The Generalized Euler Equation and the

 Bankruptcy-Sovereign Default ProblemBased on Stuff by
Xavier Mateos-Planas Sean McCrary Jose-Victor Rios-Rull and Adrien Wicht

February 21, 2022

Econ 712, 2022

Motivation

- Models of debt with unilateral default - both household debt and sovereign debt - are workhorses in the quantitative literature.

Motivation

- Models of debt with unilateral default - both household debt and sovereign debt - are workhorses in the quantitative literature.
- Examples include Eaton and Gersovitz (1981),Chatterjee et al. (2007), Livshits et al. (2007), Arellano (2008)), Arellano and Ramanarayanan (2012), Arellano et al. (2019), and many others.

Motivation

- Models of debt with unilateral default - both household debt and sovereign debt - are workhorses in the quantitative literature.
- Examples include Eaton and Gersovitz (1981),Chatterjee et al. (2007), Livshits et al. (2007), Arellano (2008)), Arellano and Ramanarayanan (2012), Arellano et al. (2019), and many others.
- These models are often solved numerically without characterizing the equilibrium.

Motivation

- Models of debt with unilateral default - both household debt and sovereign debt - are workhorses in the quantitative literature.
- Examples include Eaton and Gersovitz (1981),Chatterjee et al. (2007), Livshits et al. (2007), Arellano (2008)), Arellano and Ramanarayanan (2012), Arellano et al. (2019), and many others.
- These models are often solved numerically without characterizing the equilibrium.
- Precise characterization of trade-offs the agents face will help with intuition, and computation of these models.

Motivation

- Models of debt with unilateral default - both household debt and sovereign debt - are workhorses in the quantitative literature.
- Examples include Eaton and Gersovitz (1981),Chatterjee et al. (2007), Livshits et al. (2007), Arellano (2008)), Arellano and Ramanarayanan (2012), Arellano et al. (2019), and many others.
- These models are often solved numerically without characterizing the equilibrium.
- Precise characterization of trade-offs the agents face will help with intuition, and computation of these models.
- We want to open the "black box" and describe the tradeoffs in the model in terms of marginal costs and marginal benefits.

What We Do

- We consider the sovereign default problem without commitment.

What We Do

- We consider the sovereign default problem without commitment.
- We characterize equilibrium using a set of functional equations.

What We Do

- We consider the sovereign default problem without commitment.
- We characterize equilibrium using a set of functional equations.
- The characterization relies on two decision rules (i) when to default, and (ii) how much to borrow.

What We Do

- We consider the sovereign default problem without commitment.
- We characterize equilibrium using a set of functional equations.
- The characterization relies on two decision rules (i) when to default, and (ii) how much to borrow.
- Nevertheless, we can characterize the optimal saving decision using a Generalized Euler Equation (EE with derivatives of future actions) which gives similar intuition as the Euler Equation in a standard consumption/saving problem.

What We Do

- We consider the sovereign default problem without commitment.
- We characterize equilibrium using a set of functional equations.
- The characterization relies on two decision rules (i) when to default, and (ii) how much to borrow.
- Nevertheless, we can characterize the optimal saving decision using a Generalized Euler Equation (EE with derivatives of future actions) which gives similar intuition as the Euler Equation in a standard consumption/saving problem.
- We give a formulation of optimality conditions in the long-term debt case that does not rely on prices.

What We Do

- We consider the sovereign default problem without commitment.
- We characterize equilibrium using a set of functional equations.
- The characterization relies on two decision rules (i) when to default, and (ii) how much to borrow.
- Nevertheless, we can characterize the optimal saving decision using a Generalized Euler Equation (EE with derivatives of future actions) which gives similar intuition as the Euler Equation in a standard consumption/saving problem.
- We give a formulation of optimality conditions in the long-term debt case that does not rely on prices.
- We have characterized the problem with commitment as well (won't talk about it today).

Environment: Simplest model

- Endowment $\epsilon \in[\epsilon, \bar{\epsilon}]$ is iid with $\operatorname{cdf} \mathrm{F}$ and density f .

$$
V^{A}(\epsilon)=u(\epsilon)+\frac{\beta}{1-\beta} E[u(c)]=u(\epsilon)+\beta \bar{v}
$$

Environment: Simplest model

- Endowment $\epsilon \in[\epsilon, \bar{\epsilon}]$ is iid with $\operatorname{cdf} \mathrm{F}$ and density f .
- Borrowing of uncontingent debt in competitive lending market.

$$
V^{A}(\epsilon)=u(\epsilon)+\frac{\beta}{1-\beta} E[u(c)]=u(\epsilon)+\beta \bar{v}
$$

Environment: Simplest model

- Endowment $\epsilon \in[\underline{\epsilon}, \bar{\epsilon}]$ is iid with $\operatorname{cdf} \mathrm{F}$ and density f .
- Borrowing of uncontingent debt in competitive lending market.
- Borrowing $b>0$, debt pays coupon 1 , each period a fraction λ of the debt matures ($\lambda=1$ short term debt).

$$
V^{A}(\epsilon)=u(\epsilon)+\frac{\beta}{1-\beta} E[u(c)]=u(\epsilon)+\beta \bar{v}
$$

Environment: Simplest model

- Endowment $\epsilon \in[\epsilon, \bar{\epsilon}]$ is iid with $\operatorname{cdf} \mathrm{F}$ and density f .
- Borrowing of uncontingent debt in competitive lending market.
- Borrowing $b>0$, debt pays coupon 1 , each period a fraction λ of the debt matures ($\lambda=1$ short term debt).
- Standard $u(c)$ and relative impatience, $\beta<R^{-1}=\bar{p}$.

$$
V^{A}(\epsilon)=u(\epsilon)+\frac{\beta}{1-\beta} E[u(c)]=u(\epsilon)+\beta \bar{v}
$$

Environment: Simplest model

- Endowment $\epsilon \in[\underline{\epsilon}, \bar{\epsilon}]$ is iid with $\operatorname{cdf} F$ and density f.
- Borrowing of uncontingent debt in competitive lending market.
- Borrowing $b>0$, debt pays coupon 1 , each period a fraction λ of the debt matures ($\lambda=1$ short term debt).
- Standard $u(c)$ and relative impatience, $\beta<R^{-1}=\bar{p}$.
- After default, agent reverts to financial autarky.

$$
V^{A}(\epsilon)=u(\epsilon)+\frac{\beta}{1-\beta} E[u(c)]=u(\epsilon)+\beta \bar{v}
$$

The Problem With Commitment

The Recursive Commitment Problem

What does it mean to have commitment

- To choose ex ante when to default.

The Recursive Commitment Problem

What does it mean to have commitment

- To choose ex ante when to default.
- So no choice of default within the period.

The Recursive Commitment Problem

What does it mean to have commitment

- To choose ex ante when to default.
- So no choice of default within the period.
- With Commitment Long and Short Term is the Same.

The Recursive Commitment Problem

What does it mean to have commitment

- To choose ex ante when to default.
- So no choice of default within the period.
- With Commitment Long and Short Term is the Same.
- Proof. Given one, build the other.

The Recursive Commitment Problem

What does it mean to have commitment

- To choose ex ante when to default.
- So no choice of default within the period.
- With Commitment Long and Short Term is the Same.
- Proof. Given one, build the other.
- Two alternative recursive timings

The Recursive Commitment Problem

What does it mean to have commitment

- To choose ex ante when to default.
- So no choice of default within the period.
- With Commitment Long and Short Term is the Same.
- Proof. Given one, build the other.
- Two alternative recursive timings
(1) Choose today when to default tomorrow

The Recursive Commitment Problem

What does it mean to have commitment

- To choose ex ante when to default.
- So no choice of default within the period.
- With Commitment Long and Short Term is the Same.
- Proof. Given one, build the other.
- Two alternative recursive timings
(1) Choose today when to default tomorrow
(2) Choose circumstances of when to default before realization of shock but commitment to expected value

Timing 1:

$$
\begin{aligned}
\Omega(b, \epsilon)= & \max _{c, b^{\prime} \epsilon^{\prime} c} u(c)+\beta \int_{\underline{\epsilon}}^{\epsilon^{\prime c}}(u(\epsilon)+\beta \bar{v}) f(d \epsilon)+\beta \int_{\epsilon^{c}} \Omega\left(b^{\prime}, \epsilon^{\prime}\right) f\left(d \epsilon^{\prime}\right) \text { s.t. } \\
& c+b=b^{\prime} \frac{\left[1-F\left(\epsilon^{c}\right)\right]}{1+r}+\epsilon
\end{aligned}
$$

Substituting in the constraints yields

$$
\begin{aligned}
& \Omega(b, \epsilon)=\max _{b^{\prime}, \epsilon^{\prime} c} u\left(b^{\prime} \frac{\left[1-F\left(\epsilon^{\prime c}\right)\right]}{1+r}+\epsilon-b\right)+ \\
& \quad \beta \int_{\underline{\epsilon}}^{\epsilon^{\prime \prime}}(u(\epsilon)+\beta \bar{v}) f\left(d \epsilon^{\prime}\right)+\beta \int_{\epsilon^{\prime} c} \Omega\left(b^{\prime}, \epsilon^{\prime}\right) f\left(d \epsilon^{\prime}\right)
\end{aligned}
$$

Timing 1: FOC \& Envelope

$$
\begin{aligned}
\frac{\left[1-F\left(\epsilon^{\prime c}\right)\right]}{1+r} u_{c}\left(b^{\prime} \frac{\left[1-F\left(\epsilon^{\prime c}\right)\right]}{1+r}+\epsilon-b\right) & =\beta \int_{\epsilon^{\prime c}} \Omega_{b}\left(b^{\prime}, \epsilon^{\prime}\right) f\left(d \epsilon^{\prime}\right) \\
\frac{-f\left(\epsilon^{c}\right) b^{\prime}}{1+r} u_{c}\left(b^{\prime} \frac{\left[1-F\left(\epsilon^{c}\right)\right]}{1+r}+\epsilon-b\right) & =\beta f\left(\epsilon^{c}\right)\left[u\left(\epsilon^{\prime c}\right)+\beta \bar{v}-\Omega\left(b^{\prime}, \epsilon^{\prime c}\right)\right] \\
\Omega_{b}(b, \epsilon) & =-u_{c}\left(b^{\prime} \frac{\left[1-F\left(\epsilon^{\prime c}\right)\right]}{1+r}+\epsilon-b\right) \text { so } \\
\frac{\left[1-F\left(\epsilon^{\prime c}\right)\right]}{1+r} u_{c}\left(b^{\prime} \frac{\left[1-F\left(\epsilon^{\prime c}\right)\right]}{1+r}+\epsilon-b\right) & =\beta \int_{\epsilon^{\prime c}} u_{c}\left(b^{\prime \prime} \frac{\left[1-F\left(\epsilon^{\prime \prime c}\right)\right]}{1+r}+\epsilon^{\prime}-b^{\prime}\right) d F\left(\epsilon^{\prime}\right)
\end{aligned}
$$

or compactly

$$
\begin{aligned}
\frac{\left[1-F\left(\epsilon^{\prime c}\right)\right]}{1+r} u_{c} & =\beta \int_{\epsilon^{\prime c}} u_{c}^{\prime} d F\left(\epsilon^{\prime}\right) \\
\frac{b^{\prime}}{1+r} u_{c} & =\beta\left[\Omega\left(b^{\prime}, \epsilon^{\prime c}\right)-u\left(\epsilon^{\prime c}\right)-\beta \bar{v}\right]
\end{aligned}
$$

Timing 2: Using Long term debt $\lambda<1$

$$
v(b)=\max _{m, \epsilon^{c}, c(\epsilon), b^{\prime}(\epsilon)}\left\{\int_{\underline{\epsilon}}^{\epsilon^{c}}(u(\epsilon)+\beta \bar{v}) f(d \epsilon)+\quad \int_{\epsilon^{c}} u[c(\epsilon)] f(d \epsilon)+\beta \int_{\epsilon^{c}} v\left[b^{\prime}(\epsilon)\right] f(d \epsilon)\right\} \quad \text { s.t. }
$$

Timing 2: Using Long term debt $\lambda<1$

$$
\begin{aligned}
v(b)= & \max _{m, \epsilon^{c}, c(\epsilon), b^{\prime}(\epsilon)}\left\{\int_{\underline{\epsilon}}^{\epsilon^{c}}(u(\epsilon)+\beta \bar{v}) f(d \epsilon)+\int_{\epsilon^{c}} u[c(\epsilon)] f(d \epsilon)+\beta \int_{\epsilon^{c}} v\left[b^{\prime}(\epsilon)\right] f(d \epsilon)\right\} \\
b+\frac{1-\delta}{r+\delta} b & =\left[1-F\left(\epsilon^{c}\right)\right] m \\
c(\epsilon) & =\epsilon+\frac{b^{\prime}(\epsilon)}{r+\delta}-m, \quad \text { when } \epsilon>\epsilon^{c}
\end{aligned}
$$

Timing 2: Using Long term debt $\lambda<1$

$$
\begin{gathered}
v(b)=\max _{m, \epsilon^{c}, c(\epsilon), b^{\prime}(\epsilon)}\left\{\int_{\underline{\epsilon}}^{\epsilon^{c}}(u(\epsilon)+\beta \bar{v}) f(d \epsilon)+\int_{\epsilon^{c}} u[c(\epsilon)] f(d \epsilon)+\beta \int_{\epsilon^{c}} v\left[b^{\prime}(\epsilon)\right] f(d \epsilon)\right\} \text { s.t. } \\
b+\frac{1-\delta}{r+\delta} b=\left[1-F\left(\epsilon^{c}\right)\right] m \\
c(\epsilon)=\epsilon+\frac{b^{\prime}(\epsilon)}{r+\delta}-m, \quad \text { when } \epsilon>\epsilon^{c}
\end{gathered}
$$

Note that the price of debt is $\frac{1}{r+\delta}$. Substituting in the constraints yields

$$
\begin{aligned}
v(b)= & \max _{\epsilon^{c}, b^{\prime}(\epsilon)}\left\{\int_{0}^{\epsilon^{c}}(u(\epsilon)+\beta \bar{v}) f(d \epsilon)+\right. \\
& \left.\int_{\epsilon^{c}} u\left[\epsilon+\frac{b^{\prime}(\epsilon)}{r+\delta}-\frac{b \frac{1+r}{r+\delta}}{1-F\left(\epsilon^{c}\right)}\right] f(d \epsilon)+\beta \int_{\epsilon^{c}} v\left[b^{\prime}(\epsilon)\right] f(d \epsilon)\right\}
\end{aligned}
$$

Timing 2: Using Long term debt $\lambda<1$

- Repeating the problem

$$
\begin{aligned}
& v(b)=\max _{\epsilon^{c}, b^{\prime}(\epsilon)}\left\{\int_{0}^{\epsilon^{c}}(u(\epsilon)+\beta \bar{v}) f(d \epsilon)+\right. \\
&\left.\int_{\epsilon^{c}} u\left[\epsilon+\frac{b^{\prime}(\epsilon)}{r+\delta}-\frac{b \frac{\mathbf{1}+r}{r+\delta}}{1-F\left(\epsilon^{c}\right)}\right] f(d \epsilon)+\beta \int_{\epsilon^{c}} v\left[b^{\prime}(\epsilon)\right] f(d \epsilon)\right\}
\end{aligned}
$$

Timing 2: Using Long term debt $\lambda<1$

- Repeating the problem

$$
\begin{aligned}
& v(b)=\max _{\epsilon^{c}, b^{\prime}(\epsilon)}\left\{\int_{0}^{\epsilon^{c}}(u(\epsilon)+\beta \bar{v}) f(d \epsilon)+\right. \\
&\left.\int_{\epsilon^{c}} u\left[\epsilon+\frac{b^{\prime}(\epsilon)}{r+\delta}-\frac{b \frac{\mathbf{1}+r}{r+\delta}}{1-F\left(\epsilon^{c}\right)}\right] f(d \epsilon)+\beta \int_{\epsilon^{c}} v\left[b^{\prime}(\epsilon)\right] f(d \epsilon)\right\}
\end{aligned}
$$

- The first order condition with respect to $b^{\prime}(\epsilon)$ and ϵ^{c} are

$$
\begin{aligned}
u_{c}(\epsilon) & =-\beta(r+\delta) v_{b}\left[b^{\prime}(\epsilon)\right] \\
u\left(\epsilon^{c}\right)+\beta \bar{v} & =u\left[c\left(\epsilon^{c}\right)\right]+\beta v\left[b^{\prime}\left(\epsilon^{c}\right)\right]+\int_{\epsilon^{c}} u_{c}[c(\epsilon)] \frac{b \frac{1+r}{r+\delta}}{\left[\left(1-F\left(\epsilon^{c}\right)\right]^{2}\right.} f(d \epsilon)
\end{aligned}
$$

Timing 2: More Algebra

The envelop condition with respect to b gives

$$
v_{b}(b)=-\frac{1+r}{r+\delta} \frac{\int_{\epsilon} c u_{c}[c(\epsilon)] f(d \epsilon)}{1-F\left(\epsilon^{c}\right)}
$$

Let $\epsilon^{c}=d^{c}(b)$, then forwarding the envelop condition yields

$$
v_{b}\left[b^{\prime}(\epsilon)\right]=-\frac{1+r}{r+\delta} \quad \frac{\int_{d\left[b^{\prime}(\epsilon)\right]} u_{c}\left[c\left(\epsilon^{\prime}\right)\right] f\left(d \epsilon^{\prime}\right)}{1-F\left(d^{c}\left[b^{\prime}(\epsilon)\right]\right)}
$$

Combining the FOC wrt $b^{\prime}(\epsilon)$ and the envelop condition yields

$$
u_{c}[c(\epsilon)]\left(1-F\left(d^{c}\left[b^{\prime}(\epsilon)\right]\right)\right)=\beta(1+r) \int_{d^{c}\left[b^{\prime}(\epsilon)\right]} u_{c}\left[c\left(\epsilon^{\prime}\right)\right] f\left(d \epsilon^{\prime}\right)
$$

Let $h^{c}(b, \epsilon)$ denote the choice of $b^{\prime}(\epsilon)$, then the two policy functions are characterized by

$$
\begin{aligned}
& \begin{aligned}
& u\left[d^{c}(b)\right]+\beta \bar{v}=u\left[d(b)+\frac{h(b, \epsilon)}{1+r}-\right.\left.\frac{b \frac{1+r}{r+\delta}}{1-F[d(b)]}\right]+\beta v[h(b, \epsilon)] \\
&+\int_{\epsilon^{c}} u_{c}\left[\epsilon+\frac{h(b, \epsilon)}{1+r}-\frac{b \frac{1+r}{r+\delta}}{1-F[d(b)]}\right] \frac{b \frac{1+r}{r+\delta}}{(1-F[d(b)])^{2}} f(d \epsilon) \\
& u_{c}\left[\epsilon+\frac{h(b, \epsilon)}{1+r}-\frac{b \frac{1+r}{r+\delta}}{1-F[d(b)]}\right](1-F(d[h(b, \epsilon)]))=
\end{aligned}
\end{aligned}
$$

$$
\beta(1+r) \int_{d[h(b, \epsilon)]} u_{c}\left[\epsilon^{\prime}+\frac{h\left[h(b, \epsilon), \epsilon^{\prime}\right]}{1+r}-\frac{h(b, \epsilon) \frac{1+r}{r+\delta}}{1-F(d[h(b, \epsilon)])}\right] f\left(d \epsilon^{\prime}\right)
$$

Or compactly if $c^{c}(\epsilon, b)=\epsilon+\frac{h^{c}(b, \epsilon)}{1+r}-\frac{b \frac{1+r}{r+\delta}}{1-F\left[\epsilon^{c}\right]}$

$$
\begin{aligned}
& u\left(\epsilon^{c}\right)+\beta v=u\left[c^{c}\left(\epsilon^{c}, b\right)\right]+\beta v\left(h^{c}\right)+\int_{\epsilon^{c}} u_{c}\left[c^{c}\left(\epsilon^{c}, b\right)\right] \frac{b \frac{1+r}{r+\delta}}{\left(1-F\left[\epsilon^{c}\right]\right)^{2}} f(d \epsilon), \\
& u_{c}\left[c^{c}(\epsilon, b)\right]\left[1-F\left(d^{\prime c}\right)\right]=\beta(1+r) \int_{d^{\prime} c} u_{c}\left[c^{c}\left(\epsilon^{\prime}, h\right)\right] f\left(d \epsilon^{\prime}\right) .
\end{aligned}
$$

The Problem Without Commitment

Short-Term Debt

Value of honoring debt

$$
V^{R}(\epsilon, b)=\max _{b^{\prime}}\left\{u\left[\epsilon-b+q\left(b^{\prime}\right) b^{\prime}\right]+\beta \int_{\underline{\epsilon}}^{\bar{\epsilon}} \max \left\{V^{R}\left(\epsilon^{\prime}, b^{\prime}\right), V^{A}\left(\epsilon^{\prime}\right)\right\} d F\right\}
$$

Short-Term Debt

Value of honoring debt

$$
V^{R}(\epsilon, b)=\max _{b^{\prime}}\left\{u\left[\epsilon-b+q\left(b^{\prime}\right) b^{\prime}\right]+\beta \int_{\underline{\epsilon}}^{\bar{\epsilon}} \max \left\{V^{R}\left(\epsilon^{\prime}, b^{\prime}\right), V^{A}\left(\epsilon^{\prime}\right)\right\} d F\right\}
$$

Default threshold

$$
d(b)=\min \left\{\left\{\epsilon: V^{R}(\epsilon, b) \geq V^{A}(\epsilon)\right\} \cup\{\bar{\epsilon}\}\right\}
$$

Short-Term Debt

Value of honoring debt

$$
V^{R}(\epsilon, b)=\max _{b^{\prime}}\left\{u\left[\epsilon-b+q\left(b^{\prime}\right) b^{\prime}\right]+\beta \int_{\underline{\epsilon}}^{\bar{\epsilon}} \max \left\{V^{R}\left(\epsilon^{\prime}, b^{\prime}\right), V^{A}\left(\epsilon^{\prime}\right)\right\} d F\right\}
$$

Default threshold

$$
d(b)=\min \left\{\left\{\epsilon: V^{R}(\epsilon, b) \geq V^{A}(\epsilon)\right\} \cup\{\bar{\epsilon}\}\right\}
$$

Value of honoring debt becomes

$$
V^{R}(\epsilon, b)=\max _{b^{\prime}}\{u\left[\epsilon-b+q\left(b^{\prime}\right) b^{\prime}\right]+\beta \underbrace{\int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}}\left\{V^{R}\left(\epsilon^{\prime}, b^{\prime}\right)-V^{A}\left(\epsilon^{\prime}\right)\right\} d F}_{\text {value of access to credit markets }}+\beta \bar{v}\}
$$

Short-Term Debt: GEE

$$
u_{c}(c) \underbrace{\left[q\left(b^{\prime}\right)+q_{b}\left(b^{\prime}\right) b^{\prime}\right]}_{\text {marginal revenue }}=\beta \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} u_{c}\left(c^{\prime}\right) d F
$$

- Is this price differentiable? Almost, but not quite.

Default Threshold

- For debt $b>b^{*}$ there is default risk.

Default Threshold

- For debt $b>b^{*}$ there is default risk.
- $d(b)$ not differentiable at $b^{*} . \partial^{+} d(b)>0$, but $\partial^{-} d(b)=0$.

Default Threshold

- For debt $b>b^{*}$ there is default risk.
- $d(b)$ not differentiable at $b^{*} . \partial^{+} d(b)>0$, but $\partial^{-} d(b)=0$.
- No analytical solution for b^{*}, but we know it solves $V^{R}\left(\underline{\epsilon}, b^{*}\right)=V^{A}(\underline{\epsilon})$.

Short-Term Debt: Bond Price

Bond Price

$$
\frac{q\left(b^{\prime}\right)}{1+r}= \begin{cases}{[1-F(d(b))],} & b^{*}<b^{\prime} \\ 1, & b^{\prime} \leq b^{*}\end{cases}
$$

Derivative is defined for $b^{\prime} \neq b^{*}$ (inherited property of $d(b)$)

$$
\frac{q_{b}\left(b^{\prime}\right)}{1+r}=-f\left[d\left(b^{\prime}\right)\right] d_{b}\left(b^{\prime}\right)
$$

Marginal revenue of borrowing at b^{\prime}

$$
q\left(b^{\prime}\right)+q_{b}\left(b^{\prime}\right) b^{\prime}=(1+r)\left\{[1-F(d(b))]-f\left[d\left(b^{\prime}\right)\right] d_{b}\left(b^{\prime}\right) b^{\prime}\right\}
$$

Short-Term Debt: Bond Price

- The kink in the price at the risk-free borrowing limit b^{*} makes b^{*} more attractive.

Short-Term Debt: Bond Price

- The kink in the price at the risk-free borrowing limit b^{*} makes b^{*} more attractive.
- Agents will choose to state at b^{*} to avoid lowering the price of their debt.

Short-Term Debt: GEE

From Clausen and Strub (2020) we know either

1. $b^{\prime}=b^{*}$
2. or $b^{\prime}>b^{*}$ and solves the GEE

$$
u_{c}(c)\left[(1-F(d(b)))-f\left(d\left(b^{\prime}\right)\right) d_{b}\left(b^{\prime}\right) b^{\prime}\right]=\beta R \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} u_{c}\left(c^{\prime}\right) d F
$$

3. or $b^{\prime}<b^{*}$ and solves EE

$$
u_{c}(c)=\beta R \int u_{c}\left(c^{\prime}\right) d F
$$

- No need to consider the price explicitly

Short-Term Debt: Borrowing Policy

- Agents stay at the risk-free limit b^{*} to avoid lowering price of debt

Long-Term Debt: What's Different? Dilution

- Consumption with long maturity bonds

$$
c=\epsilon-b+q\left(b^{\prime}\right)\left[b^{\prime}-(1-\lambda) b\right]
$$

Long-Term Debt: What's Different? Dilution

- Consumption with long maturity bonds

$$
c=\epsilon-b+q\left(b^{\prime}\right)\left[b^{\prime}-(1-\lambda) b\right]
$$

- Sovereign's choice of borrowing determines the value of outstanding debt $q\left(b^{\prime}\right)(1-\lambda) b$

Long-Term Debt: What's Different? Dilution

- Consumption with long maturity bonds

$$
c=\epsilon-b+q\left(b^{\prime}\right)\left[b^{\prime}-(1-\lambda) b\right]
$$

- Sovereign's choice of borrowing determines the value of outstanding debt $q\left(b^{\prime}\right)(1-\lambda) b$
- Since debts can be diluted by sovereign, price today depends on future actions. Sovereign cannot commit not to borrow more in the future.

Long-Term Debt: What's Different? Dilution

- Consumption with long maturity bonds

$$
c=\epsilon-b+q\left(b^{\prime}\right)\left[b^{\prime}-(1-\lambda) b\right]
$$

- Sovereign's choice of borrowing determines the value of outstanding debt $q\left(b^{\prime}\right)(1-\lambda) b$
- Since debts can be diluted by sovereign, price today depends on future actions. Sovereign cannot commit not to borrow more in the future.
- This is a harder problem to characterize without the price.

Long-Term Debt: Government's Problem

The value of repaying debt

$$
\begin{aligned}
V^{R}(\epsilon, b) & =\max _{b^{\prime}}\left\{u\left(\epsilon-b+q\left(b^{\prime}\right)\left[b^{\prime}-(1-\lambda) b\right]\right)+\beta W\left(b^{\prime}\right)\right\} \\
& =\max _{b^{\prime}}\left\{u\left(\epsilon-b+q\left(b^{\prime}\right)\left[b^{\prime}-(1-\lambda) b\right]\right)+\beta \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}}\left\{V^{R}\left(\epsilon^{\prime}, b^{\prime}\right)-V^{A}\left(\epsilon^{\prime}\right)\right\} d F+\beta \bar{v}\right\}
\end{aligned}
$$

What would a GEE look like (when it holds)?

$$
u_{c}(\cdot)\left[q\left(b^{\prime}\right)+q_{b}\left(b^{\prime}\right)\left[b^{\prime}-(1-\lambda) b\right]\right]=-\beta W_{b}\left(b^{\prime}\right)
$$

- Depends on derivative of two objects $q_{b}\left(b^{\prime}\right)$ and $W_{b}\left(b^{\prime}\right)$

Long-Term Debt: Continuation Value is Differentiable

Lemma. $W\left(b^{\prime}\right)$ is differentiable everywhere in b^{\prime}.

$$
\begin{aligned}
& W\left(b^{\prime}\right)=\int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}}\left\{V^{R}\left(\epsilon^{\prime}, b^{\prime}\right)-V^{A}\left(\epsilon^{\prime}\right)\right\} d F+\beta \bar{v} \\
& W_{b}\left(b^{\prime}\right)=-\int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} u_{c}\left(c^{\prime}\right)\left[1+(1-\lambda) q\left(b^{\prime \prime}\right)\right] d F
\end{aligned}
$$

- The marginal cost of an additional unit of borrowing is the expected marginal utility loss of paying the coupon and rolling over unmatured debt at tomorrow's price in repayment states.

Long-Term Debt: Bond Price

- The bond price equals discounted expected payoff of lending b^{\prime}.

$$
\begin{aligned}
\frac{q\left(b^{\prime}\right)}{1+r} & =\int_{\underline{\epsilon}}^{\bar{\epsilon}} 1_{\left\{V R\left(\epsilon^{\prime}, b^{\prime}\right) \geq V A\left(\epsilon^{\prime}\right)\right\}}\left[1+(1-\lambda) q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right)\right] d F \\
& =\left[1-F\left(d\left(b^{\prime}\right)\right)\right]+(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F
\end{aligned}
$$

Long-Term Debt: Bond Price

- The bond price equals discounted expected payoff of lending b^{\prime}.

$$
\begin{aligned}
\frac{q\left(b^{\prime}\right)}{1+r} & =\int_{\underline{\epsilon}}^{\bar{\epsilon}} 1_{\left\{V R\left(\epsilon^{\prime}, b^{\prime}\right) \geq V A\left(\epsilon^{\prime}\right)\right\}}\left[1+(1-\lambda) q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right)\right] d F \\
& =\left[1-F\left(d\left(b^{\prime}\right)\right)\right]+(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F
\end{aligned}
$$

- Price depends on both default $d\left(b^{\prime}\right)$ and future borrowing $h\left(b^{\prime}, \epsilon^{\prime}\right)$

Long-Term Debt: Bond Price

- The bond price equals discounted expected payoff of lending b^{\prime}.

$$
\begin{aligned}
\frac{q\left(b^{\prime}\right)}{1+r} & =\int_{\underline{\epsilon}}^{\bar{\epsilon}} 1_{\left\{V^{R}\left(\epsilon^{\prime}, b^{\prime}\right) \geq V^{A}\left(\epsilon^{\prime}\right)\right\}}\left[1+(1-\lambda) q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right)\right] d F \\
& =\left[1-F\left(d\left(b^{\prime}\right)\right)\right]+(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F
\end{aligned}
$$

- Price depends on both default $d\left(b^{\prime}\right)$ and future borrowing $h\left(b^{\prime}, \epsilon^{\prime}\right)$
- Changes in the price due to $d\left(b^{\prime}\right)$ reflect default risk, those due to $h\left(\epsilon^{\prime}, b^{\prime}\right)$ reflect dilution risk.

Long-Term Debt: Bond Price

- The bond price equals discounted expected payoff of lending b^{\prime}.

$$
\begin{aligned}
\frac{q\left(b^{\prime}\right)}{1+r} & =\int_{\underline{\epsilon}}^{\bar{\epsilon}} 1_{\left\{V^{R}\left(\epsilon^{\prime}, b^{\prime}\right) \geq V^{A}\left(\epsilon^{\prime}\right)\right\}}\left[1+(1-\lambda) q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right)\right] d F \\
& =\left[1-F\left(d\left(b^{\prime}\right)\right)\right]+(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F
\end{aligned}
$$

- Price depends on both default $d\left(b^{\prime}\right)$ and future borrowing $h\left(b^{\prime}, \epsilon^{\prime}\right)$
- Changes in the price due to $d\left(b^{\prime}\right)$ reflect default risk, those due to $h\left(\epsilon^{\prime}, b^{\prime}\right)$ reflect dilution risk.
- Intuitively, more borrowing b^{\prime} today increases borrowing tomorrow $h\left(\epsilon^{\prime}, b^{\prime}\right)$

Long-Term Debt: Bond Price

What is known about the bond price?
Operator on prices

$$
(H q)\left(b^{\prime}\right)=\bar{p}\left[1-F\left(d\left(b^{\prime} ; q\right)\right)\right]+\bar{p}(1-\lambda) \int_{d\left(b^{\prime} ; q\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime} ; q\right)\right) d F
$$

- What do we know about this? Complicated by $d(\cdot ; q)$ and $h(\cdot ; q)$ being implicit functions of q.

Long-Term Debt: Bond Price

What is known about the bond price?
Operator on prices

$$
(H q)\left(b^{\prime}\right)=\bar{p}\left[1-F\left(d\left(b^{\prime} ; q\right)\right)\right]+\bar{p}(1-\lambda) \int_{d\left(b^{\prime} ; q\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime} ; q\right)\right) d F
$$

- What do we know about this? Complicated by $d(\cdot ; q)$ and $h(\cdot ; q)$ being implicit functions of q.
- Chatterjee and Eyigungor (2012) show existence of a fixed point q^{*} that is decreasing in b^{\prime}.

Long-Term Debt: Bond Price

What is known about the bond price?

Operator on prices

$$
(H q)\left(b^{\prime}\right)=\bar{p}\left[1-F\left(d\left(b^{\prime} ; q\right)\right)\right]+\bar{p}(1-\lambda) \int_{d\left(b^{\prime} ; q\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime} ; q\right)\right) d F
$$

- What do we know about this? Complicated by $d(\cdot ; q)$ and $h(\cdot ; q)$ being implicit functions of q.
- Chatterjee and Eyigungor (2012) show existence of a fixed point q^{*} that is decreasing in b^{\prime}.
- We want to strengthen what we can say about $q\left(b^{\prime}\right)$, since the price derivative $q_{b}\left(b^{\prime}\right)$ effects the marginal incentive to borrow.

Long-Term Debt: Bond Price

- We want to understand more about the properties of the bond price.

Long-Term Debt: Bond Price

- We want to understand more about the properties of the bond price.
- We impose a restriction on $q\left(b^{\prime}\right)$ that it be the limit of a finite horizon model as $T \rightarrow \infty$.

Long-Term Debt: Bond Price

- We want to understand more about the properties of the bond price.
- We impose a restriction on $q\left(b^{\prime}\right)$ that it be the limit of a finite horizon model as $T \rightarrow \infty$.
- Specifically, we consider the price of debt in the first period of a finite horizon model $q_{1}\left(b^{\prime} ; T\right)$ as T becomes large

Long-Term Debt: Bond Price

- We want to understand more about the properties of the bond price.
- We impose a restriction on $q\left(b^{\prime}\right)$ that it be the limit of a finite horizon model as $T \rightarrow \infty$.
- Specifically, we consider the price of debt in the first period of a finite horizon model $q_{1}\left(b^{\prime} ; T\right)$ as T becomes large
- We use backwards induction starting at $q_{T}\left(b^{\prime} ; T\right)=0$ to get $q_{T-1}\left(b^{\prime} ; T\right)=\bar{p} 1_{\left\{b^{\prime}<0\right\}}, \ldots$, until $q_{1}\left(b^{\prime} ; T\right)$.

Long-Term Debt: Bond Price

- We want to understand more about the properties of the bond price.
- We impose a restriction on $q\left(b^{\prime}\right)$ that it be the limit of a finite horizon model as $T \rightarrow \infty$.
- Specifically, we consider the price of debt in the first period of a finite horizon model $q_{1}\left(b^{\prime} ; T\right)$ as T becomes large
- We use backwards induction starting at $q_{T}\left(b^{\prime} ; T\right)=0$ to get $q_{T-1}\left(b^{\prime} ; T\right)=\bar{p} 1_{\left\{b^{\prime}<0\right\}}, \ldots$, until $q_{1}\left(b^{\prime} ; T\right)$.
- This is a restriction to say the $q(b)$ of interest is the limit of a specific sequence of functions

Long-Term Debt: Bond Price

Bond Price

$$
q\left(b^{\prime}\right)= \begin{cases}\bar{p}\left[1-F\left(d\left(b^{\prime}\right)\right)\right]+\bar{p}(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F, & b^{*}<b^{\prime} \\ \bar{p}+\bar{p}(1-\lambda) \int_{\underline{\epsilon}}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F, & 0<b^{\prime} \leq b^{*} \\ \frac{1}{r+\lambda}, & b^{\prime} \leq 0\end{cases}
$$

- With short-term debt $(\lambda=1), q\left(b^{\prime}\right)=\bar{p}$ when $b^{\prime}<b^{*}$. No longer the case with long-term debt.

Long-Term Debt: Bond Price

Bond Price

$$
q\left(b^{\prime}\right)= \begin{cases}\bar{p}\left[1-F\left(d\left(b^{\prime}\right)\right)\right]+\bar{p}(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F, & b^{*}<b^{\prime} \\ \bar{p}+\bar{p}(1-\lambda) \int_{\underline{\epsilon}}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F, & 0<b^{\prime} \leq b^{*} \\ \frac{1}{r+\lambda}, & b^{\prime} \leq 0\end{cases}
$$

- With short-term debt $(\lambda=1), q\left(b^{\prime}\right)=\bar{p}$ when $b^{\prime}<b^{*}$. No longer the case with long-term debt.
- Debt will be honored next period with certainty, but is discounted for dilution risk.

Long-Term Debt: Bond Price

Bond Price

$$
q\left(b^{\prime}\right)= \begin{cases}\bar{p}\left[1-F\left(d\left(b^{\prime}\right)\right)\right]+\bar{p}(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F, & b^{*}<b^{\prime} \\ \bar{p}+\bar{p}(1-\lambda) \int_{\underline{\epsilon}}^{\bar{\epsilon}} q\left(h\left(\epsilon^{\prime}, b^{\prime}\right)\right) d F, & 0<b^{\prime} \leq b^{*} \\ \frac{1}{r+\lambda}, & b^{\prime} \leq 0\end{cases}
$$

- With short-term debt $(\lambda=1), q\left(b^{\prime}\right)=\bar{p}$ when $b^{\prime}<b^{*}$. No longer the case with long-term debt.
- Debt will be honored next period with certainty, but is discounted for dilution risk.
- Why? Intuitively, if there is probability of $b^{\prime}>b^{*}$ at some point (after a sequence of bad shocks), the price today reflects this risk.

Long-Term Debt: Bond Price

- With long-term debt there is a discount for dilution risk at $b^{\prime}=0$.

Long-Term Debt: Bond Price

Derivative for $b^{\prime} \notin\left\{0, b^{*}\right\}$

$$
q_{b}\left(b^{\prime}\right)=\bar{p}(1-\lambda) \underbrace{\int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} q_{b}(h(\cdot)) h_{b}(\cdot) d F}_{\text {Dilution, } b^{\prime}>0}-\bar{p} \overbrace{\left[1+(1-\lambda) q\left(h\left(d\left(b^{\prime}\right), b^{\prime}\right)\right)\right]}^{\text {Value of loss }} \overbrace{f\left(d\left(b^{\prime}\right)\right) d_{b}\left(b^{\prime}\right)}^{\text {Default, } b^{\prime}>b^{*}}
$$

Leads to three cases for our GEE
(1) Borrowing $b^{\prime}>b^{*}$ has both default and dilution terms
(2) Borrowing $0<b^{\prime}<b^{*}$ has dilution risk only
(3) Saving $b<0$ has neither

Long-Term Debt: Bond Price

Is this dilution term well-defined? Yes

$$
\int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} q_{b}(h(\cdot)) h_{b}(\cdot) d F
$$

There are three types of points $\epsilon \in\left[d\left(b^{\prime}\right), \bar{\epsilon}\right]$.
(1) Points s.t. $b^{\prime} \notin\left\{0, b^{*}\right\}$, and $h_{b}, q_{b}(h)$ are defined.
(2) Points s.t. $b^{\prime} \in\left\{0, b^{*}\right\}$, and $h_{b}=0, \Rightarrow q_{b}(h) h_{b}=0$.
(3) The remaining points where $b^{\prime} \in\left\{0, b^{*}\right\}$, and h_{b}, hence the integrand $q_{b}(h) h_{b}$, is not well-defined.

The last set of points has zero measure.

Long-Term Debt: Eliminating $q_{b}\left(b^{\prime}\right)$

Use value of q_{b} implied by GEE, call it $B(h, d, q)$

$$
q_{b}=B\left(h, d^{\prime}, q\right)=\frac{\int_{d^{\prime}} u_{c}\left[1+(1-\lambda) q^{\prime}\right] d F-u_{c}(c) q}{u_{c}[h-(1-\lambda) b]}
$$

Substitute this into the expression for the bond price derivative

$$
\frac{q_{b}}{1+r}=(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} B\left(h^{\prime}, d^{\prime \prime}, q^{\prime}\right) h_{b} d F-[1+(1-\lambda) \tilde{q}] f(d) d_{b}
$$

Substitute back into GEE

$$
\begin{aligned}
u_{c}(c)\left[q\left(b^{\prime}\right)+\right. & \left.\left\{\bar{p}(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} B\left(h^{\prime}, d^{\prime \prime}, q^{\prime}\right) h_{b} d F-\bar{p}[1+(1-\lambda) \tilde{q}] f(d) d_{b}\right\}\left[b^{\prime}-(1-\lambda) b\right]\right] \\
& =\beta \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} u_{c}\left(c^{\prime}\right)\left[1+(1-\lambda) q\left(b^{\prime \prime}\right)\right] d F
\end{aligned}
$$

Long-Term Debt: GEE Effects

$$
\begin{aligned}
& u_{c}(c)[\overbrace{q\left(b^{\prime}\right)}^{\text {consumption gain from marginal borrowing }}+ \\
& \underbrace{\left\{\bar{\rho}(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} B\left(h^{\prime}, d^{\prime \prime}, q^{\prime}\right) h_{b} d F\right\}}_{\text {dilution, } b^{\prime}>0}\left[b^{\prime}-(1-\lambda) b\right] \\
& -\underbrace{\left\{\bar{p}[1+(1-\lambda) \tilde{q}] f(d) d_{b}\right\}}_{\text {default, } b^{\prime}>b^{*}}\left[b^{\prime}-(1-\lambda) b\right]] \\
& =\beta \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} u_{c}\left(c^{\prime}\right)\left[1+(1-\lambda) q\left(b^{\prime \prime}\right)\right] d F
\end{aligned}
$$

Long-Term Debt: GEE Effects

$$
\begin{array}{r}
\left.\left.u_{c}(c)\left[\begin{array}{c}
\overbrace{q\left(b^{\prime}\right)}^{\text {consumption gain from marginal borrowing }}+ \\
\\
-\underbrace{\left\{\bar{p}(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\{\bar{\epsilon}} B\left(h^{\prime}, d^{\prime \prime}, q^{\prime}\right) h_{b} d F\right\}}_{\text {dilution, } b^{\prime}>0}\left[b^{\prime}-(1-\lambda) b\right] \\
=\beta \int_{d\left(b^{\prime}\right)}^{\left(\bar{p}[1-(1-\lambda) \tilde{q}] f(d) d_{b}\right\}} u_{c}\left(c^{\prime}\right)\left[1+(1-\lambda) q\left(b^{\prime \prime}\right)\right] d F
\end{array}\right] b^{\prime}-(1-\lambda) b\right]\right]
\end{array}
$$

Two borrowing regions that reflect different risks to creditors:
(1) $b^{\prime}>b^{*}$ the GEE reflects both default and dilution risk
(2) $0<b^{\prime}<b^{*}$ the GEE reflects only dilution risk

Long-Term Debt: GEE and Borrowing Policy

$$
u_{c}(c)\left[q\left(b^{\prime}\right)+q_{b}\left(b^{\prime}\right)\left[b^{\prime}-(1-\lambda) b\right]\right]=\beta \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} u_{c}\left(c^{\prime}\right)\left[1+(1-\lambda) q\left(b^{\prime \prime}\right)\right] d F
$$

The borrowing policy $b^{\prime}=h(\epsilon, b)$ satisfies:

1. $b^{\prime}>b^{*}$ and solves the GEE1 (dilution and default risk)
2. $b^{\prime}=b^{*}$
3. $0<b^{\prime}<b^{*}$ and solves the GEE2 (only dilution risk)
4. $b^{\prime}=0$
5. $b^{\prime}<0$ and solves the EE

Long-Term Debt: Borrowing Policy

- Agents wait to borrow, due to dilution lowering the price of borrowing.

Long-Term Debt: Borrowing Policy

- Agents wait to borrow, due to dilution lowering the price of borrowing.
- As with short-term debt, agents stay at risky borrowing limit b^{*}.

Long-Term Debt: Default Threshold

We can take a closer look at the derivative of the default threshold

$$
d_{b}\left(b^{\prime}\right)=\frac{u_{c}\left(c\left(d\left(b^{\prime}\right), b^{\prime}\right)\right)\left[1+(1-\lambda) q\left(b^{\prime \prime}\right)\right]}{u_{c}\left(c\left(d\left(b^{\prime}\right), b^{\prime}\right)\right)-u_{c}\left(d\left(b^{\prime}\right)\right)}>1
$$

- Numerator is marginal utility loss from additional debt after repayment.

Long-Term Debt: Default Threshold

We can take a closer look at the derivative of the default threshold

$$
d_{b}\left(b^{\prime}\right)=\frac{u_{c}\left(c\left(d\left(b^{\prime}\right), b^{\prime}\right)\right)\left[1+(1-\lambda) q\left(b^{\prime \prime}\right)\right]}{u_{c}\left(c\left(d\left(b^{\prime}\right), b^{\prime}\right)\right)-u_{c}\left(d\left(b^{\prime}\right)\right)}>1
$$

- Numerator is marginal utility loss from additional debt after repayment.
- Denominator cost, in terms of marginal utility, to maintain access to financial markets.

Long-Term Debt: Summary

We can describe equilibrium as set of functional equations in h and d

- Auxiliary Functions

$$
\begin{aligned}
q(h(\epsilon, b)) & =\bar{p}\left\{[1-F(d)]+(1-\lambda) \int_{d} q(h(h)) d F\right\} \\
B(\epsilon, b ; h, d, q) & =\frac{\int_{d^{\prime}} u_{c}\left[1+(1-\lambda) q^{\prime}\right] d F-u_{c} q}{u_{c}[h-(1-\lambda) b]} \\
V^{R}(\epsilon, b) & =u\left(\epsilon-b q[h-(1-\lambda) b)+\int_{d} V^{R}-V^{A} d F+\beta \bar{v}\right.
\end{aligned}
$$

$$
\begin{aligned}
u_{c}(c)\left[q\left(b^{\prime}\right)+\right. & \left.\left\{\bar{p}(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} B\left(h^{\prime}, d^{\prime \prime}, q^{\prime}\right) h_{b} d F-\bar{p}[1+(1-\lambda) \tilde{q}] f(d) d_{b}\right\}\left[b^{\prime}-(1-\lambda) b\right]\right] \\
& =\beta \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} u_{c}\left(c^{\prime}\right)\left[1+(1-\lambda) q\left(b^{\prime \prime}\right)\right] d F \\
V^{R}(d, \epsilon) & =V^{A}(d), \quad V^{R}\left(\underline{\epsilon}, b^{*}\right)=V^{A}(\underline{\epsilon})
\end{aligned}
$$

Long-Term Debt: Summary

We can describe equilibrium as set of functional equations in h and d

- Auxiliary Functions

$$
\begin{aligned}
q(h(\epsilon, b)) & =\bar{p}\left\{[1-F(d)]+(1-\lambda) \int_{d} q(h(h)) d F\right\} \\
B(\epsilon, b ; h, d, q) & =\frac{\int_{d^{\prime}} u_{c}\left[1+(1-\lambda) q^{\prime}\right] d F-u_{c} q}{u_{c}[h-(1-\lambda) b]} \\
V^{R}(\epsilon, b) & =u\left(\epsilon-b q[h-(1-\lambda) b)+\int_{d} V^{R}-V^{A} d F+\beta \bar{v}\right.
\end{aligned}
$$

- Equilibrium functional equations

$$
\begin{aligned}
u_{c}(c)\left[q\left(b^{\prime}\right)+\right. & \left.\left\{\bar{p}(1-\lambda) \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} B\left(h^{\prime}, d^{\prime \prime}, q^{\prime}\right) h_{b} d F-\bar{p}[1+(1-\lambda) \tilde{q}] f(d) d_{b}\right\}\left[b^{\prime}-(1-\lambda) b\right]\right] \\
& =\beta \int_{d\left(b^{\prime}\right)}^{\bar{\epsilon}} u_{c}\left(c^{\prime}\right)\left[1+(1-\lambda) q\left(b^{\prime \prime}\right)\right] d F \\
V^{R}(d, \epsilon) & =V^{A}(d), \quad V^{R}\left(\underline{\epsilon}, b^{*}\right)=V^{A}(\underline{\epsilon})
\end{aligned}
$$

Computation

- The most common way to solve these models is value function iteration on a discrete grid. Very slow. Need to iterate between $V(\epsilon, b ; q)$ and q.

Computation

- The most common way to solve these models is value function iteration on a discrete grid. Very slow. Need to iterate between $V(\epsilon, b ; q)$ and q.
- Arellano et al. (2016) use euler equation to solve short-term debt problem numerically, but assume the GEE always holds.

COMPUTATION

- The most common way to solve these models is value function iteration on a discrete grid. Very slow. Need to iterate between $V(\epsilon, b ; q)$ and q.
- Arellano et al. (2016) use euler equation to solve short-term debt problem numerically, but assume the GEE always holds.
- Hatchondo et al. (2010) compare various VFI algorithms to solve the short-term debt problem, but assess their accuracy using Euler residuals.

COMPUTATION

- The most common way to solve these models is value function iteration on a discrete grid. Very slow. Need to iterate between $V(\epsilon, b ; q)$ and q.
- Arellano et al. (2016) use euler equation to solve short-term debt problem numerically, but assume the GEE always holds.
- Hatchondo et al. (2010) compare various VFI algorithms to solve the short-term debt problem, but assess their accuracy using Euler residuals.
- Our characterization suggests using a numerical approach based on the GEE and auxiliary equations

Conclusion

- We characterized the equilibrium of unilateral default problem without commitment.

Conclusion

- We characterized the equilibrium of unilateral default problem without commitment.
- If marginal revenue is well-defined, the GEE describes the optimal borrowing policy.

Conclusion

- We characterized the equilibrium of unilateral default problem without commitment.
- If marginal revenue is well-defined, the GEE describes the optimal borrowing policy.
- The GEE fails to capture tradeoffs at choices where the price is not differentiable, but we can still describe the optimal policy.

Conclusion

- We characterized the equilibrium of unilateral default problem without commitment.
- If marginal revenue is well-defined, the GEE describes the optimal borrowing policy.
- The GEE fails to capture tradeoffs at choices where the price is not differentiable, but we can still describe the optimal policy.
- Thank you!

References

Arellano, Cristina (2008) "Default Risk and Income Fluctuations in Emerging Economies," American Economic Review, Vol. 98, pp. 690-712.

Arellano, Cristina, Lilia Maliar, Serguei Maliar, and Viktor Tsyrennikov (2016) "Envelope condition method with an application to default risk models," Journal of Economic Dynamics and Control, Vol. 69, pp. 436-459, URL: https://www.sciencedirect.com/science/article/pii/S0165188916300938, DOI: http://dx.doi.org/https://doi.org/10.1016/j.jedc.2016.05.016.
Arellano, Cristina, Xavier Mateos-Planas, and José-Víctor Ríos-Rull (2019) "Partial Default," Unpublished Manuscript, University of Minnesota.

Arellano, Cristina and Ananth Ramanarayanan (2012) "Default and the Maturity Structure in Sovereign Bonds," Journal of Political Economy, Vol. 120, pp. 187-232, URL: http://EconPapers.repec.org/RePEc:ucp:jpolec:doi:10.1086/666589.
Chatterjee, S., D. Corbae, M. Nakajima, and J.-V. Ríos-Rull (2007) "A Quantitative Theory of Unsecured Consumer Credit with Risk of Default," Econometrica, Vol. 75, pp. 1525-1589.

Chatterjee, Satyajit and Burcu Eyigungor (2012) "Maturity, Indebtedness, and Default Risk," American Economic Review, Vol. 102, pp. 2674-2699.
Eaton, Jonathan and Mark Gersovitz (1981) "Debt with Potential Repudiation: Theoretical and Empirical Analysis," Review of Economic Studies, Vol. 48, pp. 289-309.

Hatchondo, Juan Carlos, Leonardo Martinez, and Horacio Sapriza (2010) "Quantitative properties of sovereign default models: Solution methods matter," Review of Economic Dynamics, Vol. 13, pp. 919-933, URL: https://www.sciencedirect.com/science/article/pii/S109420251000013X, DOI: http://dx.doi.org/https://doi.org/10.1016/j.red.2010.03.001.
Livshits, Igor, James MacGee, and Michele Tertilt (2007) "Consumer Bankruptcy: A Fresh Start," American Economic Review, Vol. 97, pp. 402-418.

