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Introduction



A new take on popular models

• Motivation: Heterogeneous Agents Models of the BIHA (?, ?, ?, ?) variety
are rooted in uninsurable earnings risk

• β(1+ r) < 1 =⇒ save for a rainy day to smooth consumption

• This paper poses a theory of precautionary savings for consumption levels
that occasionally provide additional joy or utility

• save for a sunny day to cash in on these opportunities

• Model: extreme value (EV) shocks provide a convenient approach

• widely used, but not in this way – new theoretical insights

• Why bother? Strong predictions about consumption behavior that:

1. are borne out in the data PSID

2. can discipline key EV parameters
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What we do

• Model: iid shocks to the utility of specific consumption levels induce
deviations from consumption choices predicted by the Euler equation.

• structural: shocks give opportunities

• easily coexist with other types of shocks (i.e. earnings risk)

• Households internalize them: new rationale for precautionary savings

• Empirics: measure predicted consumption in PSID.

• empirical fact: ↑ wealth, ↑ deviations from predicted onsumption

• quantitative analysis proceeds in 2 phases

1. Can our model replicate this? Can others?

2. What are the implications for precautionary savings?
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What we find

• Model: our economies with extreme value shocks have

• well-defined, well-behaved continuous and ∞-horizon limits

• additional (and intuitive) facets of marginal value of wealth

• fanning out of consumption “errors”: different from shocks to MRS

• Quantitative analysis: compare our EV shock economies to ones with
earnings risk, marginal utility risk, combinations of all

• Only EV model can replicate fanning out of consumption errors

• Simple empirical moments discipline EV shocks

• We use slope of consumption error variance w.r.t. cash on hand

• Implied noise is equivalent to increasing earnings risk by 26%

• limitation: our mechanism acts evenly over wealth distribution (both poor
and rich save for a sunny day)

• Extensions to explain top wealth inequality?
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What we contribute to the literature Full literature

• Rare periods of high consumption: durable goods (see ? for a review) or its
modern cousin, memorable goods (?)

• No durability of enjoyment (no need to track the stock)

• Not triggered by temporary earnings

• Standard utility functions as insufficient to accumulate wealth
beyond consumption smoothing: (as in ? or more recently ?) want wealth in
the utility function

• Rationale for additional value of wealth with empirical discipline

• Dynamic discrete choice: ?, ?, all of IO...

• Extend EV shocks into realm of fundamentals; change ex ante behavior
rather than provide tractable error structure

5
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Simplest Dynamic Model: A
two period savings model



Overview: shocks and finite choice economies

Preferences

• Today: Consuming c ∈ [0, c] (Non-binding c) yields

u(c) + εc , εc random variables, one for each c .

• Tomorrow: u(c ′).
• u increasing, strictly concave, differentiable.
• No borrowing, no interest, no income, given wealth a,

u(c) + εc + u(a− c)

• Two approaches:

1. Think of the continuum as a convenient approximation to a discrete problem
(?). Derivatives give information.

2. Pose structure in εc that yields well behaved probl ?.

• Today we follow the first approach

6



Overview: shocks and finite choice economies

Preferences

• Today: Consuming c ∈ [0, c] (Non-binding c) yields

u(c) + εc , εc random variables, one for each c .

• Tomorrow: u(c ′).

• u increasing, strictly concave, differentiable.
• No borrowing, no interest, no income, given wealth a,

u(c) + εc + u(a− c)

• Two approaches:

1. Think of the continuum as a convenient approximation to a discrete problem
(?). Derivatives give information.

2. Pose structure in εc that yields well behaved probl ?.

• Today we follow the first approach

6



Overview: shocks and finite choice economies

Preferences

• Today: Consuming c ∈ [0, c] (Non-binding c) yields

u(c) + εc , εc random variables, one for each c .

• Tomorrow: u(c ′).
• u increasing, strictly concave, differentiable.

• No borrowing, no interest, no income, given wealth a,

u(c) + εc + u(a− c)

• Two approaches:

1. Think of the continuum as a convenient approximation to a discrete problem
(?). Derivatives give information.

2. Pose structure in εc that yields well behaved probl ?.

• Today we follow the first approach

6



Overview: shocks and finite choice economies

Preferences

• Today: Consuming c ∈ [0, c] (Non-binding c) yields

u(c) + εc , εc random variables, one for each c .

• Tomorrow: u(c ′).
• u increasing, strictly concave, differentiable.
• No borrowing, no interest, no income, given wealth a,

u(c) + εc + u(a− c)

• Two approaches:

1. Think of the continuum as a convenient approximation to a discrete problem
(?). Derivatives give information.

2. Pose structure in εc that yields well behaved probl ?.

• Today we follow the first approach

6



Overview: shocks and finite choice economies

Preferences

• Today: Consuming c ∈ [0, c] (Non-binding c) yields

u(c) + εc , εc random variables, one for each c .

• Tomorrow: u(c ′).
• u increasing, strictly concave, differentiable.
• No borrowing, no interest, no income, given wealth a,

u(c) + εc + u(a− c)

• Two approaches:

1. Think of the continuum as a convenient approximation to a discrete problem
(?). Derivatives give information.

2. Pose structure in εc that yields well behaved probl ?.
• Today we follow the first approach

6



Overview: shocks and finite choice economies

Preferences

• Today: Consuming c ∈ [0, c] (Non-binding c) yields

u(c) + εc , εc random variables, one for each c .

• Tomorrow: u(c ′).
• u increasing, strictly concave, differentiable.
• No borrowing, no interest, no income, given wealth a,

u(c) + εc + u(a− c)

• Two approaches:
1. Think of the continuum as a convenient approximation to a discrete problem

(?). Derivatives give information.

2. Pose structure in εc that yields well behaved probl ?.
• Today we follow the first approach

6



Overview: shocks and finite choice economies

Preferences

• Today: Consuming c ∈ [0, c] (Non-binding c) yields

u(c) + εc , εc random variables, one for each c .

• Tomorrow: u(c ′).
• u increasing, strictly concave, differentiable.
• No borrowing, no interest, no income, given wealth a,

u(c) + εc + u(a− c)

• Two approaches:
1. Think of the continuum as a convenient approximation to a discrete problem

(?). Derivatives give information.
2. Pose structure in εc that yields well behaved probl ?.

• Today we follow the first approach

6



Overview: shocks and finite choice economies

Preferences

• Today: Consuming c ∈ [0, c] (Non-binding c) yields

u(c) + εc , εc random variables, one for each c .

• Tomorrow: u(c ′).
• u increasing, strictly concave, differentiable.
• No borrowing, no interest, no income, given wealth a,

u(c) + εc + u(a− c)

• Two approaches:
1. Think of the continuum as a convenient approximation to a discrete problem

(?). Derivatives give information.
2. Pose structure in εc that yields well behaved probl ?.

• Today we follow the first approach
6



Construction of the Finite Choice Economies

• Economies indexed by N : Cardinality of choices.

• Equally spaced grid. c i = i c1 i ∈ {1, · · · ,N}

• Convenient Normalization: Choose the N Economies so that

• Consuming 1 is on the grid cM(N) = 1.

• We are close to the upper bound: cN ≥ c ≥ cN−1.

• Then take limits as N →∞ to get continuous objects.

7
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• Consuming 1 is on the grid cM(N) = 1.

• We are close to the upper bound: cN ≥ c ≥ cN−1.
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Preferences in the finite choice economies

• Consumption level c i associated to ηi , i ∈ {1, · · · ,N}.

• ηi iid type 1 Extreme Value (no need to bring back εc). We get

u(ci ) + u(a− ci ) + ηi

• Assume that ηi are iid, Gumbel: ηi ∼ G (µN , α).

• 2 key parameters: µN (location / mean) and α (scale / variance)

• Note α = 0 is the standard model without shocks.

Normalization: expected max of ηi shocks over a unit interval is 0:

• define η ≡ maxi=1,...,M(N) ηi and normalize E[η] = 0

• math: µN = −α(γE + lnM(N)) imposes this; only α left

• economics: utility bonus of a unit interval budget set is 0
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Finite pie-eating problem

• Household chooses

max
c i∈{c1,··· ,cN}

u(c i ) + ηi + u(a− c i ),

s.t. c i ≤ a.

• Or maxi∈{1,··· ,J(N)} u(c i ) + ηi + u(a− c i ), when J(N) = arg maxi=1,...,N{ci ≤ a}.

• ratio J(N,a)
M(N)

= cJ(N,a) holds by construction; limN→∞
J(N,a)
M(N)

= a

• key: size of budget set (a) determines the number of alternatives and
therefore the number of shocks received, J(N, a)

• More options increases expected value

• Options have cardinal interpretation and shocks are factored in ex-ante
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Ex-Ante Value and Decision Rules

• The ex-ante value

vN(a) =

∫
max

c i∈{c1,··· ,cJ(N,a)}
{u(c i ) + ηi + u(a− c i )} dF (η1, · · · , ηN),

• The density

hN(a, i) = P

(
argmax

j∈{1,··· ,J(N,a)}

{
u(c j) + ηj + u(a− c j)

}
= n

)
,

• The cdf

HN(a, a′) = P

(
argmax

c i∈{c1,··· ,cJ(N,a)}

{
u(c i ) + ηi + u(a− c i )

}
≤ a′

)
,
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Standard results in Extreme Value Theory yield formulas

• The value satisfies

vN(a) = α ln

 1
J(N, a)

J(N,a)∑
i=1

exp

{
u(c i ) + u(a− c i )

α

}+ α ln cJ(N,a).

• First term is sort of weighted average of the standard utilities of all choices
(notice the log and the exp)

• Last term, acts as a utility bonus of wealth, a form of option value.
• The probability of each choice i is

hN(a, i) =
exp

{
u(c i )+u(a−c i )

α

}
∑J(N,a)

j=1 exp
{

u(c j )+u(a−c j )
α

} .
• The cdf HN(a, a′) satisfies

HN(a, a′) =

∑n(a′)
i=1 exp

{
u(c i )+u(a−c i )

α

}
∑J(N,a)

i=1 exp
{

u(c i )+u(a−c i )
α

} .

where n(a′) = maxj∈{1,··· .N} j , s.t. c j ≤ a′.
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Take limits as N →∞: Continuous Approx. to N-Economies

• The Value converges to (because it is essentially a Riemann integral)

v(a) = α ln

(∫ a

0
exp

{
u(c) + u(a− c)

α

}
dc

)
+ α ln a =

α ln

(∫ a

0
exp

{
u(a− a′) + u(a′)

α

}
da′
)

+ α ln a

• The CDF converges to

H(a, a′) =

∫ a′

0 exp
{

u(c)+u(a−c)
α

}
dc∫ a

0 exp
{

u(c)+u(a−c)
α

}
dc
.

(multiply and Divide by J(N, a)).

• Note that these are differentiable functions.
• Main insights go through whether discrete or continuous case; in

remainder, we’ll go with continuous.
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Taking Derivatives yields the density of the decision rule

• We can obtain

∂H(a, a′)

∂a
= h(a, a′) =

exp
{

u(a−a′)+u(a′)
α

}
∫ a

0 exp
{

u(c)+u(a−c)
α

}
dc
.

13



The marginal value of wealth

• The derivative of the value function va(a) satisfies

va(a) =

∫ a

0
[u′(a− c)− u′(a− c∗(a))] h(c ; a)dc + u′(a− c∗(a)) +

α

a

where c∗(a) = a/2 is the fundamental / Euler equation solution (α = 0).

• 1st term: average deviation of marginal utility from optimum

• positive by Jensen’s inequality given prudence (u′(a− c) convex in c)

• 2nd term: standard marginal utility effect at optimum

• 3rd term: increased expected bonus coming from more shocks

• all 3 terms are positive =⇒ MVW positive

• harder to show: MVW increasing in α (but it is!)
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• 3rd term: increased expected bonus coming from more shocks

• all 3 terms are positive =⇒ MVW positive

• harder to show: MVW increasing in α (but it is!)
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Illustrating the marginal value of wealth

Beyond pure utility bonus, the marginal value of wealth comes from not being
constrained upon choosing c that lead to low a′ (analogy to rainy day).

15



Marginal value of wealth increases with noise (α)

Higher α fans out h(c ; a) =⇒ more weight on high future MU states =⇒
MVW increases due to convexity of u′(a− c) (also pure bonus term).
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Decision rule contours
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Wealth Disregards Euler Equation: Fanning wide of Consmpt
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There is a fanning out of choices

Value function becomes
steeper with EV shocks

• Va|α>0(a) > Va|α=0(a):
recall earlier argument

Interestingly, no change in
concavity!

• Vaa|α>0(a) = Vaa|α=0(a):
is this the property that
cooks us on wealth?
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The infinitely-lived savings
problem



Extending the environment: T = 2→ T =∞

Almost everything is the same as the 2-period case, except:

• now assume flow utility and shocks occur each period: u(ct) + εc,t

• Households discounts future at rate β, takes interest rate r as given

• assume and verify that β(1+ r) < 1

• Define action-specific value as

vt(ci ; a) = u(ci ) + βVt+1((a− ci )(1 + r)) + ηi

• First consider a finite number of periods, then take limit as T →∞
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Value functions and decision rules with infinite horizon

• Proceeding as before, we have

Vt(a) = α ln

∫ a

0
exp

(
vt(ci ; a)

α

)
dc + α ln a

ht(a) =
exp

(
vt(ci ;a)
α

)
∫ a

0 exp
(

vt(ci ;a)
α

)
dc

• Given this, it is straightforward to show that:

• Vt(a) = T (Vt+1, a) as described above is a contraction

• =⇒ Vt(a) is strictly concave and differentiable

• infinite horizon limits exist V (a), h and takes analogous forms

21
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A special case: Log Utility Thanks to Hanbaek Lee

If u(c) = ln c , we can show (through a laborious guess and verify) that

V (a) =
1+2α
1− β

ln a + B

where B is a complicated function of (α, β, r) but independent of a

• usually (i.e. with α = 0), get Ṽ (a) = 1
1−β ln a + B̃

• what about extra 2α then?

• first comes from pure utility bonus term

• second comes integral marginal utility deviation term (details?)

• net effect: extra patience (unfortunately uniform across wealth dist)

Details Decision rule
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Interaction of EV noise with risk aversion / IES
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A Comparison of Various
Aiyagari type Economies



The Economies to be Compared

• An Ec. with iid Earnings Risk Only (Coefficient of Variation .3)

• An Ec. with iid Marginal Utility Shocks (Coefficient of Variation ∼ .5)

• An Ec. with EVS to utility (α = .08375 Variance of shocks)

• Otherwise identical. Calibrated to have the same interest rate.

• So same size of Precautionary Savings

• Gives an idea to their strength at generating inequality.
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Increased Fanning Out
But Only in Extreme Value Shocks Economy
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Why don’t consumption errors fan out with MU shocks?

• Consider the Euler equation for the MUR model, given cash on hand y :

θc−γ = β(1 + r)Vy [(1 + r)(y − c)]

• Can show (guess and verify) that V (y , θ) = A(θ) y1−γ

1−γ for a set of constants
A(θ) with mean A =

∑
θ π(θ)A(θ). Then, solving the Euler equation yields

c∗(y , θ) = Λ(θ)y

• for a set of constants Λ(θ). Taking logs and differencing, we obtain

ln c∗(y , θ)− ln c∗(y , θ′) = ln Λ(θ)− ln Λ(θ′): independent of x!
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What about the Data?



Empirical content and discipline for our theory

• Key testable prediction

Size of log consumption errors is increasing in cash on hand

• Using PSID data, we find that this prediction is borne out.

• variance of log consumption errors increases with cash on hand

• measure by predicted consumption and computing deviations

• then group into quantiles of cash on hand and average within bin

• back to theory: this trend can be used to pin down α

• regardless of other shocks, slope increases in α

• key: shocks to marginal utility cannot explain / be disciplined by this

27
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Empirical approach: predicting consumption

Goal: flexible prediction model of consumption expenditures from PSID

Methodology: proceed in 2 steps

1. adapt Kaplan and Violante (2010) to measure log income

• 3 components: (i) permanent; (ii) AR(1); and (iii) transitory

2. estimate consumption function ln c = g(xit , ηit ,Zit) where xit is cash on
hand, ηit is a transitory shock, and Zit is a control vector

Key measurement: define residual ξit = ln cit − ĝ(xit , ηit ,Zit), then compute
variance within deciles

• implementing analogous measure in-model is trivial

Figure: empirical results
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variance within deciles

• implementing analogous measure in-model is trivial

Figure: empirical results

28



Empirical approach: predicting consumption

Goal: flexible prediction model of consumption expenditures from PSID

Methodology: proceed in 2 steps

1. adapt Kaplan and Violante (2010) to measure log income

• 3 components: (i) permanent; (ii) AR(1); and (iii) transitory

2. estimate consumption function ln c = g(xit , ηit ,Zit) where xit is cash on
hand, ηit is a transitory shock, and Zit is a control vector

Key measurement: define residual ξit = ln cit − ĝ(xit , ηit ,Zit), then compute
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variance within deciles

• implementing analogous measure in-model is trivial

Figure: empirical results
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Model approach: use slope to estimate α

ind. var. cash on hand: decile mean cash on hand: decile rank**
moment intercept slope* required α intercept slope required α

PSID data 0.1091 0.0048 - 0.0980 0.0845 -
(0.0057) (0.0007) (0.0096) (0.0167)

model with EVS shocks
EVS only 0.0742 0.0048 0.1824 0.1265 0.0845 0.3562

add in earnings risk:
iid 0.0637 0.0048 0.1635 0.1118 0.0845 0.3237
STY (2004) 0.0483 0.0048 0.1143 0.0444 0.0845 0.1441

Notes: Slopes match data to numerical precision by design. Actual regressors for decile rank regressions
are 0.05 for decile 1, 0.15 for decile 2, etc.
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Why can’t shocks to marginal utility match the data?

• Predicted consumption in the MUR model (recall earlier analysis) is

c(x) =
∑
θ

π(θ)c∗(x , θ) = Λx , where Λ =
∑
θ

π(θ)Λ(θ)

• Our measurement of deviations from predicted consumption for x are

ξ(x) ≡
∑
θ

π(θ) [ln c(x , θ)− ln c(x)]2

=
∑
θ

π(θ)

[
ln

(
Λ(θ)

Λ

)]2
: again, independent of x!

• For the EVS model, we have ξ(x) =
∫ x

0 h(c ; x) [ln c − ln c(x)]2; variance
always increases as bounds shift out with cash on hand!
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Interpreting the estimates: recalibrating non-EVS economies

What does α = 0.1143 mean? Consider the following exercise:

• solve the EVS + STY (04) economy from the last row above

• solve an Aiyagari economy with only STY (04) earnings risk

• then, increase variance of risk until economy has r∗ from EVS case

• increase in the unconditional variance of earnings risk rel. to STY (04)
baseline is a measure of the contribution of EV shocks to savings

Result: the variance of earnings risk must increase by 26-33%.

• related exercise: with mean 1 iid normally distributed marginal utility
shocks, need a standard deviation of θ of 0.465.
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Extensions



Extensions

• This framework can be easily extended in many directions with different
empirical goals in mind. For example,

1. multiple consumption goods; some with EV shocks, others not

2. different shape or correlation structures on EV shocks

3. others?

• Today, we’ll consider (1).
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A simple example: 2 goods, 2 periods

Suppose the decision problem of the household is

V (a) = max
i∈{1,...,N},c2

u1(c1i ) + u2(c2−c2) + u2(a− c1i − c2) + ηi

subject to c1i + c2 ≤ a, c2 ≥ c2

• good 1 (“EVS good / luxury”): subject to EV shocks as in baseline

• low risk aversion

• good 2 (“non-EVS good / necessity”): no EV shocks

• high risk aversion, potentially minimum threshold c2

• separable utility, future value depends only on remaining wealth

• relative price of 1 for now; trivial to change
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Decision rules: 2 goods, 2 periods

• “Fundamental:” equate all margins and use up budget:

u′1(c1) = u′2(c2 − c2) = u′2(a− c1 − c2 − c2)

• EVS: trade off c2, a
′ residually for each c1:

vi (a) ≡ u1(c1i ) + max
c2≤c2≤a−c1i−c2

u2(c2) + u2(a− c1i − c2)

=⇒ u′2 (c∗2 (c1)) = u′2 (a− c1i − c∗2 (c1)− c2))

• Then ex-ante value, decision rules defined as in the baseline.

Details
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Decision contours: 2 goods, 2 periods
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What if preferences are the same?
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Shares and errors: 2 goods, 2 periods
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Conclusion and Future
Directions



Conclusion

We have developed a theory of structural, extreme value preference shocks that
imply precautionary savings. This is a new tool.

• very different from shocks to marginal utility

• well-behaved and implies comprehensible formulas

• strong predictions about Euler equation errors as a function of wealth

• these predictions are confirmed by data

• can be used to estimate the key parameter of the EV process

• strong precautionary motive: the variance of earnings risk needs to increase
by more than 25% to match

Lots of ways to embed in existing frameworks – complementary to existing types
of shocks in precautionary savings models.
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Thank you Very Much



References Back



Log case: derivation

Guess and verify V (a) = A ln a+ B, which implies

V (a) = α ln

∫ a

0
c

1
α (a− c)

βA
α dc + βA ln(1+ r) + βB + α ln a

Then the change of variables y = c/a implies

V (a) = (1+ βA+ 2α) ln a+ α ln

∫ 1

0
y

1
α (1− y)

βA
α dy︸ ︷︷ ︸

=B(1/α+1,βA/α+1)

+βA ln(1+ r) + βB

where B is the beta function. Proceeding, we obtain

A =
1+ 2α
1− β

B =
α

1− β lnB
(
1
α

+ 1,
β(1+ 2α)
α(1− β) + 1

)
+

β

1− β
1+ 2α
1− β ln(1+ r)

Back to log case main Decision rule



Log case: decision rule

By plugging in the form of the value function from the log case, we obtain

h(c ; a) =
1
a

(
c
a

)p−1
(
(
1− c

a

)q−1
B

∼ B(p, q; [0, a])

• p = 1
α + 1 and q = β(1+2α)

α(1−β) + 1 are the shape parameters

• B is the constant from the previous slide

• B(p, q; [0, a]) is the (generalized) beta distribution with shape parameters p
and q defined over the extended interval [0, a]

Back to log case main Back to log case derivation



MU failure details (I): form of the value function

If we guess that V (x , θ) = A(θ) x1−γ

1−γ for a set of constants A(θ) with mean

A =
∑
θ π(θ)A(θ). Then, solving the Euler equation yields

c

(1 + r)(x − c)
=

[
β(1 + r)A

θ

]− 1
γ

︸ ︷︷ ︸
≡Γ(θ;A)

=⇒ c∗(x , θ) =
(1 + r)Γ(A, θ)

1 + (1 + r)Γ(A, θ)︸ ︷︷ ︸
≡Λ(θ;A)

x

Tomorrow’s cash on hand will be

x ′∗(x , θ) = (1 + r)(x − c∗(x , θ)) = (1 + r)(1− Λ(θ;A))︸ ︷︷ ︸
≡∆(θ;A)

x

and so under the guess of V (x , θ) (which implies V (x) =
∑
θ π(θ)V (x , θ) = A x1−γ

1−γ ),

max
c
θu(c) + βV ((1 + r)(x − c)) = θ

(c∗)1−γ

1− γ
+ βA

(x ′∗)1−γ

1− γ

=⇒ A(θ)
x1−γ

1− γ
=

[
θΛ(θ;A)1−γ + β∆(θ;A)1−γ

] x1−γ

1− γ

Given N levels of θ and existing expressions for A, Λ, and ∆, this is a system of N equations in
N unknowns (the A(θ)), and so it must have a unique solution.



MU failure details (II): figure

• MU shocks affect consumption share of wealth along wealth distribution in
a homogenous fashion

• make the log consumption figure streamlined, include analog for EV case.



Parameters Back: alternative economies

parameter model value notes

CRRA γ 2.0 standard

subjective discount factor β 0.96 standard for annual model

capital share λ 0.30 ”

depreciation rate δ 0.072 ”

STY (2004) earnings process

standard deviation, perm comp. STY σ(ε1) log-normal, 5-point discret

persistence, persi comp. STY ρ(ε2) AR(1), 10-point discret

st dev, pers comp. STY σ(ε2) normally distributed innovation

st dev, transitory comp. STY σ(ε3) log-normal, 5-point discret

specific to certain model variant

coef. of variation, labor productivity ER σ(ζ) 0.2 2/3 or 1% precautionary savings

coef. of variation, marginal utility MUR σ(θ) 0.328 match r from ER economy

scale parameter, simple model EVS α 0.048 ”

scale parameter, full model EVS+STY α̃ 0.114 calibration to PSID data

augmented transt earnings risk STY aug ˜σ(ε3) 0.456 match r from EVS+STY Ec

augmented marg ut risk MUR+STY ˜σ(θ) 0.465 match r from EVS+STY Ec



Figure: empirical results
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More on simple 2-good case (I)

Assume the following functional forms:

• EVS good: u1(c1) =
c
1−γ1
1
1−γ1

, γ1 low

• non-EVS good: u2(c2) =
(c2−c2)1−γ2

1−γ2
, γ2 high

• c2 ≥ 0: floor to capture the “necessity” nature of this good

• =⇒ c1 ≤ a− c2, since an Inada condition holds at c2 rather than 0

• tomorrow: u3(c ′) = (c′)1−γ
′

1−γ′ , γ′ ∈ [γ1, γ2] (or just non-EVS)

Fundamental solution: equalize marginal utilities and use up budget

c−γ1
1 = (c2 − c2)−γ2 = (a− c1 − c2)−γ

′

=⇒ c2 = c2 + c
γ1
γ2
1 =⇒ c1 + c

γ1
γ2
1 + c

γ1
γ′

1 = a− c2

Can solve for c1 via bisection, then plug into c2 expression.



More on simple 2-good case (II)

EVS solution: equalize marginal utilities only for non-EVS good and future
consumption, use up budget

(c2 − c2)−γ2 = (a− c1i − c2)−γ
′

Can solve for c∗2 (c1) via bisection, then plug back into budget to get a′∗(c1)



Formulas: 2 goods, 2 periods

The ex-ante value function and decision rules can then be defined as in the
baseline:

V (a) = α ln

∫ a

0
exp

(
vc1(a)

α

)
dc1 + α ln a

h(c1; a) =
exp

(
vc1 (a)

α

)
∫ a

0 exp
(

vc1 (a)

α

)
dc1

Note that the density over c1 induces a density over c2 via c∗2 (c1).

Back



Decision contours: 2 goods, 2 periods, same u(·) function
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