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Motivation

• Models of debt with unilateral default – both household debt and
sovereign debt – are workhorses in the quantitative literature.

• Examples include Eaton and Gersovitz (1981),Chatterjee et al. (2007), Livshits et al.

(2007), Arellano (2008)), Arellano and Ramanarayanan (2012), Arellano et al. (2019),

and many others.

• These models are often solved numerically without characterizing the
equilibrium.

• Precise characterization of trade-offs the agents face will help with
intuition, and computation of these models.

• We want to open the “black box” and describe the tradeoffs in the model
in terms of marginal costs and marginal benefits.
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What We Do

• We consider the sovereign default problem without commitment.

• We characterize equilibrium using a set of functional equations.

• The characterization relies on two decision rules (i) when to default, and
(ii) how much to borrow.

• Nevertheless, we can characterize the optimal saving decision using a
Generalized Euler Equation (EE with derivatives of future actions) which
gives similar intuition as the Euler Equation in a standard
consumption/saving problem.

• We give a formulation of optimality conditions in the long-term debt case
that does not rely on prices.

• We have characterized the problem with commitment as well (won’t talk
about it today).
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Environment: Simplest model

• Endowment ε ∈ [ε, ε] is iid with cdf F and density f.

• Borrowing of uncontingent debt in competitive lending market.

• Borrowing b > 0, debt pays coupon 1, each period a fraction λ of the debt
matures (λ = 1 short term debt).

• Standard u(c) and relative impatience, β < R−1 = p̄.

• After default, agent reverts to financial autarky.

V A(ε) = u(ε) +
β

1− β E [u(c)] = u(ε) + βv
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The Problem With Commitment



The Recursive Commitment Problem

What does it mean to have commitment

• To choose ex ante when to default.

• So no choice of default within the period.

• With Commitment Long and Short Term is the Same.

• Proof. Given one, build the other.

• Two alternative recursive timings

1 Choose today when to default tomorrow

2 Choose circumstances of when to default before realization of shock but
commitment to expected value
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Timing 1:

Ω(b, ε) = max
c,b′,ε′c

u(c) + β

∫ ε′c

ε

(u(ε) + βv) f (dε) + β

∫
εc

Ω(b′, ε′) f (dε′) s.t.

c + b = b′
[1− F (εc)]

1 + r
+ ε

Substituting in the constraints yields

Ω(b, ε) = max
b′,ε′c

u

(
b′

[1− F (ε′c)]

1 + r
+ ε− b

)
+

β

∫ ε′c

ε

(u(ε) + βv) f (dε′) + β

∫
ε′c

Ω(b′, ε′) f (dε′)
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Timing 1: FOC & Envelope

[1− F (ε′c )]

1 + r
uc

(
b′

[1− F (ε′c )]

1 + r
+ ε− b

)
= β

∫
ε′c

Ωb(b′, ε′) f (dε′)

−f (εc ) b′

1 + r
uc

(
b′

[1− F (εc )]

1 + r
+ ε− b

)
= β f (εc )

[
u(ε′c ) + βv − Ω(b′, ε′c )

]

Ωb(b, ε) = −uc

(
b′

[1− F (ε′c )]

1 + r
+ ε− b

)
so

[1− F (ε′c )]

1 + r
uc

(
b′

[1− F (ε′c )]

1 + r
+ ε− b

)
= β

∫
ε′c

uc

(
b′′

[1− F (ε′′c )]

1 + r
+ ε
′ − b′

)
dF (ε′)

or compactly

[1− F (ε′c)]

1 + r
uc = β

∫
ε′c

u′c dF (ε′)

b′

1 + r
uc = β

[
Ω(b′, ε′c)− u(ε′c)− βv

]
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Timing 2: Using Long term debt λ < 1

v(b) = max
m,εc ,c(ε),b′(ε)

{∫ εc
ε

(
u(ε) + βv

)
f (dε)+

∫
εc

u[c(ε)]f (dε) + β

∫
εc

v [b′(ε)]f (dε)

}
s.t.

b +
1− δ
r + δ

b = [1− F (εc )]m

c(ε) = ε +
b′(ε)

r + δ
− m, when ε > εc

Note that the price of debt is 1
r+δ

. Substituting in the constraints yields

v(b) = max
εc ,b′(ε)

{∫ εc
0

(
u(ε) + βv

)
f (dε)+

∫
εc

u

[
ε +

b′(ε)

r + δ
−

b 1+r
r+δ

1− F (εc )

]
f (dε) + β

∫
εc

v [b′(ε)]f (dε)

}
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Timing 2: Using Long term debt λ < 1

• Repeating the problem

v(b) = max
εc ,b′(ε)

{∫ εc
0

(
u(ε) + βv

)
f (dε)+

∫
εc

u

[
ε +
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r + δ
−

b 1+r
r+δ

1− F (εc )

]
f (dε) + β

∫
εc

v [b′(ε)]f (dε)

}

• The first order condition with respect to b′(ε) and εc are

uc (ε) = −β(r + δ) vb [b′(ε)]

u(εc ) + βv = u[c(εc )] + βv [b′(εc )] +

∫
εc

uc [c(ε)]
b 1+r
r+δ

[(1− F (εc )]2
f (dε)
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Timing 2: More Algebra

The envelop condition with respect to b gives

vb(b) = −
1 + r

r + δ

∫
εc uc [c(ε)]f (dε)

1− F (εc )

Let εc = dc (b), then forwarding the envelop condition yields

vb [b′(ε)] = −
1 + r

r + δ

∫
d [b′(ε)] uc [c(ε′)] f (dε′)

1− F (dc [b′(ε)])

Combining the FOC wrt b′(ε) and the envelop condition yields

uc [c(ε)]

(
1− F (dc [b′(ε)])

)
= β(1 + r)

∫
dc [b′(ε)]

uc [c(ε′)] f (dε′)

Let hc (b, ε) denote the choice of b′(ε), then the two policy functions are characterized by
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u[dc (b)] + βv = u

[
d(b) +

h(b, ε)

1 + r
−

b 1+r
r+δ

1− F [d(b)]

]
+ βv [h(b, ε)]

+

∫
εc

uc

[
ε +

h(b, ε)

1 + r
−

b 1+r
r+δ

1− F [d(b)]

]
b 1+r
r+δ

(1− F [d(b)])2
f (dε)

uc

[
ε +

h(b, ε)

1 + r
−

b 1+r
r+δ

1− F [d(b)]

](
1− F (d [h(b, ε)])

)
=

β(1 + r)

∫
d [h(b,ε)]

uc

[
ε
′ +

h[h(b, ε), ε′]

1 + r
−

h(b, ε) 1+r
r+δ

1− F (d [h(b, ε)])

]
f (dε′)

Or compactly if cc (ε, b) = ε +
hc (b,ε)
1+r

−
b 1+r
r+δ

1−F [εc ]

u(εc ) + βv = u
[
cc (εc , b)

]
+ βv(hc ) +

∫
εc

uc
[
cc (εc , b)

] b 1+r
r+δ

(1− F [εc ])2
f (dε),

uc
[
cc (ε, b)

]
[1− F (d′c )] = β(1 + r)

∫
d′c

uc

[
cc (ε′, h)

]
f (dε′).
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The Problem Without Commitment



Short-Term Debt

Value of honoring debt

V R(ε, b) = max
b′

{
u[ε− b + q(b′)b′] + β

∫ ε̄

ε

max
{
V R(ε′, b′),V A(ε′)

}
dF

}

Default threshold

d(b) = min {{ε : V R(ε, b) ≥ V A(ε)} ∪ {ε̄}}

Value of honoring debt becomes

V R(ε, b) = max
b′

u[ε− b + q(b′)b′] + β

∫ ε̄

d(b′)

{
V R(ε′, b′)− V A(ε′)

}
dF︸ ︷︷ ︸

value of access to credit markets

+βv̄
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Short-Term Debt: GEE

uc(c) [q(b′) + qb(b′)b′]︸ ︷︷ ︸
marginal revenue

= β

∫ ε̄

d(b′)
uc(c ′)dF

• Is this price differentiable? Almost, but not quite.
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Default Threshold

default_threshold.pdf

• For debt b > b∗ there is default risk.

• d(b) not differentiable at b∗. ∂+d(b) > 0, but ∂−d(b) = 0.

• No analytical solution for b∗, but we know it solves V R(ε, b∗) = V A(ε).
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Short-Term Debt: Bond Price

Bond Price
q(b′)

1 + r
=

[1− F (d(b))], b∗ < b′,

1, b′ ≤ b∗.

Derivative is defined for b′ 6= b∗ (inherited property of d(b) )

qb(b′)

1 + r
= −f [d(b′)] db(b′)

Marginal revenue of borrowing at b′

q(b′) + qb(b′)b′ = (1 + r){[1− F (d(b))]− f [d(b′)] db(b′) b′}

15



Short-Term Debt: Bond Price

• The kink in the price at the risk-free borrowing limit b∗ makes b∗ more
attractive.

• Agents will choose to state at b∗ to avoid lowering the price of their debt.
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Short-Term Debt: GEE

From Clausen and Strub (2020) we know either

1. b′ = b∗

2. or b′ > b∗ and solves the GEE

uc(c)[(1− F (d(b)))− f (d(b′))db(b′)b′] = βR

∫ ε̄

d(b′)
uc(c ′)dF

3. or b′ < b∗ and solves EE

uc(c) = βR

∫
uc(c ′)dF

• No need to consider the price explicitly

17



Short-Term Debt: Borrowing Policy

• Agents stay at the risk-free limit b∗ to avoid lowering price of debt

18



Long-Term Debt: What’s Different? Dilution

• Consumption with long maturity bonds

c = ε− b + q(b′) [b′ − (1− λ)b]

• Sovereign’s choice of borrowing determines the value of outstanding debt
q(b′)(1− λ)b

• Since debts can be diluted by sovereign, price today depends on future
actions. Sovereign cannot commit not to borrow more in the future.

• This is a harder problem to characterize without the price.

19
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Long-Term Debt: Government’s Problem

The value of repaying debt

V R (ε, b) = max
b′

{
u(ε− b + q(b′)

[
b′ − (1− λ)b

]
) + βW (b′)

}
= max

b′

{
u(ε− b + q(b′)

[
b′ − (1− λ)b

]
) + β

∫ ε̄

d(b′)

{
V R (ε′, b′)− V A(ε′)

}
dF + βv̄

}

What would a GEE look like (when it holds)?

uc(·)[q(b′) + qb(b′)[b′ − (1− λ)b]] = −βWb(b′)

• Depends on derivative of two objects qb(b′) and Wb(b′)
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Long-Term Debt: Continuation Value is Differentiable

Lemma. W (b′) is differentiable everywhere in b′.

W (b′) =

∫ ε̄

d(b′)
{V R(ε′, b′)− V A(ε′)}dF + βv̄

Wb(b′) =−
∫ ε̄

d(b′)
uc(c ′) [1 + (1− λ)q(b′′)]dF

• The marginal cost of an additional unit of borrowing is the expected
marginal utility loss of paying the coupon and rolling over unmatured debt
at tomorrow’s price in repayment states.
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Long-Term Debt: Bond Price

• The bond price equals discounted expected payoff of lending b′.

q(b′)

1 + r
=

∫ ε̄

ε

1{VR (ε′,b′)≥VA(ε′)} [1 + (1− λ)q(h(ε′, b′))] dF

= [1− F (d(b′))] + (1− λ)

∫ ε̄

d(b′)
q(h(ε′, b′))dF

• Price depends on both default d(b′) and future borrowing h(b′, ε′)

• Changes in the price due to d(b′) reflect default risk, those due to h(ε′, b′)

reflect dilution risk.

• Intuitively, more borrowing b′ today increases borrowing tomorrow h(ε′, b′)
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Long-Term Debt: Bond Price

What is known about the bond price?

Operator on prices

(Hq)(b′) = p̄[1− F (d(b′; q))] + p̄(1− λ)

∫ ε̄

d(b′;q)

q(h(ε′, b′; q))dF

• What do we know about this? Complicated by d(·; q) and h(·; q) being
implicit functions of q.

• Chatterjee and Eyigungor (2012) show existence of a fixed point q∗ that is
decreasing in b′.

• We want to strengthen what we can say about q(b′), since the price
derivative qb(b′) effects the marginal incentive to borrow.
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Long-Term Debt: Bond Price

• We want to understand more about the properties of the bond price.

• We impose a restriction on q(b′) that it be the limit of a finite horizon
model as T →∞.

• Specifically, we consider the price of debt in the first period of a finite
horizon model q1(b′;T ) as T becomes large

• We use backwards induction starting at qT (b′;T ) = 0 to get
qT−1(b′;T ) = p̄1{b′<0}, . . . , until q1(b′;T ).

• This is a restriction to say the q(b) of interest is the limit of a specific
sequence of functions
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Long-Term Debt: Bond Price

Bond Price

q(b′) =


p̄[1− F (d(b′))] + p̄(1− λ)

∫ ε̄
d(b′) q(h(ε′, b′))dF , b∗ < b′

p̄ + p̄(1− λ)
∫ ε̄
ε
q(h(ε′, b′))dF , 0 < b′ ≤ b∗

1
r+λ

, b′ ≤ 0

• With short-term debt (λ = 1), q(b′) = p̄ when b′ < b∗. No longer the
case with long-term debt.

• Debt will be honored next period with certainty, but is discounted for
dilution risk.

• Why? Intuitively, if there is probability of b′ > b∗ at some point (after a
sequence of bad shocks), the price today reflects this risk.

25



Long-Term Debt: Bond Price

Bond Price

q(b′) =


p̄[1− F (d(b′))] + p̄(1− λ)

∫ ε̄
d(b′) q(h(ε′, b′))dF , b∗ < b′

p̄ + p̄(1− λ)
∫ ε̄
ε
q(h(ε′, b′))dF , 0 < b′ ≤ b∗

1
r+λ

, b′ ≤ 0

• With short-term debt (λ = 1), q(b′) = p̄ when b′ < b∗. No longer the
case with long-term debt.

• Debt will be honored next period with certainty, but is discounted for
dilution risk.

• Why? Intuitively, if there is probability of b′ > b∗ at some point (after a
sequence of bad shocks), the price today reflects this risk.

25



Long-Term Debt: Bond Price

Bond Price

q(b′) =


p̄[1− F (d(b′))] + p̄(1− λ)

∫ ε̄
d(b′) q(h(ε′, b′))dF , b∗ < b′

p̄ + p̄(1− λ)
∫ ε̄
ε
q(h(ε′, b′))dF , 0 < b′ ≤ b∗

1
r+λ

, b′ ≤ 0

• With short-term debt (λ = 1), q(b′) = p̄ when b′ < b∗. No longer the
case with long-term debt.

• Debt will be honored next period with certainty, but is discounted for
dilution risk.

• Why? Intuitively, if there is probability of b′ > b∗ at some point (after a
sequence of bad shocks), the price today reflects this risk.

25



Long-Term Debt: Bond Price

• With long-term debt there is a discount for dilution risk at b′ = 0.
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Long-Term Debt: Bond Price

Derivative for b′ /∈ {0, b∗}

qb(b′) = p̄(1− λ)

∫ ε̄

d(b′)
qb(h(·))hb(·)dF︸ ︷︷ ︸

Dilution, b′>0

−p̄

Default, b′>b∗︷ ︸︸ ︷
Value of loss︷ ︸︸ ︷[

1 + (1− λ)q(h(d(b′), b′))
]Marginal P(default)︷ ︸︸ ︷

f (d(b′))db(b′)

Leads to three cases for our GEE

1 Borrowing b′ > b∗ has both default and dilution terms

2 Borrowing 0 < b′ < b∗ has dilution risk only

3 Saving b < 0 has neither
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Long-Term Debt: Bond Price

Is this dilution term well-defined? Yes∫ ε̄

d(b′)
qb(h(·))hb(·)dF

There are three types of points ε ∈ [d(b′), ε̄].

1 Points s.t. b′ /∈ {0, b∗}, and hb, qb(h) are defined.

2 Points s.t. b′ ∈ {0, b∗}, and hb = 0, ⇒ qb(h)hb = 0.

3 The remaining points where b′ ∈ {0, b∗}, and hb, hence the integrand
qb(h)hb, is not well-defined.

The last set of points has zero measure.
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Long-Term Debt: Eliminating qb(b
′)

Use value of qb implied by GEE, call it B(h, d , q)

qb = B(h, d ′, q) =

∫
d′ uc [1 + (1− λ)q′]dF − uc(c)q

uc [h − (1− λ)b]

Substitute this into the expression for the bond price derivative

qb
1 + r

= (1− λ)

∫ ε̄

d(b′)
B(h′, d ′′, q′)hbdF − [1 + (1− λ)q̃] f (d)db

Substitute back into GEE

uc (c)

[
q(b′)+

{
p̄(1− λ)

∫ ε̄
d(b′)

B(h′, d′′, q′)hbdF − p̄ [1 + (1− λ)q̃] f (d)db

}
[b′ − (1− λ)b]

]

= β

∫ ε̄
d(b′)

uc (c′)[1 + (1− λ)q(b′′)]dF
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Long-Term Debt: GEE Effects

uc(c)

[ consumption gain from marginal borrowing︷ ︸︸ ︷
q(b′) +{

p̄(1− λ)

∫ ε̄

d(b′)
B(h′, d ′′, q′)hbdF

}
︸ ︷︷ ︸

dilution, b′>0

[b′ − (1− λ)b]

−
{
p̄ [1 + (1− λ)q̃] f (d)db

}
︸ ︷︷ ︸

default, b′>b∗

[b′ − (1− λ)b]

]

= β

∫ ε̄

d(b′)
uc(c ′)[1 + (1− λ)q(b′′)]dF

Two borrowing regions that reflect different risks to creditors:

1 b′ > b∗ the GEE reflects both default and dilution risk

2 0 < b
′
< b∗ the GEE reflects only dilution risk
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Long-Term Debt: GEE and Borrowing Policy

uc(c)[q(b′) + qb(b′)[b′ − (1− λ)b]] = β

∫ ε̄

d(b′)
uc(c ′)[1 + (1− λ)q(b′′)]dF

The borrowing policy b′ = h(ε, b) satisfies:

1. b′ > b∗ and solves the GEE1 (dilution and default risk)

2. b′ = b∗

3. 0 < b′ < b∗ and solves the GEE2 (only dilution risk)

4. b′ = 0

5. b′ < 0 and solves the EE
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Long-Term Debt: Borrowing Policy

• Agents wait to borrow, due to dilution lowering the price of borrowing.

• As with short-term debt, agents stay at risky borrowing limit b∗.

32



Long-Term Debt: Borrowing Policy

• Agents wait to borrow, due to dilution lowering the price of borrowing.

• As with short-term debt, agents stay at risky borrowing limit b∗.

32



Long-Term Debt: Default Threshold

We can take a closer look at the derivative of the default threshold

db(b′) =
uc(c(d(b′), b′))[1 + (1− λ)q(b′′)]

uc(c(d(b′), b′))− uc(d(b′))
> 1

• Numerator is marginal utility loss from additional debt after repayment.

• Denominator cost, in terms of marginal utility, to maintain access to
financial markets.
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Long-Term Debt: Summary

We can describe equilibrium as set of functional equations in h and d

• Auxiliary Functions

q(h(ε, b)) = p̄

{
[1− F (d)] + (1− λ)

∫
d

q(h(h))dF

}
B(ε, b; h, d, q) =

∫
d′ uc [1 + (1− λ)q′]dF − ucq

uc [h − (1− λ)b]

V R (ε, b) = u(ε− bq[h − (1− λ)b) +

∫
d

V R − V AdF + βv̄

• Equilibrium functional equations

uc (c)

[
q(b′)+

{
p̄(1− λ)

∫ ε̄
d(b′)

B(h′, d′′, q′)hbdF − p̄ [1 + (1− λ)q̃] f (d)db

}
[b′ − (1− λ)b]

]

= β

∫ ε̄
d(b′)

uc (c′)[1 + (1− λ)q(b′′)]dF

VR (d, ε) = VA(d), VR (ε, b∗) = VA(ε)
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Computation

• The most common way to solve these models is value function iteration on
a discrete grid. Very slow. Need to iterate between V (ε, b; q) and q.

• Arellano et al. (2016) use euler equation to solve short-term debt problem
numerically, but assume the GEE always holds.

• Hatchondo et al. (2010) compare various VFI algorithms to solve the
short-term debt problem, but assess their accuracy using Euler residuals.

• Our characterization suggests using a numerical approach based on the
GEE and auxiliary equations
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Conclusion

• We characterized the equilibrium of unilateral default problem without
commitment.

• If marginal revenue is well-defined, the GEE describes the optimal
borrowing policy.

• The GEE fails to capture tradeoffs at choices where the price is not
differentiable, but we can still describe the optimal policy.

• Thank you!
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