Goldrush

February 14, 2022

Akihisa Kato ^{UPenn} José-Víctor Ríos-Rull Penn, CAERP, and NBER

Econ 712, 2022, Penn

• We Study spacialized/specialized economies

- We Study spacialized/specialized economies
 - Land that is Finite

- We Study spacialized/specialized economies
 - Land that is Finite
 - Local people own local assets

- We Study spacialized/specialized economies
 - Land that is Finite
 - Local people own local assets
 - Exports Imports and Non Tradables are different Goods

- We Study spacialized/specialized economies
 - Land that is Finite
 - Local people own local assets
 - Exports Imports and Non Tradables are different Goods
 - Search Frictions in Goods and labor Markets

PURPOSE: BUILD AN ENVIRONMENT WHERE

- We Study spacialized/specialized economies
 - Land that is Finite
 - Local people own local assets
 - Exports Imports and Non Tradables are different Goods
 - Search Frictions in Goods and labor Markets
 - Migration

PURPOSE: BUILD AN ENVIRONMENT WHERE

- We Study spacialized/specialized economies
 - Land that is Finite
 - Local people own local assets
 - Exports Imports and Non Tradables are different Goods
 - Search Frictions in Goods and labor Markets
 - Migration
- Use it to study Fluctuations, especially localized fluctuations

• Aiyagari type, small open economy, where

- Aiyagari type, small open economy, where
 - 3 main domestic agents: heterogeneous HHs, nontradable producer, and export producer.

- Aiyagari type, small open economy, where
 - 3 main domestic agents: heterogeneous HHs, nontradable producer, and export producer.
 - 3 intermediate goods (nontradable *e*, export *x*, and import *m*)

- Aiyagari type, small open economy, where
 - 3 main domestic agents: heterogeneous HHs, nontradable producer, and export producer.
 - 3 intermediate goods (nontradable *e*, export *x*, and import *m*)
 - x is not consumed domestically at all.

- Aiyagari type, small open economy, where
 - 3 main domestic agents: heterogeneous HHs, nontradable producer, and export producer.
 - 3 intermediate goods (nontradable *e*, export *x*, and import *m*)
 - x is not consumed domestically at all.
- Consumption C and investment I are composite goods of e and m.

- Aiyagari type, small open economy, where
 - 3 main domestic agents: heterogeneous HHs, nontradable producer, and export producer.
 - 3 intermediate goods (nontradable *e*, export *x*, and import *m*)
 - x is not consumed domestically at all.
- Consumption C and investment I are composite goods of e and m.
- Housing *H* is a combination of structures *S* and land, where *S* is aq composite of *e* and *m*.

- Aiyagari type, small open economy, where
 - 3 main domestic agents: heterogeneous HHs, nontradable producer, and export producer.
 - 3 intermediate goods (nontradable *e*, export *x*, and import *m*)
 - x is not consumed domestically at all.
- Consumption C and investment I are composite goods of e and m.
- Housing *H* is a combination of structures *S* and land, where *S* is aq composite of *e* and *m*.
- Fixed supply of land.

- Aiyagari type, small open economy, where
 - 3 main domestic agents: heterogeneous HHs, nontradable producer, and export producer.
 - 3 intermediate goods (nontradable *e*, export *x*, and import *m*)
 - x is not consumed domestically at all.
- Consumption C and investment I are composite goods of e and m.
- Housing *H* is a combination of structures *S* and land, where *S* is aq composite of *e* and *m*.
- Fixed supply of land.
- C, I, and S has different ratios of e and m.

• Production sectors faces

- Production sectors faces
 - Decreasing Returns to Scale technology (fixed factor owned locally)

- Production sectors faces
 - Decreasing Returns to Scale technology (fixed factor owned locally)
 - adjustment costs of capital/worker

- Production sectors faces
 - Decreasing Returns to Scale technology (fixed factor owned locally)
 - adjustment costs of capital/worker
 - search frictions when hiring

- Production sectors faces
 - Decreasing Returns to Scale technology (fixed factor owned locally)
 - adjustment costs of capital/worker
 - search frictions when hiring
- Households

- Production sectors faces
 - Decreasing Returns to Scale technology (fixed factor owned locally)
 - adjustment costs of capital/worker
 - search frictions when hiring
- Households
 - can allocate their wealth to liquid and illiquid assets

- Production sectors faces
 - Decreasing Returns to Scale technology (fixed factor owned locally)
 - adjustment costs of capital/worker
 - search frictions when hiring
- Households
 - can allocate their wealth to liquid and illiquid assets
 - uninsurable idiosyncratic labor productivity shocks

- Production sectors faces
 - Decreasing Returns to Scale technology (fixed factor owned locally)
 - adjustment costs of capital/worker
 - search frictions when hiring
- Households
 - can allocate their wealth to liquid and illiquid assets
 - uninsurable idiosyncratic labor productivity shocks
 - shocks to local share of firms

- Production sectors faces
 - Decreasing Returns to Scale technology (fixed factor owned locally)
 - adjustment costs of capital/worker
 - search frictions when hiring
- Households
 - can allocate their wealth to liquid and illiquid assets
 - uninsurable idiosyncratic labor productivity shocks
 - shocks to local share of firms
 - unemployment shocks

$$V(\theta^e, \theta^x, \epsilon, s, a) = \max_{b,h,c} \left\{ u(c,h) + \beta \ E[V(\theta^{e'}, \theta^{x'}, \epsilon', s', a')] \right\} \quad \text{s.t.}$$

$$V(\theta^e, \theta^x, \epsilon, s, a) = \max_{b,h,c} \left\{ u(c, h) + \beta \ E[V(\theta^{e'}, \theta^{x'}, \epsilon', s', a')] \right\} \quad \text{s.t.}$$

$$p^{e}e + m + p^{h}h + b = a + 1_{s=1}\{w\epsilon\} + 1_{s=0}\{\bar{w}\} + \theta^{e}\pi^{e} + \theta^{x}\pi^{x}$$

$$V(\theta^e, \theta^x, \epsilon, s, a) = \max_{b,h,c} \left\{ u(c, h) + \beta \ E[V(\theta^{e'}, \theta^{x'}, \epsilon', s', a')] \right\} \quad \text{s.t.}$$

$$p^{e}e + m + p^{h}h + b = a + 1_{s=1}\{we\} + 1_{s=0}\{\bar{w}\} + \theta^{e}\pi^{e} + \theta^{x}\pi^{x}$$

$$b \geq -\lambda p^h h$$

$$V(\theta^e, \theta^x, \epsilon, s, a) = \max_{b,h,c} \left\{ u(c, h) + \beta \ E[V(\theta^{e'}, \theta^{x'}, \epsilon', s', a')] \right\} \quad \text{s.t.}$$

$$p^{e}e + m + p^{h}h + b = a + 1_{s=1}\{we\} + 1_{s=0}\{\bar{w}\} + \theta^{e}\pi^{e} + \theta^{x}\pi^{x}$$

$$b \geq -\lambda p^h h$$

$$c = \Psi^{c}(e, m)$$

$$V(\theta^e, \theta^x, \epsilon, s, a) = \max_{b,h,c} \left\{ u(c, h) + \beta \ E[V(\theta^{e'}, \theta^{x'}, \epsilon', s', a')] \right\} \quad \text{s.t.}$$

$$p^{e}e + m + p^{h}h + b = a + 1_{s=1}\{w\epsilon\} + 1_{s=0}\{\bar{w}\} + \theta^{e}\pi^{e} + \theta^{x}\pi^{x}$$

$$b \geq -\lambda p^h h$$

$$c = \Psi^c(e, m)$$

$$a' = \underbrace{p^{h'}(1 - \delta_h)h}_{\text{value of undepr. H}} + \underbrace{p^{\ell'}\delta_h/H}_{\text{value of land left}} + (1 + r')b$$

• Individual state: $(\theta^e, \theta^x, \epsilon, s, a)$

$$V(\theta^e, \theta^x, \epsilon, s, a) = \max_{b,h,c} \left\{ u(c,h) + \beta \ E[V(\theta^{e'}, \theta^{x'}, \epsilon', s', a')] \right\} \quad \text{s.t.}$$

$$p^{e}e + m + p^{h}h + b = a + 1_{s=1}\{w\epsilon\} + 1_{s=0}\{\bar{w}\} + \theta^{e}\pi^{e} + \theta^{x}\pi^{x}$$

$$b \geq -\lambda p^h h$$

$$c = \Psi^{c}(e, m)$$

$$a' = \underbrace{p^{h'}(1 - \delta_h)h}_{\text{value of undepr. H}} + \underbrace{p^{\ell'}\delta_h/H}_{\text{value of land left}} + (1 + r')h$$

• c is CES aggregation of e and m

$$\Omega^{e}(k, \{n_{\epsilon}\}) = \max_{v, k^{e'}, m, e} \left\{ p^{e} F^{e}(k; l) - w \sum_{\epsilon} n_{\epsilon} \epsilon - m - p^{e} e - \kappa v - \phi^{n}(n', n) + \frac{\Omega^{e}(k', \{n_{\epsilon}'\})}{1 + r'} \right\} \quad \text{s.t.}$$

$$\Omega^{e}(k, \{n_{\epsilon}\}) = \max_{\nu, k^{e'}, m, e} \left\{ p^{e} F^{e}(k; l) - w \sum_{\epsilon} n_{\epsilon} \epsilon - m - p^{e} e - \kappa \nu - \phi^{n}(n', n) + \frac{\Omega^{e}(k', \{n_{\epsilon}'\})}{1 + r'} \right\} \quad \text{s.t.}$$
$$l = \sum_{\epsilon} \epsilon n_{\epsilon},$$

$$\Omega^{e}(k, \{n_{\epsilon}\}) = \max_{v, k^{e'}, m, e} \left\{ p^{e} F^{e}(k; l) - w \sum_{\epsilon} n_{\epsilon} \epsilon - m - p^{e} e - \kappa v - \phi^{n}(n', n) + \frac{\Omega^{e}(k', \{n_{\epsilon}'\})}{1 + r'} \right\} \quad \text{s.t.}$$
$$l = \sum_{\epsilon} \epsilon n_{\epsilon},$$

$$k' = (1 - \delta^k)k + i - \phi^{e,k}(k,i), \qquad i = \Psi^e(m,e),$$

NONTRADABLE SECTOR

• Pay a hiring cost κ per worker and cannot discriminate workers by their skill level, but different separation rates.

$$\Omega^{e}(k, \{n_{\epsilon}\}) = \max_{v, k^{e'}, m, e} \left\{ p^{e} F^{e}(k; l) - w \sum_{\epsilon} n_{\epsilon} \epsilon - m - p^{e} e - \kappa v - \phi^{n}(n', n) + \frac{\Omega^{e}(k', \{n_{\epsilon}'\})}{1 + r'} \right\} \quad \text{s.t.}$$
$$l = \sum_{\epsilon} \epsilon n_{\epsilon},$$

$$k' = (1 - \delta^k)k + i - \phi^{e,k}(k,i), \qquad i = \Psi^e(m,e),$$

NONTRADABLE SECTOR

(

• Pay a hiring cost κ per worker and cannot discriminate workers by their skill level, but different separation rates.

$$\Omega^{e}(k, \{n_{\epsilon}\}) = \max_{v, k^{e'}, m, e} \left\{ p^{e} F^{e}(k, l) - w \sum_{\epsilon} n_{\epsilon} \epsilon - m - p^{e} e - \kappa v - \phi^{n}(n', n) + \frac{\Omega^{e}(k', \{n_{\epsilon}'\})}{1 + r'} \right\} \quad \text{s.t.}$$

$$l = \sum_{\epsilon} \epsilon \ n_{\epsilon},$$

$$k' = (1 - \delta^{k})k + i - \phi^{e, k}(k, i), \qquad i = \Psi^{e}(m, e),$$

$$n_{\epsilon}' = \sum_{\epsilon} (1 - \delta_{\epsilon})n_{\epsilon}\Gamma_{\epsilon\epsilon} + \sum_{\epsilon} \Gamma_{\epsilon\epsilon} \frac{u_{\epsilon}}{u}v$$
unseparated worker measure of hiring ϵ next period

How Model Works

• Choose consumption c, amount of housing h, and liquid assets b.

- Choose consumption c, amount of housing h, and liquid assets b.
- b is under a collateral constraint: $b \ge -\lambda p^h h$.

- Choose consumption c, amount of housing h, and liquid assets b.
- *b* is under a collateral constraint: $b \ge -\lambda p^h h$.
- Total wealth at the beginning of each period has three components:

- Choose consumption c, amount of housing h, and liquid assets b.
- *b* is under a collateral constraint: $b \ge -\lambda p^h h$.
- Total wealth at the beginning of each period has three components:
 - remaining housing: $p^h(1-\delta_h)h$

- Choose consumption c, amount of housing h, and liquid assets b.
- *b* is under a collateral constraint: $b \ge -\lambda p^h h$.
- Total wealth at the beginning of each period has three components:
 - remaining housing: $p^h(1-\delta_h)h$
 - land associated with depreciated part: $p^{\ell}\delta_h h/H$

- Choose consumption c, amount of housing h, and liquid assets b.
- *b* is under a collateral constraint: $b \ge -\lambda p^h h$.
- Total wealth at the beginning of each period has three components:
 - remaining housing: $p^h(1-\delta_h)h$
 - land associated with depreciated part: $p^{\ell}\delta_h h/H$
 - financial asset: (1+r)b

- Choose consumption c, amount of housing h, and liquid assets b.
- *b* is under a collateral constraint: $b \ge -\lambda p^h h$.
- Total wealth at the beginning of each period has three components:
 - remaining housing: $p^h(1-\delta_h)h$
 - land associated with depreciated part: $p^{\ell}\delta_h h/H$
 - financial asset: (1+r)b
- Poor households face collateral constraint and cannot own enough h

- Choose consumption c, amount of housing h, and liquid assets b.
- *b* is under a collateral constraint: $b \ge -\lambda p^h h$.
- Total wealth at the beginning of each period has three components:
 - remaining housing: $p^h(1-\delta_h)h$
 - land associated with depreciated part: $p^{\ell}\delta_h h/H$
 - financial asset: (1+r)b
- Poor households face collateral constraint and cannot own enough h
- As collateral constraint becomes slack, they are leveraged or hold some foreign assets

• Employed HHs supply labor inelastically and are paid $w\epsilon$.

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_0

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_0
- Employment status transition matrix for HHs:

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_0
- Employment status transition matrix for HHs:

$$\Pi^w_{s'|s,\epsilon} =$$

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_0
- Employment status transition matrix for HHs:

$$\Pi^{w}_{\mathfrak{s}\mathfrak{s}|\mathfrak{s},\epsilon} = \left\{ \begin{array}{c} \\ \end{array} \right.$$

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_0
- Employment status transition matrix for HHs:

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_0
- Employment status transition matrix for HHs:

$$\Pi^w_{s\prime|s,\epsilon} = \begin{cases} 1-\delta_\epsilon & \text{if } s'=1, \ s=1\\ \delta_\epsilon & \text{if } s'=0, \ s=1 \end{cases}$$

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_0
- Employment status transition matrix for HHs:

$$\Pi^{w}_{s'|s,\epsilon} = \begin{cases} 1 - \delta_{\epsilon} & \text{if } s' = 1, \ s = 1\\ \delta_{\epsilon} & \text{if } s' = 0, \ s = 1\\ \frac{V}{u} & \text{if } s' = 1, \ s = 0 \end{cases}$$

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_0
- Employment status transition matrix for HHs:

$$\Pi^{w}_{s\prime|s,\epsilon} = \begin{cases} 1 - \delta_{\epsilon} & \text{if } s' = 1, \ s = 1\\ \delta_{\epsilon} & \text{if } s' = 0, \ s = 1\\ \frac{V}{u} & \text{if } s' = 1, \ s = 0\\ 1 - \frac{V}{u} & \text{if } s' = 0, \ s = 0 \end{cases}$$

- Employed HHs supply labor inelastically and are paid $w\epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_0
- Employment status transition matrix for HHs:

$$\Pi^{w}_{s'|s,\epsilon} = \begin{cases} 1 - \delta_{\epsilon} & \text{if } s' = 1, \ s = 1\\ \delta_{\epsilon} & \text{if } s' = 0, \ s = 1\\ \frac{V}{u} & \text{if } s' = 1, \ s = 0\\ 1 - \frac{V}{u} & \text{if } s' = 0, \ s = 0 \end{cases}$$

• Note that *u* and *V* are equilibrium objects.

• Nontradable goods market is a frictionless, perfect competitive environment.

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and l to produce goods.

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and I to produce goods.
- Adjustment costs to change capital and employment.

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and I to produce goods.
- Adjustment costs to change capital and employment.
- Search friction: hiring cost of κ per vacancy.

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and I to produce goods.
- Adjustment costs to change capital and employment.
- Search friction: hiring cost of κ per vacancy.
- Wage is exogenous in steady state.

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and I to produce goods.
- Adjustment costs to change capital and employment.
- Search friction: hiring cost of κ per vacancy.
- Wage is exogenous in steady state.
 - but is determined by a function of output deviation from steady state along the transition path

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and I to produce goods.
- Adjustment costs to change capital and employment.
- Search friction: hiring cost of κ per vacancy.
- Wage is exogenous in steady state.
 - but is determined by a function of output deviation from steady state along the transition path
- A part of each firm is owned locally due to a fixed factor owned locally.

Stationary State

Target	Model	Data
GDP (Expenditure Account)	1.00	
GDP (Production Account)	1.00	
Capital to GDP Ratio	2.00	
Housing Value to GDP Ratio	1.80	
Value of Firms to GDP Ratio	2.00	
Int'l Borrowing to GDP Ratio	0.00	
Unemployment Rate	8.00%	
Int'l Interest Rate	3.00%	
Nontradable Output Ratio	0.76	

▶ NIPA

Exper	nditure	Production		Distributional	
С	0.6496	p ^e y ^e	0.7148	wL	0.5978
1	0.3486	$p^{\times}y^{\times}$	0.2299	π	0.1200
NX	0.0017	p ^h newH	0.1440	$p^i \delta_k K$	0.2046
(X)	(0.2298)	$-\kappa V$	0.0223	p ^s s	0.0950
(M)	(0.2281)	$-m^e - m^x - m^h$	0.0684	rВ	0.0000
	0.9999		0.9979		1.0173

Business Cycle Properties

EXPERIMENTS

- Implications of business cycle properties through MIT shocks
- Shocks to Int'l interest rate or export price
- Along the transition path, wage is specified by

$$\log w_t - \log w^{ss} = \psi^w \left(\log Y_t - \log Y^{ss} \right)$$

- where ψ^w is the elasticity of wage rate with respect to output and set to 0.1 or 0.4.
- Shock follows AR(1) process with ho=0.95
 - r from 3% to 4% in annual term (no income effect in aggregate since B/Y = 0.0 at SS).
 - p^x drops 1%

Interest Rate Shock

Export Price Shock

1% DROP IN EXPORT PRICE - PRICES AND OUTPUT

NIPA Definition

NIPA

▶ Back

• Expenditure Account: GDP = C + I + NX

•
$$I = p^i(i^e + i^x) + p^h \times newH$$

- Production Account: $GDP = p^e y^e + p^x y^x + p^h newH - \kappa * (v^e + v^x) - m^e - m^x - m^h$
- Distributional Account $GDP = w(l^e + l^x) + \pi^e + \pi^x + p^i \delta_k(k^e + k^x) + \underbrace{p^s s}_{\text{housing dep}}$

TO DO

NIPA

- Less detail before equations
- shares because fixed factors are owned by local
- $imigrant = 0.001(y y^{ss})$
- Permanent shock
- spell check
- smaller elasticity (Check literature)
- check NIPA again