The Long-Term Distributional and Welfare Effects of Covid-19 School Closures

> Nicola Fuchs-Schundeln Dirk Krueger Alexander Ludwig Irina Popova

> > Presented by: Jose Mota

February 28, 2022

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Motivation

- Governments worldwide reacted to Covid-19 pandemic closing schools
 - And child care centers
- Economic consequences of school closures on affected children are not easily measured
 - Arise in the longer term

> Parents may lessen negative effect of school closures on their children

- Adjusting time investment into children's education
- Adjusting monetary investment into children's education
- Adjusting monetary transfers for their children
- Parental background may matter for these adjustments
 - Assets, income
 - Age of children during the shock

This Paper

Consequences of the school and child care closures on affected children

- Human capital as they progress through their school ages
- Their high-school graduation and college choice
- Their labor market earnings
- Welfare
- ► Build life-cycle model with children's human capital production function
 - 1. Time and monetary inputs by parents
 - 2. Governmental investment into schooling as input
- Two main experiments
 - 1. Model school and child care closures as a reduction in the governmental investment in children

2. Model a negative income shock to parents due to the Covid-induced economic recession

Outline

- 1. Model
- 2. Calibration
- 3. Results
- 4. Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 _____ 90℃ 4/23

Model overview

- Life cycle of one adult and one children generation
 - in partial equilibrium
- > Parental educational investment in children's human capital
 - Monetary and time investment
 - May lessen effects of school closures
- State variables in this economy

Table 1: State Variables

State Var.	Values	Interpretation
k	$k \in \{ch, pa\}$	Generation
m	$m \in \{si, ma\}$	Marital Status
j	$j \in \{0, 1, \dots, J\}$	Model Age
a	$a \ge -\underline{a}(j, s, k)$	Assets
h	h > 0	Human Capital
s	$s \in \{no, hi, co\}$	Education
η	$\eta \in \{\eta_l, \eta_h\}$	Persistent Productivity Shock
ε	$\varepsilon \in \{\varepsilon_1, \ldots, \varepsilon_n\}$	Transitory Productivity Shock

Timeline: Parental households

Life Cycle of Parental Households

Initial Distribution	Children Leave Household	Earnings while Working wage w e η ε until retirement working time I(m) depends on marital status				
Φ(m,s,a)	Pay inter-vivos transfers b	e = age and educ. specific wage profile η = persistent productivity shock, 2-state Markov ϵ = transitory productivity shock				

Timeline: Parental households

Life Cycle of Parental Households

- ▶ $h' = g(j, h, i^m, i^t, i^g)$: Children's human capital production function
- ▶ *i^m*, *i^t*: Monetary and time investment into children's human capital
- i^g: Government investment into children's education
- ► $y(j, s, m) = w \cdot \epsilon(j, s, m) \cdot \eta \cdot \varepsilon \cdot l(m)$: Labor income of parents
- $\epsilon(j, s, m)$: Age, education, marital specific wage profile

Timeline: Child households

Life Cycle of Child Households

y(j, s, m = si, h) = w · γ(s, h) · ε(j, s, m) · η · ε · l(si): Labor income of children
 γ(s, h): Idiosyncratic permanent productivity state

Calibration

- Two stages
 - 1. Parameters calibrated exogenously not using the model
 - 2. Parameters calibrated endogenously by matching moments in the data

Calibration

- Two stages
 - 1. Parameters calibrated exogenously not using the model
 - 2. Parameters calibrated endogenously by matching moments in the data
- I focus on human capital production function parameters
 - At birth age j = 0, children draw innate ability $h_0 \sim \Psi(h(j = 0)|s_p, m_p)$

- Letter Word test score distribution in the PSID
- ▶ At ages $j_0, ..., j_{a-1}$ children receive education investments

•
$$h' = g(j, h, i^m, i^t, i^g)$$

Human Capital Production Function

$$h'(j) = \left(k_j^h h^{1-\frac{1}{\sigma^h}} + (1-k_j^h)i(j)^{1-\frac{1}{\sigma^h}}\right)^{\frac{1}{1-\frac{1}{\sigma^h}}}$$
(1)
$$i(j) = \bar{A}\left(k_j^g \left(\frac{i^g}{\bar{i}g}\right)^{1-\frac{1}{\sigma^g}} + (1-k_j^g)\left(\frac{i^p(j)}{\bar{i}g}\right)^{1-\frac{1}{\sigma^g}}\right)^{\frac{1}{1-\frac{1}{\sigma^g}}}$$
(2)
$$i^p(j) = \left(k_j^m \left(\frac{i^m}{\bar{i}^{m,d}}\right)^{1-\frac{1}{\sigma^m}} + (1-k_j^m)\left(\frac{i^t(j)}{\bar{i}^{t,d}}\right)^{1-\frac{1}{\sigma^m}}\right)^{\frac{1}{1-\frac{1}{\sigma^m}}}$$
(3)

• \bar{x} : unconditional mean

$$h'(j) = \left(k_j^h h^{1-\frac{1}{\sigma^h}} + (1-k_j^h)i(j)^{1-\frac{1}{\sigma^h}}\right)^{\frac{1}{1-\frac{1}{\sigma^h}}}$$
(4)

σ^h = 1: mean value for young and old children in Cunha et al. (2010)
 k^h_i: to match time investment by age of the child, modeled as

$$\ln\left(\frac{1-k_j^h}{k_j^h}\right) = \alpha_0^{k^h} + \alpha_1^{k^h} \cdot j + \alpha_2^{k^h} \cdot j^2$$

• $\alpha_1^{k^h}, \alpha_2^{k^h}$: by indirect inference

Log per child time investments in the data equals the pattern in the model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - の�� 10/23

- Ages 6 to 14
- $\alpha_0^{k^h}$: To match monetary investments

$$i(j) = \bar{A} \left(k_j^g \left(\frac{i^g}{\bar{i}^g} \right)^{1 - \frac{1}{\sigma^g}} + (1 - k_j^g) \left(\frac{i^p(j)}{\bar{i}^g} \right)^{1 - \frac{1}{\sigma^g}} \right)^{\frac{1}{1 - \frac{1}{\sigma^g}}}$$
(5)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● ● ● ● ● 11/23

$$i^{p}(j) = \left(k_{j}^{m}\left(\frac{i^{m}}{\overline{j}^{m,d}}\right)^{1-\frac{1}{\sigma^{m}}} + (1-k_{j}^{m})\left(\frac{i^{t}(j)}{\overline{j}^{t,d}}\right)^{1-\frac{1}{\sigma^{m}}}\right)^{\frac{1}{1-\frac{1}{\sigma^{m}}}}$$
(6)

1. $\sigma^m = 1$: from Lee and Seshadri (2019)

2. k_j^m : to match monetary investment by age of the child, modeled as

$$\ln\left(\frac{1-k_j^m}{k_j^m}\right) = \alpha_0^{k^m} + \alpha_1^{k^m} \cdot j$$

- $\alpha_1^{k^m}$: by indirect inference
 - To match monetary investment profile
- $\alpha_0^{k^m}$: To normalize $k_3^m = 0.5$

$$i^{p}(j) = \left(k_{j}^{m}\left(\frac{i^{m}}{\overline{j}^{m,d}}\right)^{1-\frac{1}{\sigma^{m}}} + (1-k_{j}^{m})\left(\frac{i^{t}(j)}{\overline{j}^{t,d}}\right)^{1-\frac{1}{\sigma^{m}}}\right)^{\frac{1}{1-\frac{1}{\sigma^{m}}}}$$
(6)

1. $\sigma^m = 1$: from Lee and Seshadri (2019)

2. k_j^m : to match monetary investment by age of the child, modeled as

$$\ln\left(\frac{1-k_j^m}{k_j^m}\right) = \alpha_0^{k^m} + \alpha_1^{k^m} \cdot j$$

- $\alpha_1^{k^m}$: by indirect inference
 - To match monetary investment profile
- $\alpha_0^{k^m}$: To normalize $k_3^m = 0.5$
- Why i^p(j) does not depend on parental education?

Figure 2: Age Dependent Parameters κ_j^h, κ_j^m over Child Age

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - のへで 13/23

Experiment

- 1. Impact of school closures that last for half a year
 - Corresponds to a reduction of government time investments i^g by 25%
 - The model has two year periods
- 2. In addition parents receive negative income shocks
 - Mainly driven by a reduction of hours worked
 - Reductions are more severe for parents with lower educational attainment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 14/23

Impact of school closures that last for half a year

- 1. On average (across children aged 4 to 14 when the shock occurs)
 - Increase in future share of children without a high school degree of 7%
 - Decrease in future share of children with a college degree of -3.2%
- 2. On average, earnings losses of -0.95%
 - Induced by reduced human capital and lower educational attainment
- 3. These effects materialize despite a significant endogenous adjustment of parental investments into their children
 - ▶ Time inputs rise by 7.3% and monetary inputs by 14.7%
- 4. Large welfare loss of children from school closures of -0.55%
 - Measured as consumption-equivalent variation
 - Adding income changes marginally welfare loss to -0.56%
- 5. Heterogenous welfare lost by parental characteristics
 - ► Smallest welfare losses (-0.4%) for children of college-educated parents
 - Larger losses (-0.7%) for children whose parents are high school dropouts

Investment in human capital over life-cycle for children of age 6

Figure 5: Money and Time Investments and Human Capital over Remaining Child Life-Cycle for Children of Age 6

Investment in human capital over life-cycle for children of age 6

Figure 5: Money and Time Investments and Human Capital over Remaining Child Life-Cycle for Children of Age 6

æ

かくで 16/23

• 3 >

- Larger welfare losses for younger children
- Aged 6 at the time of the crisis amount to -0.71%

Conclusions

- Interesting paper to study the effects of school closures (not only Covid-related)
- Useful framework to think about the importance of opening schools in areas where children don't have access to it
 - These are usually poor areas
 - Parents do not have good inputs to mitigate the lack of schools
- Author should think about heterogeneity in parents time inputs for education
 - Less educated parents are likely less effective educating their children
 - Adding this feature would magnify effects on disadvantaged children
- Authors do not model the health benefits of the school closures
 - This would reduce the net costs of school closure
 - Health costs should be more important for parental generation
 - Probability of dying of Covid is higher for old people

Thanks

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 · の Q ○ 18/23

Annex

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の Q ○ 19/23

Education Decision

$$s = \begin{cases} no & \text{if } V(j_a, s = no; a, h) \ge \max\{V(j_a, s = hs, s_p; a, h), V(j_a, s = co, s_p; a, h)\}\\ hs & \text{if } V(j_a, s = hs, s_p; a, h) \ge \max\{V(j_a, s = no; a, h), V(j_a, s = co, s_p, a, h)\}\\ co & \text{if } V(j_a, s = co; s_p, a, h) \ge \max\{V(j_a, s = no; a, h), V(j_a, s = hs, s_p; a, h)\}, \end{cases}$$
(3)

Children Problem

$$V(j, no, \eta, \varepsilon; a, h) = \max_{c, a'} \left\{ u(c) - v(\ell(si)) + \beta \sum_{\eta'} \pi(\eta' \mid \eta) \sum_{\varepsilon'} \psi(\varepsilon') V(j+1, no, \eta', \varepsilon'; a', h) \right\}$$

subject to

$$\begin{aligned} a' + c(1 + \tau^c) &= a(1 + r(1 - \tau^k)) + y(1 - \tau^p) - T(y(1 - 0.5\tau^p)) \\ y &= w\gamma(no, h)\epsilon(no, j, si)\eta\varepsilon\ell(si) \\ a' &\geq 0 \end{aligned}$$

Parents Problem

$$V(j, s, m, \eta, \varepsilon; a, h) = \max_{c, i^m, i^t, a^t, h^\prime} \left\{ u \left(\frac{c}{1 + \zeta_c \xi(m, s) + \mathbf{1}_{m=ma} \zeta_a} \right) - v \left(\frac{\ell(m) + \kappa \cdot \xi(m, s) \cdot i^t}{1 + \mathbf{1}_{m=ma}} \right) + \beta \sum_{\eta^\prime} \pi(\eta^\prime | \eta) \sum_{\varepsilon^\prime} \psi(\varepsilon^\prime) V(j, s, m, \eta^\prime, \varepsilon^\prime; a^\prime, h^\prime) \right\}$$

subject to

$$\begin{split} a' + c(1 + \tau^c) + \xi(m, s)i^m &= a(1 + r(1 - \tau^k)) + y(1 - \tau^p) - T(y(1 - 0.5\tau^p)) \\ y &= w\epsilon(s, j, m)\eta\varepsilon\ell(m) \\ a' &\geq -\underline{a}(j, s, k) \\ h' &= g(j, h, i(i^m, i^t, i^g)) \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● ● ● ● 22/23

Parental decisions by age of children during shock

Table 12: Parental Decisions in Period of Covid-19 Impact

baseline			%-Change for Children of Biological Age					<u>,</u>
		average	4	6	8	10	12	14
Panel A: Lockdown of Schools								
av mon inv	\$1,385	14.67	10.03	15.74	15.21	15.21	15.61	16.24
av time inv	25.17	7.27	4.75	7.62	7.40	7.51	7.87	8.46

<□> <□> <□> <□> <三> <三> <三> <三> <三> ○QC 23/23

Parental decisions by age of children during shock

Table 12: Parental Decisions in Period of Covid-19 Impact

	baseline			%-Change for Children of Biological Age				
		average	4	6	8	10	12	14
Panel A: Lockdown of Schools								
av mon inv	\$1,385	14.67	10.03	15.74	15.21	15.21	15.61	16.24
av time inv	25.17	7.27	4.75	7.62	7.40	7.51	7.87	8.46

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のQで 23/23

Larger welfare losses for younger children

▶ Aged 6 at the time of the crisis amount to −0.71%