The Long-Term Distributional and Welfare Effects of Covid-19 School Closures

Nicola Fuchs-Schundeln Dirk Krueger
Alexander Ludwig Irina Popova

Presented by: Jose Mota

February 28, 2022

Motivation

－Governments worldwide reacted to Covid－19 pandemic closing schools
－And child care centers
－Economic consequences of school closures on affected children are not easily measured
－Arise in the longer term
－Parents may lessen negative effect of school closures on their children
－Adjusting time investment into children＇s education
－Adjusting monetary investment into children＇s education
－Adjusting monetary transfers for their children
－Parental background may matter for these adjustments
－Assets，income
－Age of children during the shock

This Paper

－Consequences of the school and child care closures on affected children
－Human capital as they progress through their school ages
－Their high－school graduation and college choice
－Their labor market earnings
－Welfare
－Build life－cycle model with children＇s human capital production function
1．Time and monetary inputs by parents
2．Governmental investment into schooling as input
－Two main experiments
1．Model school and child care closures as a reduction in the governmental investment in children
2．Model a negative income shock to parents due to the Covid－induced economic recession

Outline

1. Model
2. Calibration
3. Results
4. Conclusions

Model overview

- Life cycle of one adult and one children generation
- in partial equilibrium
- Parental educational investment in children's human capital
- Monetary and time investment
- May lessen effects of school closures
- State variables in this economy

Table 1: State Variables

State Var.	Values	Interpretation
k	$k \in\{c h, p a\}$	Generation
m	$m \in\{s i, m a\}$	Marital Status
j	$j \in\{0,1, \ldots, J\}$	Model Age
a	$a \geq-\underline{a}(j, s, k)$	Assets
h	$h>0$	Human Capital
s	$s \in\{n o, h i, c o\}$	Education
η	$\eta \in\left\{\eta_{l}, \eta_{h}\right\}$	Persistent Productivity Shock
ε	$\varepsilon \in\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$	Transitory Productivity Shock

Timeline：Parental households

Life Cycle of Parental Households

Timeline: Parental households

Life Cycle of Parental Households

- $h^{\prime}=g\left(j, h, i^{m}, i^{t}, i^{g}\right)$: Children's human capital production function
- i^{m}, i^{t} : Monetary and time investment into children's human capital
- is: Government investment into children's education
- $y(j, s, m)=w \cdot \epsilon(j, s, m) \cdot \eta \cdot \varepsilon \cdot l(m)$: Labor income of parents
- $\epsilon(j, s, m)$: Age, education, marital specific wage profile

Timeline: Child households

Life Cycle of Child Households

- $y(j, s, m=s i, h)=w \cdot \gamma(s, h) \cdot \epsilon(j, s, m) \cdot \eta \cdot \varepsilon \cdot l(s i)$: Labor income of children
- $\gamma(s, h)$: Idiosyncratic permanent productivity state

Calibration

- Two stages

1. Parameters calibrated exogenously not using the model
2. Parameters calibrated endogenously by matching moments in the data

Calibration

－Two stages
1．Parameters calibrated exogenously not using the model
2．Parameters calibrated endogenously by matching moments in the data
－I focus on human capital production function parameters
－At birth age $j=0$ ，children draw innate ability $h_{0} \sim \Psi\left(h(j=0) \mid s_{p}, m_{p}\right)$
－Letter Word test score distribution in the PSID
－At ages j_{0}, \ldots, j_{a-1} children receive education investments
－$h^{\prime}=g\left(j, h, i^{m}, i^{t}, i^{g}\right)$

Human Capital Production Function

$$
\begin{gather*}
h^{\prime}(j)=\left(k_{j}^{h} h^{1-\frac{1}{\sigma^{h}}}+\left(1-k_{j}^{h}\right) i(j)^{1-\frac{1}{\sigma^{h}}}\right)^{\frac{1}{1-\frac{1}{\sigma^{h}}}} \tag{1}\\
i(j)=\bar{A}\left(k_{j}^{g}\left(\frac{i g}{\overline{i g}}\right)^{1-\frac{1}{\sigma g}}+\left(1-k_{j}^{g}\right)\left(\frac{i P(j)}{\bar{i} g}\right)^{1-\frac{1}{\sigma^{g}}}\right)^{\frac{1}{1-\frac{1}{\sigma^{g}}}} \tag{2}\\
i^{\rho}(j)=\left(k_{j}^{m}\left(\frac{i^{m}}{\bar{i} m, d}\right)^{1-\frac{1}{\sigma^{m}}}+\left(1-k_{j}^{m}\right)\left(\frac{i^{t}(j)}{\bar{i} t, d}\right)^{1-\frac{1}{\sigma^{m}}}\right)^{\frac{1}{1-\frac{1}{\sigma^{m}}}} \tag{3}
\end{gather*}
$$

- \bar{x} : unconditional mean

Calibration: Human Capital Production Function

$$
\begin{equation*}
h^{\prime}(j)=\left(k_{j}^{h} h^{1-\frac{1}{\sigma^{h}}}+\left(1-k_{j}^{h}\right) i(j)^{1-\frac{1}{\sigma^{h}}}\right)^{\frac{1}{1-\frac{1}{\sigma^{h}}}} \tag{4}
\end{equation*}
$$

1. $\sigma^{h}=1$: mean value for young and old children in Cunha et al. (2010)
2. k_{j}^{h} : to match time investment by age of the child, modeled as

$$
\ln \left(\frac{1-k_{j}^{h}}{k_{j}^{h}}\right)=\alpha_{0}^{k^{h}}+\alpha_{1}^{k^{h}} \cdot j+\alpha_{2}^{k^{h}} \cdot j^{2}
$$

- $\alpha_{1}^{k^{h}}, \alpha_{2}^{k^{h}}$: by indirect inference
- Log per child time investments in the data equals the pattern in the model
- Ages 6 to 14
- $\alpha_{0}^{k^{h}}$: To match monetary investments

Calibration：Human Capital Production Function

$$
\begin{equation*}
i(j)=\bar{A}\left(k_{j}^{g}\left(\frac{i^{g}}{\overline{i g}}\right)^{1-\frac{1}{\sigma g}}+\left(1-k_{j}^{g}\right)\left(\frac{i^{p}(j)}{\bar{i} g}\right)^{1-\frac{1}{\sigma g}}\right)^{\frac{1}{1-\frac{1}{\sigma g}}} \tag{5}
\end{equation*}
$$

1．$\sigma^{g}=2.43$ ：from Kotera and Seshadri（2017）
2．$k_{j}^{g}=\overline{k_{j}^{g}}$ for $j>0$ ：Kotera and Seshadri（2017）
－$k_{0}^{g}=0.44$ ：To match average time investments into age 4 child
3． \bar{A} ：Normalization so that average human capital equals 1

Calibration: Human Capital Production Function

$$
\begin{equation*}
i^{p}(j)=\left(k_{j}^{m}\left(\frac{i^{m}}{\bar{i} m, d}\right)^{1-\frac{1}{\sigma^{m}}}+\left(1-k_{j}^{m}\right)\left(\frac{i t(j)}{\bar{i} t, d}\right)^{1-\frac{1}{\sigma^{m}}}\right)^{\frac{1}{1-\frac{1}{\sigma^{m}}}} \tag{6}
\end{equation*}
$$

1. $\sigma^{m}=1$: from Lee and Seshadri (2019)
2. k_{j}^{m} : to match monetary investment by age of the child, modeled as

$$
\ln \left(\frac{1-k_{j}^{m}}{k_{j}^{m}}\right)=\alpha_{0}^{k^{m}}+\alpha_{1}^{k^{m}} \cdot j
$$

- $\alpha_{1}^{k^{m}}$: by indirect inference
- To match monetary investment profile
- $\alpha_{0}^{k^{m}}$: To normalize $k_{3}^{m}=0.5$

Calibration: Human Capital Production Function

$$
\begin{equation*}
i^{p}(j)=\left(k_{j}^{m}\left(\frac{i^{m}}{\bar{i} m, d}\right)^{1-\frac{1}{\sigma^{m}}}+\left(1-k_{j}^{m}\right)\left(\frac{i^{t}(j)}{\bar{i} t, d}\right)^{1-\frac{1}{\sigma^{m}}}\right)^{\frac{1}{1-\frac{1}{\sigma^{m}}}} \tag{6}
\end{equation*}
$$

1. $\sigma^{m}=1$: from Lee and Seshadri (2019)
2. k_{j}^{m} : to match monetary investment by age of the child, modeled as

$$
\ln \left(\frac{1-k_{j}^{m}}{k_{j}^{m}}\right)=\alpha_{0}^{k^{m}}+\alpha_{1}^{k^{m}} \cdot j
$$

- $\alpha_{1}^{k^{m}}$: by indirect inference
- To match monetary investment profile
- $\alpha_{0}^{k^{m}}$: To normalize $k_{3}^{m}=0.5$
- Why $i^{p}(j)$ does not depend on parental education?

Calibration: Human Capital Production Function

Figure 2: Age Dependent Parameters $\kappa_{j}^{h}, \kappa_{j}^{m}$ over Child Age

Experiment

1. Impact of school closures that last for half a year

- Corresponds to a reduction of government time investments i^{g} by 25%
- The model has two year periods

2. In addition parents receive negative income shocks

- Mainly driven by a reduction of hours worked
- Reductions are more severe for parents with lower educational attainment

Impact of school closures that last for half a year

1．On average（across children aged 4 to 14 when the shock occurs）
－Increase in future share of children without a high school degree of 7%
－Decrease in future share of children with a college degree of -3.2%
2．On average，earnings losses of -0.95%
－Induced by reduced human capital and lower educational attainment
3．These effects materialize despite a significant endogenous adjustment of parental investments into their children
－Time inputs rise by 7.3% and monetary inputs by 14.7%
4．Large welfare loss of children from school closures of -0.55%
－Measured as consumption－equivalent variation
－Adding income changes marginally welfare loss to -0.56%
5．Heterogenous welfare lost by parental characteristics
－Smallest welfare losses（ -0.4% ）for children of college－educated parents
－Larger losses (-0.7%) for children whose parents are high school dropouts

Investment in human capital over life-cycle for children of age 6

Figure 5: Money and Time Investments and Human Capital over Remaining Child Life-Cycle for Children of Age 6

(a) Money Investments

(b) Time Investments

Investment in human capital over life-cycle for children of age 6

Figure 5: Money and Time Investments and Human Capital over Remaining Child Life-Cycle for Children of Age 6

(a) Money Investments

(b) Time Investments

- Larger welfare losses for younger children
- Aged 6 at the time of the crisis amount to -0.71%

Conclusions

- Interesting paper to study the effects of school closures (not only Covid-related)
- Useful framework to think about the importance of opening schools in areas where children don't have access to it
- These are usually poor areas
- Parents do not have good inputs to mitigate the lack of schools
- Author should think about heterogeneity in parents time inputs for education
- Less educated parents are likely less effective educating their children
- Adding this feature would magnify effects on disadvantaged children
- Authors do not model the health benefits of the school closures
- This would reduce the net costs of school closure
- Health costs should be more important for parental generation
- Probability of dying of Covid is higher for old people

Thanks

Annex

Education Decision

$$
s= \begin{cases}n o & \text { if } V\left(j_{a}, s=n o ; a, h\right) \geq \max \left\{V\left(j_{a}, s=h s, s_{p} ; a, h\right), V\left(j_{a}, s=c o, s_{p} ; a, h\right)\right\} \tag{3}\\ h s & \text { if } V\left(j_{a}, s=h s, s_{p} ; a, h\right) \geq \max \left\{V\left(j_{a}, s=n o ; a, h\right), V\left(j_{a}, s=c o, s_{p}, a, h\right)\right\} \\ c o & \text { if } V\left(j_{a}, s=c o ; s_{p}, a, h\right) \geq \max \left\{V\left(j_{a}, s=n o ; a, h\right), V\left(j_{a}, s=h s, s_{p} ; a, h\right)\right\}\end{cases}
$$

Children Problem

$$
V(j, n o, \eta, \varepsilon ; a, h)=\max _{c, a^{\prime}}\left\{u(c)-v(\ell(s i))+\beta \sum_{\eta^{\prime}} \pi\left(\eta^{\prime} \mid \eta\right) \sum_{\varepsilon^{\prime}} \psi\left(\varepsilon^{\prime}\right) V\left(j+1, n o, \eta^{\prime}, \varepsilon^{\prime} ; a^{\prime}, h\right)\right\}
$$

subject to

$$
\begin{aligned}
a^{\prime}+c\left(1+\tau^{c}\right) & =a\left(1+r\left(1-\tau^{k}\right)\right)+y\left(1-\tau^{p}\right)-T\left(y\left(1-0.5 \tau^{p}\right)\right) \\
y & =w \gamma(n o, h) \epsilon(n o, j, \text { si) }) \varepsilon \ell(s i) \\
a^{\prime} & \geq 0
\end{aligned}
$$

Parents Problem

$$
\begin{aligned}
& V(j, s, m, \eta, \varepsilon ; a, h)=\max _{c, i^{m}, i^{t}, a^{\prime}, h^{\prime}}\left\{u\left(\frac{c}{1+\zeta_{c} \xi(m, s)+\mathbf{1}_{m=m a} \zeta_{a}}\right)\right. \\
& \left.\quad-v\left(\frac{\ell(m)+\kappa \cdot \xi(m, s) \cdot i^{t}}{1+\mathbf{1}_{m=m a}}\right)+\beta \sum_{\eta^{\prime}} \pi\left(\eta^{\prime} \mid \eta\right) \sum_{\varepsilon^{\prime}} \psi\left(\varepsilon^{\prime}\right) V\left(j, s, m, \eta^{\prime}, \varepsilon^{\prime} ; a^{\prime}, h^{\prime}\right)\right\}
\end{aligned}
$$

subject to

$$
\begin{aligned}
a^{\prime}+c\left(1+\tau^{c}\right)+\xi(m, s) i^{m} & =a\left(1+r\left(1-\tau^{k}\right)\right)+y\left(1-\tau^{p}\right)-T\left(y\left(1-0.5 \tau^{p}\right)\right) \\
y & =w \epsilon(s, j, m) \eta \varepsilon \ell(m) \\
a^{\prime} & \geq-\underline{a}(j, s, k) \\
h^{\prime} & =g\left(j, h, i\left(i^{m}, i^{t}, i^{g}\right)\right)
\end{aligned}
$$

Parental decisions by age of children during shock

Table 12：Parental Decisions in Period of Covid－19 Impact

	baseline	\％－Change for Children of Biological Age													
average										4	6	8	10	12	14
Panel A：Lockdown of Schools															
av mon inv	$\$ 1,385$	14.67	10.03	15.74	15.21	15.21	15.61	16.24							
av time inv	25.17	7.27	4.75	7.62	7.40	7.51	7.87	8.46							

Parental decisions by age of children during shock

Table 12: Parental Decisions in Period of Covid-19 Impact

	baseline	\%-Change for Children of Biological Age													
average										4	6	8	10	12	14
Panel A: Lockdown of Schools															
av mon inv	$\$ 1,385$	14.67	10.03	15.74	15.21	15.21	15.61	16.24							
av time inv	25.17	7.27	4.75	7.62	7.40	7.51	7.87	8.46							

- Larger welfare losses for younger children
- Aged 6 at the time of the crisis amount to -0.71%

