3.27
Communications 3.13
Communication technologies 3.11
Architecture 3.06
Social sciences 2.98
Environment and natural resources 2.89
Law 2.88
Transportation sciences and technologies 2.86
Mathematics and statistics 2.85
Fine arts 2.84
Physical sciences 2.84
Electrical and mechanic repairs and technologies 2.83
Agriculture 2.82
Area, ethnic, and civilization studies 2.80
Biology and life sciences 2.76
English language, literature, and composition 2.72
Interdisciplinary and multidisciplinary studies (general) 2.72
Philosophy and religious studies 2.71
Public affairs, policy, and social work 2.71
History 2.69
Linguistics and foreign languages 2.67
Psychology 2.65
Liberal arts and humanities 2.62
Nuclear, industrial radiology, and biological technologies 2.62
Criminal justice and fire protection 2.59
Physical fitness, parks, recreation, and leisure 2.58
Precision production and industrial arts 2.55
Library science 2.55
Medical and health sciences and services 2.52
Family and consumer sciences 2.49
Theology and religious vocations 2.37
Cosmetology services and culinary arts 2.28
Education administration and teaching 1.84

Notes. This table uses online job vacancy data from Burning Glass Technologies (BG) to calculate the rate
of skill change between 2007 and 2019 for each three-digit SOC code. The average value of the skill change
measure is 3.01. See the text for details on the construction of the skill change measure.
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students who major in these subjects go into a narrow range
of technology-intensive careers with high rates of change (as
shown in Table I). At the same time, less than 50% of engineer-
ing majors work in engineering occupations. This follows other
recent evidence showing that STEM graduates work in a wide
range of different occupations and careers (National Academy of
Engineering 2018).

In contrast, while life scientist is a fast-changing career, only
a small number of life science majors actually become scientists,
leading to a major ranking around the sample average. This is
also true of majors such as social science, history, and psychology,
where students pursue a broad range of careers. Education ma-
jors rank at the bottom, because most education majors become
teachers and teaching is a slowly changing career.

The patterns of career choice by college major suggest that
some college graduates—particularly computer science and engi-
neering majors—learn specific skills that are in high demand but
also changing rapidly over time. In the next section we present a
conceptual model that explores the implications of job skill change
for life cycle earnings and career trajectories.

IV. MODEL

Consider a perfectly competitive labor market with many ca-
reers j (we can think of these as industry-occupation pairs, fol-
lowing Neal 1999 and Pavan 2011). Each career contains a large
number of identical profit-maximizing firms that produce a sin-
gle final good Yjt in each year by aggregating output over many
tasks. Labor is the only factor of production. Workers are paid
their marginal product and supply one unit of labor in each year
t to a career j to maximize earnings.

Two features distinguish our framework from a standard ap-
proach. First, worker productivity is determined by a learning
function over job tasks. Workers choose a field of study, which cor-
responds to a unique career j. Workers then choose a sequence of
careers j∗ over their lifetime to maximize lifetime earnings. Work-
ers learn some job tasks for career j∗ in school, but they also learn
on the job.

Second, the production function for career j varies by year
according to an obsolescence parameter, which we call �j. We can
think of �j ∈ [0, 1] as the share of job tasks in career j that are
new in each year.
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We can express a worker’s year t earnings in their chosen
career j∗ as the product of gains from learning and losses from
obsolescence:

(2) w j∗

[(
Hj∗ + (t − 1)a

)
︸ ︷︷ ︸

Learning

(
(1 − � j∗ )t−1

)
︸ ︷︷ ︸

Obsolescence

]
.

Each career pays an exogenous time-invariant wage wj, which
may reflect differences in product market demand or other factors.
Hj∗ is the stock of human capital that each worker initially learns
in school, so the first-period wage is just w j∗ Hj∗ . Workers become
more productive in year t + 1, and their productivity gain is in-
creasing in ability a. For simplicity, we assume that the impact of
ability on learning is linear in t, although our results generalize
to a broader class of functions where ability augments learning.

All of our key empirical predictions can be illustrated with
a two-period, two-career model where initial human capital is
exogenous, so we focus on that simple case here. Online Appendix
B develops the N-career, T-period case and endogenous sorting
into college majors.

In the two-period, two-career case, we can write the worker’s
maximization problem as:

max
j1, j2

w j1 Hj1 + w j2

(
Hj2 + a

) (
1 − � j2

)
,

where jt represents an individual’s career choice in period t.16

Workers are exogenously assigned an initial vector of human cap-
ital

−→
H = (H1, H2). Let j1∗ and j2∗ represent the optimal career

choice in period 1 and 2, which gives us the following career “de-
mand” functions:

j1∗ =
{

1 if H1w1 > H2w2
2 if H1w1 � H2w2

,

j2∗ =
{

1 if w1
(
H1 + a

)(
1 − �1

)
> w2

(
H2 + a

)(
1 − �2

)
2 if w1

(
H1 + a

)(
1 − �1

)
� w2

(
H2 + a

)(
1 − �2

) .

16. We implicitly assume that on-the-job learning is perfectly transferable.
This is purely for convenience, and all of our key predictions are robust to assuming
partial transferability of learning across careers.
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Our first prediction is that wage growth is lower in careers
with higher rates of skill change �j. To see this, define the ratio
of second-period earnings between two careers as w1(H1+a)(1−�1)

w2(H2+a)(1−�2) .
The derivative of this expression with respect to the ratio of skill
change between careers �1

�2
is:

(3)
dw1(H1+a)(1−�1)

w2(H2+a)(1−�2)

d�1
�2

= −w1
(
H1 + a

)
w2

(
H2 + a

) < 0

Equation (3) shows that the earnings gain from working in
career 1 relative to career 2 is decreasing in the relative rate of
skill change between careers �1

�2
.17 Intuitively, careers with high

rates of obsolescence require workers to learn many new tasks
each year, which diminishes learning gains and lowers the returns
to experience. We measure �j empirically using SkillChangeo from
equation (1).

Slower wage growth in higher-�j careers suggests that some
workers might switch careers between periods 1 and 2. Formally,
switching from career 1 to career 2 between periods 1 and 2 will
happen when w1H1 > w2H2 but [w1(H1 + a)(1 − �1)] < [w2(H2 + a)
(1 − �2)].

Thus our second prediction is that some workers will switch
from fast-changing to slow-changing careers, and switchers are
positively selected on ability. To see this, let H1 = H2 = H̄, so that
workers have the same human capital in each career. In this case,
switching from 1 to 2 will occur when w1 > w2 and [w1(H̄ + a)(1 −
�1)] < [w2(H̄ + a)(1 − �2)]. Rearranging terms, we can combine
these inequalities into a single expression:

(4)
1 − �2

1 − �1
>

w1

w2
> 1.

Equation (4) shows that a worker with equal endowments
of initial human capital will switch from career 1 to career 2 in
period 2 if and only if career 1 has both a higher rate of skill
change �j and a higher first-period wage offer. The difference in

17. Another way to see this is by differentiating the period-2 earnings equation

with respect to �j, which yields
dw j2 (Hj2 +a)(1−� j2 )

d� j
= −w j2 (Hj2 + a) < 0.
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the rate of skill change between careers 1 and 2 also needs to be
large enough to offset exogenous wage differences across fields.18

Although we do not explicitly model preferences, heterogene-
ity in preferences for nonwage amenities across fields would cause
some workers to switch into a different career despite receiving a
lower wage offer. More generally, endogenous sorting means that
observed wage differences across fields will be smaller than the
true difference in skills. Thus sorting across careers will tend to
compress measured wage differences.

To see why switchers are positively selected on ability, note
that:

lim
a−>0

w1
(
H1 + a

)(
1 − �1

)
w2

(
H2 + a

)(
1 − �2

) = w1 H1
(
1 − �1

)
w2 H2

(
1 − �2

)(5)

lim
a−>∞

(
H1 + a

)(
1 − �1

)
(
H2 + a

)(
1 − �2

) =
(
1 − �1

)
(
1 − �2

) .(6)

Equations (5) and (6) show that wages and initial human cap-
ital become a less important determinant of career switching as
ability increases. In the limit, very high–ability workers will al-
ways switch from a fast-changing career with higher initial wages
to a slow-changing career with lower initial wages, regardless of
their human capital endowments.19

In the model, high-ability workers are faster learners in all
fields. However, the relative return to ability is actually lower
in faster-changing careers, because learning gains do not accu-
mulate. Thus, among workers initially in fast-changing careers,
those with higher ability will be more likely to switch into slower-
changing careers.20 We test this prediction empirically using

18. This result easily generalizes to cases where H1 > H2. The necessary
inequalities instead become w1 H1

w2 H2
> 1 and 1−�2

1−�1
>

w1(H1+a)
w2(H2+a) . In this case, switching

from career 1 to career 2 requires �1 to be greater than �2 by enough to offset any
initial wage or human capital advantage for w1H1 relative to w2H2.

19. Another way to see this is to differentiate the period-2 earnings equation

by �j and a, which yields
d2w j2 (Hj2 +a)(1−� j2 )

d� j da = −w j2 < 0.

20. The model does not take a stand on differences in the initial wage pre-
mium across careers. Some careers might pay higher wages to new graduates be-
cause they are in industries with high labor demand, which would lead to endoge-
nous sorting of high-ability workers into these careers. Many other studies have
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longitudinal data from the NLSY and direct measures of worker
ability.

Our stylized model highlights the importance of skill obsoles-
cence for earnings dynamics but does not consider other determi-
nants of wage growth across careers such as heterogeneous career
ladders across occupations or differences in training opportunities
across fields. These factors surely also contribute to some of the
patterns we document below.

V. RESULTS

V.A. Earnings Growth in Rapidly Changing Careers

The first prediction of our framework is that wage growth
will be relatively slower in careers with higher rates of job skill
change. We test this prediction in the ACS data by estimating:

ln (earn)it = αit +
A∑
a

βaait +
A∑
a

γa

(
ait ∗ SkillChangeM

O

)

+ δXit + θt + εit,(7)

where SkillChangeM
O is taken directly from Table II and is the

weighted average value of SkillChangeo in the occupations held
by early career college graduates in each major field of study. ait
is an indicator variable that is equal to one if respondent i in year
t is either age in two-year bins a, going from ages 23–24 to ages
49–50.

The γ coefficients can be interpreted as the wage premium
to working in a faster-changing occupation at any given age. The
X vector includes controls for sex-by-age indicators, race and eth-
nicity, citizenship, veteran status, and an indicator for having any
graduate school education. θ t represents year fixed effects, and εit
is an error term.

Our main analysis sample includes all four-year college grad-
uates aged 23–50 in the ACS and CPS, and aged 25–50 in the

found that STEM majors are positively selected on ability (e.g., Altonji, Blom, and
Meghir 2012; Kinsler and Pavan 2015; Arcidiacono, Aucejo, and Hotz 2016). Online
Appendix B explicitly works through the case of ability selection into majoring in
STEM.
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FIGURE IV

Declining Wage Returns to Majoring in a Fast-Changing Field

The figure plots coefficients and 95% confidence intervals from three separate
estimates of equation (7), a regression of log annual wage and salary income on
interactions between two-year age bins and the average skill change measure �j,
which is computed for each college major using the occupation distribution for early
career college graduates. The sample is all four-year college graduates aged 23–50
in the 2009–2017 American Community Survey, with some majors excluded as
indicated in the legend. The skill change measure is constructed using 2007–2019
online job vacancy data from Burning Glass Technologies. See the text for details.
The standard deviation of �j is 1.01. The regression also includes controls for sex-
by-age indicators, age and year fixed effects, race and ethnicity, citizenship, veteran
status, and an indicator for having any graduate school education. Standard errors
are clustered at the major-by-age level.

NSCG who are not living in group quarters and not currently
enrolled in school.21

Figure IV presents estimates of the γ coefficients by age and
the associated 95% confidence intervals. Standard errors are clus-
tered at the major-by-age level. The solid line shows results for the
full sample. We find a gradual decline in the returns to majoring
in a fast-changing subject. A major with a one standard deviation

21. Results that include older workers are very similar. The sample design of
the NSCG resulted in very few college graduates aged 23–24, so we exclude this
small group from our analysis.
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higher rate of skill-change pays 30% more at age 24, compared
to 20% more at age 50. A one standard deviation difference in
SkillChangeM

O is approximately equal to the difference between
computer science and engineering majors and more general ma-
jors such as biology, history, and English.

The dashed line in Figure IV shows a much steeper life cycle
pattern when we exclude education majors. In this case, the re-
turns to majoring in a faster-changing field decline from 52% at
age 24 to 16% at age 50. While education majors constitute only
9% of our analysis sample, excluding them changes the results
markedly for two reasons. First, teaching is by far the slowest-
changing occupation in which most workers are college graduates
(see Online Appendix Table A3 for details), and nearly two-thirds
of education majors become teachers. Second, age-earnings pro-
files for public school teachers are based on set salary scales rather
than market forces, obscuring the economic impact of any true
skill obsolescence for older workers.

Our results are robust to excluding outliers in both directions.
The dotted line in Figure IV shows that excluding all of the most
“vocational” majors—engineering, computer science, health, and
education—leads to a very similar set of results when only edu-
cation is excluded. In addition, we find very similar results to the
dashed and dotted lines when we restrict the sample to men only,
who constitute only about 20% of education majors.

We can also study life cycle earnings patterns directly by
estimating the returns to college major at different ages. We do
this by estimating regressions of the general form:

ln (earn)it = αit +
A∑
a

βaait +
A∑
a

γa (ait ∗ MAJORit)

+ζ Xit + θt + εit(8)

with the same sample, controls, and confidence intervals as above.
Figure V shows results for four different types of college majors:
computer science and engineering (combined), business, life and
physical sciences, and social sciences.22 Relative to all other major

22. Computer science also includes information sciences. Engineering includes
all subbranches of engineering (civil, electrical, mechanical, chemical, etc.). Busi-
ness includes accounting, management, finance, marketing, human resources, hos-
pitality management, and others. Life sciences is mostly biology but also includes
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FIGURE V

Relative Wage Returns to College Majors over the Life Cycle

The figure plots coefficients and 95% confidence intervals from an estimate of
equation (8), a regression of log annual wage and salary income on interactions
between two-year age bins and indicators for college major. The sample is all
four-year college graduates aged 23–50 in the 2009–2017 American Community
Survey. Life and physical science majors are biology, chemistry, physics, and sim-
ilar subjects. Social science majors are economics, political science, sociology, and
similar subjects. The left-out category is all other majors. The regression also
includes controls for sex-by-age indicators, age and year fixed effects, race and
ethnicity, citizenship, veteran status, and an indicator for having any graduate
school education. Standard errors are clustered at the major-by-age level.

groups (including education), computer science and engineering
majors earn about 45% more early in their career, but only 33%
more by age 50. The earnings advantage for business majors de-
clines from around 38% initially to 20% by age 50. In contrast, the
earnings premium grows over time for life and physical sciences
and social sciences majors.23

environmental science, zoology, neuroscience, and others. Physical sciences in-
cludes chemistry, physics, geology, and similar subjects. Social science includes
economics, political science, sociology, international relations, geography, and other
similar majors.

23. The rapid growth in life cycle earnings for life and physical sciences majors
is partly due to their very high rate of graduate school attendance. When restricting
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This basic pattern of an initial earnings advantage but slower
growth for fast-changing majors is robust to a variety of differ-
ent specifications, samples, and data sources.24 Online Appendix
Figure A3 presents similar results using the NSCG, which covers
the 1993–2017 period.

Online Appendix Table A5 presents population-weighted
mean earnings by college major and age in levels, using the ACS.
In levels, earnings growth is rapid for all college graduates, re-
gardless of major. However, while computer science, engineering
and business majors are earning substantially more in their mid-
twenties than do life/physical sciences and social sciences majors,
this advantage is greatly diminished by age 40.

Computer science and engineering majors score modestly
higher on tests of academic ability than do other majors.25 This
suggests that the high labor market return to a STEM degree
might be confounded by differences in academic ability across
majors (e.g., Arcidiacono 2004; Kinsler and Pavan 2015). How-
ever, Online Appendix Table A7 shows that controlling for AFQT
directly in the NLSY barely changes the return to majoring in
computer science or engineering.

One potential concern is that college graduates in fast-
changing majors are more likely to work (or to work full-time)
early in their careers, whereas others might choose to attend grad-
uate school or take internships and other learning opportunities.26

the ACS sample to respondents with exactly a BA, we find similar results for
the other three major groups (all of whom have similar rates of graduate school
attendance) but slower growth for life and physical sciences majors.

24. Hunt (2015) finds a wage penalty for immigrants relative to natives
within engineering that is linked to English language proficiency and argues that
imperfect English may be a barrier to occupational advancement. To the extent
that immigrants are a better substitute for younger workers, rising immigration
over time will tend to depress relative wages for younger workers, which works
against our findings. Online Appendix Figure A2 shows that our results are very
similar when we exclude immigrants, or immigrants who came to the United
States after age 18. In addition, we find that the share of college graduates in
different fields of study has not changed very much over the cohorts we study in
the ACS.

25. Online Appendix Table A6 presents results that regress AFQT score on
indicators for major type and major interacted with NLSY wave. We find that
STEM majors of both type score about 0.08 standard deviations higher on the
AFQT than non-STEM majors, but that this has not changed significantly across
NLSY waves.

26. Online Appendix Figures A4 and A5 show that college graduates with
technology-intensive majors are somewhat more likely to work full-time and some-
what less likely to attend graduate school.
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Self-selection could potentially overstate the early career returns
to some majors, depending on which graduates choose to work and
which choose other paths.

We attempt to bound the importance of self-selection by im-
puting missing wages for college graduates who are in school
or working part-time, with a variety of assumptions about
differential selection by college major.27 The results from these
imputations are in Online Appendix Figures A6 and A7.28 Im-
puting very high early career earnings for other majors modestly
flattens the life cycle profile for computer science and engineering
majors, but the broad pattern still holds. The results for business
degrees, however, are somewhat sensitive to assumptions about
missing earnings.

V.B. Earnings Growth by Occupation

The results so far have focused exclusively on differences by
college major. However, we can also study earnings patterns by
age in the returns to working in different occupations, regardless
of major.

Figure VI presents estimates like equation (8), except that age
is interacted with indicators for working in a STEM occupation,
using the ACS, the NSCG, and the CPS (which does not include
information on college major).29 Standard errors are clustered at

27. We first collapse different moments of the earnings distribution in ACS
data by age, year, race/ethnicity, gender, citizenship, veteran status, educational
attainment, and college major. We impute these different moments for college
graduates in the analysis above who are either not working at all, not working
full-time, or currently enrolled in school.

28. Online Appendix Figure A6 imputes missing earnings for college grad-
uates of all ages, but differently by major. Even if we assume that the college
graduates who are enrolled in school or not working full-time had 25th percentile
earnings in computer science, engineering, or business and 90th percentile earn-
ings for other majors, the basic pattern of declining returns does not change. Online
Appendix Figure A7 presents imputations of dynamic selection, where we assume
a different selection pattern by age. Our most demanding specification imputes
25th percentile earnings to fast-changing majors and 90th percentile earnings
to all other majors before the age of 30, but median earnings for all graduates
thereafter.

29. SOC codes are not consistent for the years covered by all three data sources.
For this reason, we adopt the “occ1990dd” classification of occupations defined by
Autor and Dorn (2013) and then use their crosswalk to map occupations to the
2010 Census Bureau classification of STEM jobs. This mapping back to the 1970s
does not work as well for business occupations, so we focus on STEM occupations
in Figure VI.
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FIGURE VI

Life Cycle Returns to Working in a STEM Occupation across Three Data Sources

The figure plots coefficients and 95% confidence intervals from three separate
regressions of log annual wage and salary income on interactions between two-
year age bins and indicators for working in a STEM occupation. STEM occupations
are defined using the 2010 Census Bureau classification, and we map backward
to earlier years using the “occ1990dd” crosswalk developed by Autor and Dorn
(2013). The three data sources are the 2009–2017 American Community Survey,
the 1993–2017 National Survey of College Graduates, and the 1973–2019 Current
Population Survey. The sample is all four-year college graduates aged 23–50 in the
ACS and CPS, and aged 25–50 in the NSCG. The regression also includes controls
for sex-by-age indicators, age and year fixed effects, race and ethnicity, citizen-
ship, veteran status, and an indicator for having any graduate school education.
Standard errors are clustered at the occupation-by-age level.

the occupation-by-age level. In all three data sources, we find that
STEM jobs pay relatively higher wages to younger workers.

To disentangle majors from occupations, we estimate a ver-
sion of equation (8) that adds interactions between age categories
and indicators for being employed in a STEM occupation, as well
as three-way interactions between age, a computer science or en-
gineering major, and STEM employment. This allows us to sepa-
rately estimate the relative earnings premia for computer science
and engineering degree-holders working in non-STEM jobs, for
other majors working in STEM jobs, and then for the union of
these two categories.
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FIGURE VII

Declining Returns for CS/Engineering Jobs, not Majors

The figure plots coefficients and 95% confidence intervals from an estimate of
equation (8), a regression of log annual wage and salary income on interactions
between two-year age bins and indicators for college major. The regression also
adds major-by-occupation interactions (plotted above). The sample is all four-year
college graduates aged 23–50 in the 2009–2017 American Community Survey.
Computer and engineering jobs are defined as SOC two-digit codes 15 and 17.
The regression also includes controls for sex-by-age indicators, age and year fixed
effects, race and ethnicity, citizenship, veteran status, and an indicator for having
any graduate school education. Standard errors are clustered at the occupation-
by-major-by-age level.

The results are in Figure VII. Declining relative returns is
a feature of STEM jobs, not majors. The earnings premium for
non-STEM majors in STEM occupations starts off near 40%, but
declines to 20% within a decade. In contrast, the relative earnings
advantage grows over time for computer science and engineer-
ing majors working in non-STEM occupations. The STEM major
premium could reflect differences in unobserved ability across ma-
jors, or differences in other job characteristics (e.g., Kinsler and
Pavan 2015).

V.C. Employment Patterns by College Major

The second prediction of the model is that college graduates
in fast-changing careers will exit them over time, as their skills
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FIGURE VIII

Occupational Sorting by Age for Engineering/CS Majors

The figure plots coefficients from three separate regressions of indicators for
working in the labeled occupation category on two-year age bins plus controls for
sex-by-age indicators, year fixed effects, race and ethnicity, citizenship, veteran
status, and an indicator for having any graduate school education. The sample
is all full-time working four-year college graduates aged 23–50 in the 2009–2017
American Community Survey, who also majored in computer science or engineer-
ing. Computer and engineering occupations are two-digit SOC codes 15 and 17.
Non-STEM management is two-digit SOC code 11, except a small number of codes
indicating management in computer or engineering fields. See the text for details.

become obsolete. We can show this sorting pattern directly by
looking at the occupations held by computer science, engineering,
and business majors at each age.

Figure VIII shows that the share of computer science
and engineering majors working in computer and engineering
occupations declines from 59% at age 26 to 41% by age 50. This
decline of 18 percentage points is almost entirely offset by in-
creased employment in non-STEM management occupations.30

30. We classify computer and information systems managers (SOC 11-3021),
architectural and engineering managers (SOC 11-9041), and natural sciences man-
agers (11-9121) as STEM occupations in this figure and all other results. Thus the
shift into management over time is not driven by STEM workers shifting into
STEM-related management.
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Online Appendix Figure A8 shows the same pattern for business
majors, who shift into management as they age.

Online Appendix Figure A9 tests the sorting prediction di-
rectly by estimating a version of equation (8) with SkillChangeo
as the outcome and major-by-age interactions. For computer sci-
ence and engineering majors, the average rate of skill change in
the jobs they hold drops by about 0.2 standard deviations from
ages 26 to age 50. The drop for business majors is about 0.15
standard deviations over the same period. In contrast, there is no
change for social science majors.

V.D. High-Ability Workers Sort Out of STEM over Time

The model also predicts that high-ability workers are more
likely to sort out of fast-changing careers over time. The intuition
is that the return to being a fast learner is greater in jobs with
lower rates of skill change. Put another way, jobs with high rates of
skill change erode the advantage gained by learning more skills in
each period on the job. We test this by using the NLSY to estimate
regressions of the form:

yit = αit +AGEit + βST EMi + γ AFQTi + θ AGEi ∗ AFQTi

+ δXit + εit,(9)

where AGEit is a linear age control for worker i in year t (scaled
so that age 23 = 0, for ease of interpretation), STEMi is an indi-
cator for STEM major, and AGEi ∗ AFQTi is the interaction be-
tween age and cognitive ability. The Xit vector includes controls for
race, years of completed education, an indicator variable for NLSY
wave, year fixed effects, and cognitive, social, and noncognitive
skills. Observations are in person-years and we cluster standard
errors at the individual level. Due to a lack of consistent coding of
business occupations over time, we focus here only on computer
science and engineering majors entering STEM occupations.

The results are in Table III. The outcome in column (1) is an
indicator for working in a STEM occupation. Column (1) presents
the baseline estimate of equation (10). We find a positive and
statistically significant coefficient on AFQTi, but a negative and
statistically significant coefficient on the interaction term AGEi ∗
AFQTi. This confirms the prediction that high-ability workers sort
out of faster-changing STEM careers over time. The results imply
that a worker with cognitive ability one standard deviation above
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TABLE III
STEM MAJORS, RELATIVE WAGES, AND ABILITY SORTING IN THE NLSY

In a STEM job ln(wages)

(1) (2) (3) (4)

STEM major 0.331∗∗∗ 0.169∗∗∗ 0.129∗∗∗ 0.083
(0.019) (0.033) (0.024) (0.070)

Cognitive skills (AFQT, standardized) 0.049∗∗∗ 0.038∗∗∗ 0.084∗∗∗ 0.070∗∗∗
(0.007) (0.006) (0.018) (0.018)

Age (linear) 0.003 0.000 0.021∗∗∗ 0.021∗∗∗
(0.003) (0.003) (0.006) (0.006)

Age * AFQT − 0.003∗∗ − 0.003∗∗∗ 0.010∗∗∗ 0.012∗∗∗
(0.001) (0.001) (0.002) (0.003)

Age * STEM major 0.014∗∗ 0.009
(0.005) (0.008)

STEM major * AFQT 0.099∗∗ 0.087
(0.030) (0.060)

STEM major * AFQT * Age − 0.000 − 0.017∗
(0.004) (0.008)

Demographics and age/year FE Yes Yes Yes Yes
Noncognitive and social skills Yes Yes Yes Yes

Observations 25,199 25,199 19,449 19,449
R2 0.193 0.201 0.283 0.284

Notes. Each column reports results from a regression of indicators for working in a STEM occupation
(columns (1) and (2)) or real log hourly wages (columns (3) and (4)) on indicators for majoring in a STEM
field; cognitive, social, and noncognitive skills; indicator variables for sex-by-age, race, and years of completed
education; year fixed effects; and additional controls as indicated. The data source is the National Longitudinal
Survey of Youth (NLSY) 1979 and 1997, and the sample is restricted to respondents with at least a college
degree. The waves are pooled and an indicator for the sample wave is included in the regression. STEM majors
are defined as Engineering, Computer Science, Physics, Chemistry and Biology, and STEM occupations are
defined using the 2010 Census Bureau classification. Cognitive skills are measured by each respondent’s score
on the Armed Forces Qualifying Test (AFQT). We normalize scores across NLSY waves using the crosswalk
developed by Altonji, Bharadwaj, and Lange (2012). Social and noncognitive skill definitions are taken from
Deming (2017). All skill measures are normalized to have a mean of zero and a standard deviation of one.
Person-year is the unit of observation, and all standard errors are clustered at the person level. The sample
is restricted to all college graduates aged 23–34 to maximize comparability across survey waves. ∗∗∗p < .01,
∗∗p < .05, ∗p < .10.

average is 4.9 percentage points more likely to work in STEM at
age 23, but only 1.6 percentage points more likely to be working
in a STEM job by age 34.

Column (2) adds interactions between an indicator for major-
ing in STEM and age, STEM major and AFQT, and then the triple
interaction AGEit ∗ STEMi ∗ AFQTi. The coefficient on the triple
interaction term is almost exactly zero, suggesting that ability
sorting out of STEM majors over time happens at the same rate
for STEM and non-STEM majors.

Columns (3) and (4) of Table III repeat the pattern above, ex-
cept with log wages as the outcome. Column (3) shows that there
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is a positive overall return to ability and that it is increasing in
age, consistent with the basic framework of the model. Column (4)
adds the interactions above. The coefficient on the key triple
interaction term AGEit ∗ STEMi ∗ AFQTi is negative, implying
that the return to ability is much flatter over time for STEM
majors.

Summing the coefficients in column (4) suggests that a com-
puter science or engineering major with one standard deviation
higher cognitive ability earns 23.9% more at age 23 and 42.7%
more at age 34. In contrast, high-ability college graduates in other
majors earn only 7% more at age 23, but 43.3% more at age 34.
Thus for high-ability college graduates, the advantage to majoring
in STEM is completely erased by age 34.

VI. JOB SKILL CHANGE IN EARLIER PERIODS

The BG data only allow us to calculate detailed measure of
job skill changes for the 2007–2019 period. However, we can study
the impact of technological change in earlier years using data from
Atalay et al. (2020). Atalay et al. (2020) assemble the full text of
job advertisements in the New York Times, Wall Street Journal,
and Boston Globe between 1940 and 2000, and they create mea-
sures of job skill content and relate job title to SOC codes using a
text-processing algorithm. They map words and phrases to widely
used existing skill content measures, such as the Dictionary of Oc-
cupational Titles (DOT) and the O*NET, as well as the job task
classification schema used in past studies such as Autor, Levy, and
Murnane (2003), Spitz-Oener (2006), Firpo, Fortin, and Lemieux
(2011), and Deming and Kahn (2018).

We estimate a version of SkillChangeo from equation (9) using
the Atalay et al. (2020) data and job skill classifications. Because
there is no natural mapping between our BG data and the clas-
sified ads collected by Atalay et al. (2020), we cannot create a
directly comparable measure. Our preferred approach is to use
all of the skill measures computed by Atalay et al. (2020) and
then normalize the data so that the average over the entire 1968–
1998 period is the same as the average over 2007–2019. The basic
pattern of results is not sensitive to other choices. We calculate
SkillChangeo for five-year periods starting with 1973–1978 and
ending with 1993–1998. Finally, to account for fluctuations in the
data we smooth each beginning and end point into a three-year
moving average (e.g., 1998 is actually 1997–1999).
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We calculate SkillChangeo for each time period and occupa-
tion (six-digit SOC code), and then compute the vacancy-weighted
average in each period for STEM and non-STEM occupations. The
results—Figure IX, Panel A—show three main findings. First, the
rate of skill change for non-STEM occupations is relatively con-
stant in each period.

Second, the rate of skill change in STEM occupations fluc-
tuates markedly, with peaks that occur during the technological
revolution of the 1980s. The SkillChangeo measure more than
doubles between the 1973–1978 and 1978–1983 periods and then
increases again in 1983–1988 before falling again during the
1990s. Card and DiNardo (2002) date the beginning of the “com-
puter revolution” to the introduction of the IBM-PC in 1981, and
Autor, Katz, and Krueger (1998) document a rapid increase in
computer usage at work starting in the 1980s.

Third, while 2007–2019 cannot be easily compared to earlier
periods in levels due to differences in the data, it is notable that
the relatively higher value of SkillChangeo for STEM occupations
holds for the 2007–2019 period and the 1980s, but not the late
1970s or 1990s.

Our model predicts that periods with higher rates of skill
change will yield relatively higher labor market returns for
younger workers, especially in STEM occupations. We test this
by lining up the evidence in Figure IX, Panel A with wage trends
for young workers in STEM jobs over the same period, using the
CPS for 1974–2019. We estimate population-weighted regressions
of the form:

ln (earn)it = αit +
C∑
c

γc
(
cit ∗ Yit

) +
C∑
c

ζc
(
cit ∗ STit

)

+
C∑
c

ηc
(
cit ∗ Yit ∗ STit

) + δXit + εit,(10)

where cit is an indicator variable equal to one if respondent i is
in each of the five-year age bins starting with 1974–1978 and ex-
tending to 2009–2019 (with the last period being slightly longer
to maximize overlap with the BG data). Yit is an indicator vari-
able that is equal to one if the respondent is “young,” defined as
between the ages of 23 and 26 in the year of the survey, and STit
is an indicator for whether the respondent is working in a STEM
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Data from text of classified ads (Atalay et al., 2020)

Data from online job vacancies (BG)
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(B) Young STEM Workers Earn More During Periods of Rapid Task Change

FIGURE IX

STEM Youth Premium and Skill Change in Earlier Periods

Panel A presents estimates of the task change measure �j calculated using data
from Atalay et al. (2020) on the text of classified job ads between 1977 and 1999.
Panel B presents coefficients and 95% confidence intervals from a regression of log
annual wage and salary income on age (23–26 versus 27–50) by STEM occupation
interactions for successive five-year periods that match the job ad data, using the
CPS. STEM occupations are defined using the 2010 Census Bureau classification.
Young Non-STEM workers and Older STEM workers in 1978 are the left-out
categories. See the text for details.
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occupation. The X vector includes controls for race and ethnicity,
years of completed education, and age and year fixed effects, as
well as controls for the main effects cit and STEMit. Thus the γ

and ζ coefficients represent the wage premium for young workers
and older STEM workers relative to the base period of 1974–1978,
while the η coefficients represent the earnings premium for young
STEM workers relative to older STEM workers in each period.

The results are in Figure IX, Panel B. Each bar displays co-
efficients and 95% confidence intervals for estimates of γ , ζ , and
η in equation (11). Comparing the timing to Panel A, we see that
the relative return to STEM for young workers is highest in peri-
ods with the highest rate of skill change. The premium for STEM
workers aged 23–26 relative to those aged 27–50 is small and close
to 0 during the 1974–1978 period (when SkillChangeo in Panel A
was low), but jumps up to 18% and 24% in the 1979–1983 and
1983–1988 periods, respectively. It then falls to 16% for 1989–
1993 and 8% for 1994–1998, exactly when the rate of change falls
again in Panel A.

The results in Figure IX show that young STEM workers earn
relatively higher wages during periods of rapid skill change. In
contrast, we do not find similar patterns of fluctuating wage pre-
mia for older STEM workers (the second set of bars) or for young
workers in non-STEM occupations. The main effect of STEMit
implies an overall wage premium of around 24% for STEM occu-
pations, but this changes very little over the 1974–2019 period.

Similarly, we find no consistent evidence that wages for young
non-STEM workers move in any systematic way with the rate of
occupational skill change. Finally, although we do not have the
data to calculate SkillChangeo between 2000 and 2007, we find a
very high return for young STEM workers during the 1999–2003
period, which coincides with the technology boom of the late 1990s
(e.g., Beaudry, Green, and Sand 2016).

VII. CONCLUSION

This article studies the impact of changing skill demands on
the career earnings dynamics of college graduates. We empiri-
cally measure changes in skill requirements across occupations
over the course of a decade. Some jobs change much faster than
others. College graduates majoring in career-oriented fields such
as computer science, engineering, and business earn higher start-
ing wages because they learn job-relevant skills in school. Yet over
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time, employers in fast-changing occupations such as STEM jobs
require new skills, and older skills become obsolete. This leads
to flatter wage growth in careers with higher rates of job skill
change, although most other majors never quite catch up.

This article also contributes to the broader literature on how
technology affects labor markets. We show how job vacancy data—
with detailed measures of employer skill demands—can be used
to study the process by which technology changes the returns to
skills learned in school. Future research can use vacancy data
to understand other changes in job skill requirements at a much
more detailed level than has previously been possible.

We formalize the key mechanism of job skill change with a
simple model of education and career choice. Intuitively, on-the-
job learning is more difficult in careers where the job functions
themselves are constantly changing. If workers with high aca-
demic ability are faster learners, the relative return to ability will
be higher in careers that change less, because learning gains can
accumulate more over time. This explains our finding that high-
ability college graduates exit STEM occupations earlier in their
careers.

Using historical data on job vacancies collected by Atalay
et al. (2020), we test the predictions of our framework in earlier
periods such as the IT revolution of the 1980s. We find large in-
creases in the rate of skill change for STEM jobs during the 1980s,
a period that coincides closely with important technological devel-
opments, such as the introduction of the personal computer. We
also show that relative wages spiked during this period for young
STEM workers.

Our results inform policy trade-offs between investment in
specific and general education. The high-skilled vocational prepa-
ration provided by STEM degrees paves a smoother transition
for college graduates entering the workforce. At the same time,
rapid technological change can lead to a short shelf life for tech-
nical skills. This tradeoff between technology-specific and general
skills is an important consideration for policymakers and colleges
seeking to educate the workers of today, while also building the
skills of the next generation.

HARVARD UNIVERSITY AND NATIONAL BUREAU OF ECONOMIC

RESEARCH

HARVARD UNIVERSITY
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SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The Quar-
terly Journal of Economics online.

DATA AVAILABILITY

Data and code replicating tables and figures in this article can
be found in Deming and Noray (2020), in the Harvard Dataverse,
doi: 10.7910/DVN/4BRAD1.

REFERENCES

Acemoglu, Daron, and David Autor, “Skills, Tasks and Technologies: Implications
for Employment and Earnings,” in Handbook of Labor Economics, vol. 4B
(Amsterdam: Elsevier, 2011), 1043–1171.

Altonji, Joseph G., Peter Arcidiacono, and Arnaud Maurel, “The Analysis of Field
Choice in College and Graduate School: Determinants and Wage Effects,” in
Handbook of the Economics of Education, vol. 5 (Amsterdam: Elsevier, 2016),
305–396.

Altonji, Joseph G., Prashant Bharadwaj, and Fabian Lange, “Changes in the Char-
acteristics of American Youth: Implications for Adult Outcomes,” Journal of
Labor Economics, 30 (2012), 783–828.

Altonji, Joseph G., Erica Blom, and Costas Meghir, “Heterogeneity in Human
Capital Investments: High School Curriculum, College Major, and Careers,”
Annual Review of Economics, 4 (2012), 185–223.

Altonji, Joseph G., Lisa B. Kahn, and Jamin D. Speer, “Cashier or Consultant?
Entry Labor Market Conditions, Field of Study, and Career Success,” Journal
of Labor Economics, 34 (2016), S361–S401.

Arcidiacono, Peter, “Ability Sorting and the Returns to College Major,” Journal of
Econometrics, 121 (2004), 343–375.

Arcidiacono, Peter, Esteban M. Aucejo, and V. Joseph Hotz, “University Differences
in the Graduation of Minorities in STEM Fields: Evidence from California,”
American Economic Review, 106 (2016), 525–562.

Arora, Ashish, Lee G. Branstetter, and Matej Drev, “Going Soft: How the Rise of
Software-Based Innovation Led to the Decline of Japan’s IT Industry and the
Resurgence of Silicon Valley,” Review of Economics and Statistics, 95 (2013),
757–775.

Atalay, Enghin, Phai Phongthiengtham, Sebastian Sotelo, and Daniel Tannen-
baum, “The Evolution of Work in the United States,” American Economic
Journal: Applied Economics, 12 (2020), 1–36.

Aubert, Patrick, Eve Caroli, and Muriel Roger, “New Technologies, Organisation
and Age: Firm-Level Evidence,” Economic Journal, 116 (2006), F73–F93.

Autor, David, and David Dorn, “The Growth of Low-Skill Service Jobs and the
Polarization of the US Labor Market,” American Economic Review, 103 (2013),
1553–1597.

Autor, David, Claudia Goldin, and Lawrence F. Katz, “Extending the Race between
Education and Technology,” NBER Working Paper no. 26705, 2020.

Autor, David H., Lawrence F. Katz, and Alan B. Krueger, “Computing Inequality:
Have Computers Changed the Labor Market?,” Quarterly Journal of Eco-
nomics, 113 (1998), 1169–1213.

Autor, David H., Frank Levy, and Richard J. Murnane, “The Skill Content of
Recent Technological Change: An Empirical Exploration,” Quarterly Journal
of Economics, 118 (2003), 1279–1333.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/135/4/1965/5858010 by U

niversity of Pennsylvania Libraries user on 19 January 2022

file:qje.oxfordjournals.org
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjaa021#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjaa021#supplementary-data
doi: 10.7910/DVN/4BRAD1


EARNINGS DYNAMICS 2003

Beaudry, Paul, David A. Green, and Benjamin M. Sand, “The Great Reversal in
the Demand for Skill and Cognitive Tasks,” Journal of Labor Economics, 34
(2016), S199–S247.

Berman, Eli, John Bound, and Zvi Griliches, “Changes in the Demand for Skilled
Labor within US Manufacturing: Evidence from the Annual Survey of Manu-
factures,” Quarterly Journal of Economics, 109 (1994), 367–397.

Branstetter, Lee G., Matej Drev, and Namho Kwon, “Get with the Program:
Software-Driven Innovation in Traditional Manufacturing,” Management Sci-
ence, 65 (2018).

Brynjolfsson, Erik, Tom Mitchell, and Daniel Rock, “What Can Machines Learn,
and What Does it Mean for Occupations and the Economy?,” in AEA Papers
and Proceedings, 108 (2018), 43–47.

Card, David, and John E. DiNardo, “Skill-Biased Technological Change and Rising
Wage Inequality: Some Problems and Puzzles,” Journal of Labor Economics,
20 (2002), 733–783.

Carnevale, Anthony Patrick, Ban Cheah, and Jeff Strohl, “College Majors, Unem-
ployment and Earnings: Not All College Degrees Are Created Equal,” George-
town University Center on Education and the Workforce, 2012.

Caselli, Francesco, “Technological Revolutions,” American Economic Review, 89
(1999), 78–102.

Chari, Varadarajan V., and Hugo Hopenhayn, “Vintage Human Capital, Growth,
and the Diffusion of New Technology,” Journal of Political Economy, 99 (1991),
1142–1165.

Deming, David J., “The Growing Importance of Social Skills in the Labor Market,”
Quarterly Journal of Economics, 132 (2017), 1593–1640.

Deming, David, and Lisa B. Kahn, “Skill Requirements across Firms and Labor
Markets: Evidence from Job Postings for Professionals,” Journal of Labor
Economics, 36 (2018), S337–S369.

Deming, David J., and Kadeem Noray, “Replication Data for: ‘Earnings Dynamics,
Changing Job Skills, and STEM Careers’,” (2020), Harvard Dataverse, doi:
10.7910/DVN/4BRAD1.

Dillender, Marcus, and Eliza Forsythe, “Computerization of White Collar Jobs,”
Unpublished Manuscript, 2019.

Firpo, Sergio, Nicole Fortin, and Thomas Lemieux, “Occupational Tasks and
Changes in the Wage Structure,” Unpublished Manuscript, 2011.

Friedberg, Leora, “The Impact of Technological Change on Older Workers: Evi-
dence from Data on Computer Use,” ILR Review, 56 (2003), 511–529.

Galenson, David W., and Bruce A. Weinberg, “Age and the Quality of Work: The
Case of Modern American Painters,” Journal of Political Economy, 108 (2000),
761–777.

Galor, Oded, and Daniel Tsiddon, “Technological Progress, Mobility, and Economic
Growth,” American Economic Review, 87 (1997), 363–382.

Goldin, Claudia Dale, and Lawrence F. Katz, The Race between Education and
Technology (Cambridge, MA: Harvard University Press, 2008).

Golsteyn, Bart H. H., and Anders Stenberg, “Earnings over the Life Course: Gen-
eral versus Vocational Education,” Journal of Human Capital, 11 (2017), 167–
212.

Gould, Eric D., Omer Moav, and Bruce A. Weinberg, “Precautionary Demand
for Education, Inequality, and Technological Progress,” Journal of Economic
Growth, 6 (2001), 285–315.

Griliches, Zvi, “Hybrid Corn: An Exploration in the Economics of Technological
Change,” Econometrica, 25 (1957), 501–522.

Hanushek, Eric A., Guido Schwerdt, Ludger Woessmann, and Lei Zhang, “Gen-
eral Education, Vocational Education, and Labor-Market Outcomes over the
Lifecycle,” Journal of Human Resources, 52 (2017), 48–87.

Hastings, Justine S., Christopher A. Neilson, and Seth D. Zimmerman, “Are Some
Degrees Worth More than Others? Evidence from College Admission Cutoffs
in Chile,” NBER Working Paper no. 19241, 2013.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/135/4/1965/5858010 by U

niversity of Pennsylvania Libraries user on 19 January 2022



2004 THE QUARTERLY JOURNAL OF ECONOMICS

Hershbein, Brad, and Lisa B. Kahn, “Do Recessions Accelerate Routine-Biased
Technological Change? Evidence from Vacancy Postings,” American Economic
Review, 108 (2018), 1737–1772.

Horton, John J., and Prasanna Tambe, “The Death of a Technical Skill,” Unpub-
lished Manuscript, 2019.

Hunt, Jennifer, “Are Immigrants the Most Skilled US Computer and Engineering
Workers?,” Journal of Labor Economics, 33 (2015), S39–S77.

Jones, Benjamin F., “The Burden of Knowledge and the ‘Death of the Renaissance
Man’: Is Innovation Getting Harder?,” Review of Economic Studies, 76 (2009),
283–317.

Jovanovic, Boyan, and Yaw Nyarko, “Learning by Doing and the Choice of Tech-
nology,” Econometrica, 64 (1996), 1299–1310.

Katz, Lawrence F., and Kevin M. Murphy, “Changes in Relative Wages, 1963–
1987: Supply and Demand Factors,” Quarterly Journal of Economics, 107
(1992), 35–78.

Kinsler, Josh, and Ronni Pavan, “The Specificity of General Human Capital: Ev-
idence from College Major Choice,” Journal of Labor Economics, 33 (2015),
933–972.

Kirkeboen, Lars J., Edwin Leuven, and Magne Mogstad, “Field of Study, Earnings,
and Self-Selection,” Quarterly Journal of Economics, 131 (2016), 1057–1111.

Kredler, Matthias, “Experience vs. Obsolescence: A Vintage-Human-Capital
Model,” Journal of Economic Theory, 150 (2014), 709–739.

Krueger, Dirk, and Krishna B. Kumar, “Skill-Specific Rather than General Edu-
cation: A Reason for US–Europe Growth Differences?,” Journal of Economic
Growth, 9 (2004), 167–207.

Leighton, Margaret, and Jamin D. Speer, “Labor Market Returns to College Major
Specificity,” European Economic Review, (2020), 103489.

Lemieux, Thomas, “Occupations, Fields of Study and Returns to Education,” Cana-
dian Journal of Economics/Revue canadienne d’économique, 47 (2014), 1047–
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