Goldrush

February 14, 2022

Akihisa Kato José-Víctor Ríos-Rull
UPenn
Penn, CAERP, and NBER

Econ 712, 2022, Penn

Purpose: Build an Environment Where

- We Study spacialized/specialized economies

Purpose: Build an Environment Where

- We Study spacialized/specialized economies
- Land that is Finite

Purpose: Build an Environment Where

- We Study spacialized/specialized economies
- Land that is Finite
- Local people own local assets

Purpose: Build an Environment Where

- We Study spacialized/specialized economies
- Land that is Finite
- Local people own local assets
- Exports Imports and Non Tradables are different Goods

Purpose: Build an Environment Where

- We Study spacialized/specialized economies
- Land that is Finite
- Local people own local assets
- Exports Imports and Non Tradables are different Goods
- Search Frictions in Goods and labor Markets

Purpose: Build an Environment Where

- We Study spacialized/specialized economies
- Land that is Finite
- Local people own local assets
- Exports Imports and Non Tradables are different Goods
- Search Frictions in Goods and labor Markets
- Migration

Purpose: Build an Environment Where

- We Study spacialized/specialized economies
- Land that is Finite
- Local people own local assets
- Exports Imports and Non Tradables are different Goods
- Search Frictions in Goods and labor Markets
- Migration
- Use it to study Fluctuations, especially localized fluctuations

Environment

- Aiyagari type, small open economy, where

Environment

- Aiyagari type, small open economy, where
- 3 main domestic agents: heterogeneous HHs , nontradable producer, and export producer.

Environment

- Aiyagari type, small open economy, where
- 3 main domestic agents: heterogeneous HHs , nontradable producer, and export producer.
- 3 intermediate goods (nontradable e, export x, and import m)

Environment

- Aiyagari type, small open economy, where
- 3 main domestic agents: heterogeneous HHs , nontradable producer, and export producer.
- 3 intermediate goods (nontradable e, export x, and import m)
- x is not consumed domestically at all.

Environment

- Aiyagari type, small open economy, where
- 3 main domestic agents: heterogeneous HHs , nontradable producer, and export producer.
- 3 intermediate goods (nontradable e, export x, and import m)
- x is not consumed domestically at all.
- Consumption C and investment $/$ are composite goods of e and m.

Environment

- Aiyagari type, small open economy, where
- 3 main domestic agents: heterogeneous HHs , nontradable producer, and export producer.
- 3 intermediate goods (nontradable e, export x, and import m)
- x is not consumed domestically at all.
- Consumption C and investment $/$ are composite goods of e and m.
- Housing H is a combination of structures S and land, where S is aq composite of e and m.

ENVIRONMENT

- Aiyagari type, small open economy, where
- 3 main domestic agents: heterogeneous HHs, nontradable producer, and export producer.
- 3 intermediate goods (nontradable e, export x, and import m)
- x is not consumed domestically at all.
- Consumption C and investment I are composite goods of e and m.
- Housing H is a combination of structures S and land, where S is aq composite of e and m.
- Fixed supply of land.

ENVIRONMENT

- Aiyagari type, small open economy, where
- 3 main domestic agents: heterogeneous HHs, nontradable producer, and export producer.
- 3 intermediate goods (nontradable e, export x, and import m)
- x is not consumed domestically at all.
- Consumption C and investment $/$ are composite goods of e and m.
- Housing H is a combination of structures S and land, where S is aq composite of e and m.
- Fixed supply of land.
- C, I, and S has different ratios of e and m.

Environment

- Production sectors faces

Environment

- Production sectors faces
- Decreasing Returns to Scale technology (fixed factor owned locally)

Environment

- Production sectors faces
- Decreasing Returns to Scale technology (fixed factor owned locally)
- adjustment costs of capital/worker

Environment

- Production sectors faces
- Decreasing Returns to Scale technology (fixed factor owned locally)
- adjustment costs of capital/worker
- search frictions when hiring

Environment

- Production sectors faces
- Decreasing Returns to Scale technology (fixed factor owned locally)
- adjustment costs of capital/worker
- search frictions when hiring
- Households

Environment

- Production sectors faces
- Decreasing Returns to Scale technology (fixed factor owned locally)
- adjustment costs of capital/worker
- search frictions when hiring
- Households
- can allocate their wealth to liquid and illiquid assets

Environment

- Production sectors faces
- Decreasing Returns to Scale technology (fixed factor owned locally)
- adjustment costs of capital/worker
- search frictions when hiring
- Households
- can allocate their wealth to liquid and illiquid assets
- uninsurable idiosyncratic labor productivity shocks

Environment

- Production sectors faces
- Decreasing Returns to Scale technology (fixed factor owned locally)
- adjustment costs of capital/worker
- search frictions when hiring
- Households
- can allocate their wealth to liquid and illiquid assets
- uninsurable idiosyncratic labor productivity shocks
- shocks to local share of firms

Environment

- Production sectors faces
- Decreasing Returns to Scale technology (fixed factor owned locally)
- adjustment costs of capital/worker
- search frictions when hiring
- Households
- can allocate their wealth to liquid and illiquid assets
- uninsurable idiosyncratic labor productivity shocks
- shocks to local share of firms
- unemployment shocks

Household in Steady State

- Individual state: $\left(\theta^{e}, \theta^{x}, \epsilon, s, a\right)$

Household in Steady State

- Individual state: $\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)$

$$
V\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)=\max _{b, h, c}\left\{u(c, h)+\beta E\left[V\left(\theta^{e^{\prime}}, \theta^{x^{\prime}}, \epsilon^{\prime}, s^{\prime}, a^{\prime}\right)\right]\right\} \quad \text { s.t. }
$$

Household in Steady State

- Individual state: $\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)$

$$
V\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)=\max _{b, h, c}\left\{u(c, h)+\beta E\left[V\left(\theta^{e^{\prime}}, \theta^{x^{\prime}}, \epsilon^{\prime}, s^{\prime}, a^{\prime}\right)\right]\right\} \quad \text { s.t. }
$$

$$
p^{e} e+m+p^{h} h+b=a+1_{s=1}\{w \epsilon\}+1_{s=0}\{\bar{w}\}+\theta^{e} \pi^{e}+\theta^{\times} \pi^{x}
$$

Household in Steady State

- Individual state: $\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)$

$$
\begin{aligned}
V\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right) & =\max _{b, h, c}\left\{u(c, h)+\beta E\left[V\left(\theta^{e^{\prime}}, \theta^{x^{\prime}}, \epsilon^{\prime}, s^{\prime}, a^{\prime}\right)\right]\right\} \quad \text { s.t. } \\
p^{e} e+m+p^{h} h+b & =a+1_{s=1}\{w \epsilon\}+1_{s=0}\{\bar{w}\}+\theta^{e} \pi^{e}+\theta^{\times} \pi^{\times} \\
b & \geq-\lambda p^{h} h
\end{aligned}
$$

Household in Steady State

- Individual state: $\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)$

$$
V\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)=\max _{b, h, c}\left\{u(c, h)+\beta E\left[V\left(\theta^{e^{\prime}}, \theta^{x^{\prime}}, \epsilon^{\prime}, s^{\prime}, a^{\prime}\right)\right]\right\} \quad \text { s.t. }
$$

$$
\begin{aligned}
p^{e} e+m+p^{h} h+b & =a+1_{s=1}\{w \epsilon\}+1_{s=0}\{\bar{w}\}+\theta^{e} \pi^{e}+\theta^{\times} \pi^{\times} \\
b & \geq-\lambda p^{h} h \\
c & =\psi^{c}(e, m)
\end{aligned}
$$

Household in Steady State

- Individual state: $\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)$

$$
V\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)=\max _{b, h, c}\left\{u(c, h)+\beta E\left[V\left(\theta^{e^{\prime}}, \theta^{x^{\prime}}, \epsilon^{\prime}, s^{\prime}, a^{\prime}\right)\right]\right\} \quad \text { s.t. }
$$

$$
p^{e} e+m+p^{h} h+b=a+1_{s=1}\{w \epsilon\}+1_{s=0}\{\bar{w}\}+\theta^{e} \pi^{e}+\theta^{\times} \pi^{\times}
$$

$$
\begin{aligned}
& b \geq-\lambda p^{h} h \\
& c=\psi^{c}(e, m) \\
& a^{\prime}=\underbrace{p^{h \prime}\left(1-\delta_{h}\right) h}_{\text {value of undepr. } H}+\underbrace{p^{\ell \prime} \delta_{h} / H}_{\text {value of land left }}+\left(1+r^{\prime}\right) b
\end{aligned}
$$

Household in Steady State

- Individual state: $\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)$

$$
V\left(\theta^{e}, \theta^{\times}, \epsilon, s, a\right)=\max _{b, h, c}\left\{u(c, h)+\beta E\left[V\left(\theta^{e^{\prime}}, \theta^{x^{\prime}}, \epsilon^{\prime}, s^{\prime}, a^{\prime}\right)\right]\right\} \quad \text { s.t. }
$$

$$
p^{e} e+m+p^{h} h+b=a+1_{s=1}\{w \epsilon\}+1_{s=0}\{\bar{w}\}+\theta^{e} \pi^{e}+\theta^{\times} \pi^{\times}
$$

$$
\begin{aligned}
& b \geq-\lambda p^{h} h \\
& c=\psi^{c}(e, m) \\
& a^{\prime}=\underbrace{p^{h \prime}\left(1-\delta_{h}\right) h}_{\text {value of undepr. } H}+\underbrace{p^{\ell \prime} \delta_{h} / H}_{\text {value of land left }}+\left(1+r^{\prime}\right) b
\end{aligned}
$$

- c is CES aggregation of e and m

Nontradable Sector

- Pay a hiring cost κ per worker and cannot discriminate workers by their skill level, but different separation rates.

Nontradable Sector

- Pay a hiring cost κ per worker and cannot discriminate workers by their skill level, but different separation rates.

$$
\begin{array}{r}
\Omega^{e}\left(k,\left\{n_{\epsilon}\right\}\right)=\max _{v, k^{e}, m, e}\left\{p^{e} F^{e}\left(k^{\prime} /\right)-w \sum_{\epsilon} n_{\epsilon} \epsilon-m-p^{e} e-\kappa v-\phi^{n}\left(n^{\prime}, n\right)+\right. \\
\left.\frac{\Omega^{e}\left(k^{\prime},\left\{n_{\epsilon}^{\prime}\right\}\right)}{1+r^{\prime}}\right\} \text { s.t. }
\end{array}
$$

Nontradable Sector

- Pay a hiring cost κ per worker and cannot discriminate workers by their skill level, but different separation rates.

$$
\begin{gathered}
\Omega^{e}\left(k,\left\{n_{\epsilon}\right\}\right)=\max _{v, k^{\prime}, m, e}\left\{p^{e} F^{e}\left(k^{\prime} \prime\right)-w \sum_{\epsilon} n_{\epsilon} \epsilon-m-p^{e} e-\kappa v-\phi^{n}\left(n^{\prime}, n\right)+\right. \\
\left.\quad \frac{\Omega^{e}\left(k^{\prime},\left\{n_{\epsilon}^{\prime}\right\}\right)}{1+r^{\prime}}\right\} \text { s.t. } \\
I=\sum_{\epsilon} \epsilon n_{\epsilon},
\end{gathered}
$$

Nontradable Sector

- Pay a hiring cost κ per worker and cannot discriminate workers by their skill level, but different separation rates.

$$
\begin{gathered}
\Omega^{e}\left(k,\left\{n_{\epsilon}\right\}\right)=\max _{v, k^{e}, m, e}\left\{p^{e} F^{e}(k \prime l)-w \sum_{\epsilon} n_{\epsilon} \epsilon-m-p^{e} e-\kappa v-\phi^{n}\left(n^{\prime}, n\right)+\right. \\
\left.\quad \frac{\Omega^{e}\left(k^{\prime},\left\{n_{\epsilon}^{\prime}\right\}\right)}{1+r^{\prime}}\right\} \quad \text { s.t. } \\
I=\sum_{\epsilon} \epsilon n_{\epsilon}, \\
k^{\prime}=\left(1-\delta^{k}\right) k+i-\phi^{e, k}(k, i), \quad i=\psi^{e}(m, e),
\end{gathered}
$$

Nontradable Sector

- Pay a hiring cost κ per worker and cannot discriminate workers by their skill level, but different separation rates.

$$
\begin{gathered}
\Omega^{e}\left(k,\left\{n_{\epsilon}\right\}\right)=\max _{v, k^{e}, m, e}\left\{p^{e} F^{e}(k \prime l)-w \sum_{\epsilon} n_{\epsilon} \epsilon-m-p^{e} e-\kappa v-\phi^{n}\left(n^{\prime}, n\right)+\right. \\
\left.\quad \frac{\Omega^{e}\left(k^{\prime},\left\{n_{\epsilon}^{\prime}\right\}\right)}{1+r^{\prime}}\right\} \quad \text { s.t. } \\
I=\sum_{\epsilon} \epsilon n_{\epsilon}, \\
k^{\prime}=\left(1-\delta^{k}\right) k+i-\phi^{e, k}(k, i), \quad i=\psi^{e}(m, e),
\end{gathered}
$$

Nontradable Sector

- Pay a hiring cost κ per worker and cannot discriminate workers by their skill level, but different separation rates.

$$
\begin{gathered}
\Omega^{e}\left(k,\left\{n_{\epsilon}\right\}\right)=\max _{v, k^{\prime}, m, e}\left\{p^{e} F^{e}\left(k^{\prime} l\right)-w \sum_{\epsilon} n_{\epsilon} \epsilon-m-p^{e} e-\kappa v-\phi^{n}\left(n^{\prime}, n\right)+\right. \\
\left.\quad \frac{\Omega^{e}\left(k^{\prime},\left\{n_{\epsilon}^{\prime}\right\}\right)}{1+r^{\prime}}\right\} \quad \text { s.t. } \\
I=\sum_{\epsilon} \epsilon n_{\epsilon}, \\
k^{\prime}=\left(1-\delta^{k}\right) k+i-\phi^{e, k}(k, i), \quad i=\Psi^{e}(m, e), \\
n_{\epsilon}^{\prime}=\underbrace{\sum_{\tilde{\epsilon}}\left(1-\delta_{\tilde{\epsilon}}\right) n_{\tilde{\epsilon}} \Gamma_{\tilde{\epsilon} \epsilon}}_{\text {unseparated worker }}+\underbrace{\sum_{\tilde{\epsilon}} \Gamma_{\tilde{\epsilon} \epsilon} \frac{u_{\tilde{\epsilon}}}{u} v}_{\text {measure of hiring } \epsilon \text { next period }}
\end{gathered}
$$

How Model Works

Household

- Choose consumption c, amount of housing h, and liquid assets b.

Household

- Choose consumption c, amount of housing h, and liquid assets b.
- b is under a collateral constraint: $b \geq-\lambda p^{h} h$.

Household

- Choose consumption c, amount of housing h, and liquid assets b.
- b is under a collateral constraint: $b \geq-\lambda p^{h} h$.
- Total wealth at the beginning of each period has three components:

Household

- Choose consumption c, amount of housing h, and liquid assets b.
- b is under a collateral constraint: $b \geq-\lambda p^{h} h$.
- Total wealth at the beginning of each period has three components:
- remaining housing: $p^{h}\left(1-\delta_{h}\right) h$

Household

- Choose consumption c, amount of housing h, and liquid assets b.
- b is under a collateral constraint: $b \geq-\lambda p^{h} h$.
- Total wealth at the beginning of each period has three components:
- remaining housing: $p^{h}\left(1-\delta_{h}\right) h$
- land associated with depreciated part: $p^{\ell} \delta_{h} h / H$

Household

- Choose consumption c, amount of housing h, and liquid assets b.
- b is under a collateral constraint: $b \geq-\lambda p^{h} h$.
- Total wealth at the beginning of each period has three components:
- remaining housing: $p^{h}\left(1-\delta_{h}\right) h$
- land associated with depreciated part: $p^{\ell} \delta_{h} h / H$
- financial asset: $(1+r) b$

Household

- Choose consumption c, amount of housing h, and liquid assets b.
- b is under a collateral constraint: $b \geq-\lambda p^{h} h$.
- Total wealth at the beginning of each period has three components:
- remaining housing: $p^{h}\left(1-\delta_{h}\right) h$
- land associated with depreciated part: $p^{l} \delta_{h} h / H$
- financial asset: $(1+r) b$
- Poor households face collateral constraint and cannot own enough h

Household

- Choose consumption c, amount of housing h, and liquid assets b.
- b is under a collateral constraint: $b \geq-\lambda p^{h} h$.
- Total wealth at the beginning of each period has three components:
- remaining housing: $p^{h}\left(1-\delta_{h}\right) h$
- land associated with depreciated part: $p^{\ell} \delta_{h} h / H$
- financial asset: $(1+r) b$
- Poor households face collateral constraint and cannot own enough h
- As collateral constraint becomes slack, they are leveraged or hold some foreign assets

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_{0}

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_{0}
- Employment status transition matrix for HHs :

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_{0}
- Employment status transition matrix for HHs :

$$
\Pi_{s| | s, \epsilon}^{w}=
$$

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_{0}
- Employment status transition matrix for HHs :

$$
\Pi_{s| | s, \epsilon}^{w}=\{
$$

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_{0}
- Employment status transition matrix for HHs :

$$
\Pi_{s^{\prime} \mid s, \epsilon}^{w}= \begin{cases}1-\delta_{\epsilon} & \text { if } s^{\prime}=1, s=1 \\ & \end{cases}
$$

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_{0}
- Employment status transition matrix for HHs :

$$
\Pi_{s^{\prime} \mid s, \epsilon}^{w}= \begin{cases}1-\delta_{\epsilon} & \text { if } s^{\prime}=1, s=1 \\ \delta_{\epsilon} & \text { if } s^{\prime}=0, s=1 \\ & \end{cases}
$$

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_{0}
- Employment status transition matrix for HHs :

$$
\Pi_{s^{\prime} \mid s, \epsilon}^{w}= \begin{cases}1-\delta_{\epsilon} & \text { if } s^{\prime}=1, s=1 \\ \delta_{\epsilon} & \text { if } s^{\prime}=0, s=1 \\ \frac{v}{u} & \text { if } s^{\prime}=1, s=0\end{cases}
$$

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_{0}
- Employment status transition matrix for HHs :

$$
\Pi_{s^{\prime} \mid s, \epsilon}^{w}= \begin{cases}1-\delta_{\epsilon} & \text { if } s^{\prime}=1, s=1 \\ \delta_{\epsilon} & \text { if } s^{\prime}=0, s=1 \\ \frac{v}{u} & \text { if } s^{\prime}=1, s=0 \\ 1-\frac{v}{u} & \text { if } s^{\prime}=0, s=0\end{cases}
$$

Labor Market

- Employed HHs supply labor inelastically and are paid $w \epsilon$.
- Unemployed HHs earn \bar{w} from home production.
- Denote newly created job V and measure of unemployed x_{0}
- Employment status transition matrix for HHs :

$$
\Pi_{s^{\prime} \mid s, \epsilon}^{w}= \begin{cases}1-\delta_{\epsilon} & \text { if } s^{\prime}=1, s=1 \\ \delta_{\epsilon} & \text { if } s^{\prime}=0, s=1 \\ \frac{v}{u} & \text { if } s^{\prime}=1, s=0 \\ 1-\frac{v}{u} & \text { if } s^{\prime}=0, s=0\end{cases}
$$

- Note that u and V are equilibrium objects.

Production Sector

- Nontradable goods market is a frictionless, perfect competitive environment.

Production Sector

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and $/$ to produce goods.

Production Sector

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and $/$ to produce goods.
- Adjustment costs to change capital and employment.

Production Sector

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and $/$ to produce goods.
- Adjustment costs to change capital and employment.
- Search friction: hiring cost of κ per vacancy.

Production Sector

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and $/$ to produce goods.
- Adjustment costs to change capital and employment.
- Search friction: hiring cost of κ per vacancy.
- Wage is exogenous in steady state.

Production Sector

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and $/$ to produce goods.
- Adjustment costs to change capital and employment.
- Search friction: hiring cost of κ per vacancy.
- Wage is exogenous in steady state.
- but is determined by a function of output deviation from steady state along the transition path

Production Sector

- Nontradable goods market is a frictionless, perfect competitive environment.
- Both sectors use k and $/$ to produce goods.
- Adjustment costs to change capital and employment.
- Search friction: hiring cost of κ per vacancy.
- Wage is exogenous in steady state.
- but is determined by a function of output deviation from steady state along the transition path
- A part of each firm is owned locally due to a fixed factor owned locally.

Stationary State

Model Moments

Target	Model	Data
GDP (Expenditure Account)	1.00	
GDP (Production Account)	1.00	
Capital to GDP Ratio	2.00	
Housing Value to GDP Ratio	1.80	
Value of Firms to GDP Ratio	2.00	
Int'I Borrowing to GDP Ratio	0.00	
Unemployment Rate	8.00%	
Int'I Interest Rate	3.00%	
Nontradable Output Ratio	0.76	

GDP

Expenditure		Production		Distributional	
C	0.6496	$p^{e} y^{e}$	0.7148	$w L$	0.5978
I	0.3486	$p^{\times} y^{x}$	0.2299	π	0.1200
$N X$	0.0017	$p^{h} n e w H$	0.1440	$p^{i} \delta_{k} K$	0.2046
(X)	(0.2298)	$-\kappa V$	0.0223	$p^{s} s$	0.0950
(M)	(0.2281)	$-m^{e}-m^{x}-m^{h}$	0.0684	$r B$	0.0000
	0.9999		0.9979		1.0173

Business Cycle Properties

EXPERIMENTS

- Implications of business cycle properties through MIT shocks
- Shocks to Int'l interest rate or export price
- Along the transition path, wage is specified by

$$
\log w_{t}-\log w^{s s}=\psi^{w}\left(\log Y_{t}-\log Y^{5 s}\right)
$$

- where ψ^{w} is the elasticity of wage rate with respect to output and set to 0.1 or 0.4 .
- Shock follows $\operatorname{AR}(1)$ process with $\rho=0.95$
- r from 3% to 4% in annual term (no income effect in aggregate since $B / Y=0.0$ at SS).
- p^{\times}drops 1%

Interest Rate Shock

1\% Hike in Interest Rate - Aggregates

1\% Hike in Interest Rate - Prices and Output

1\% Hike in Interest Rate - Nontradable

i^{e} value (\% dev.)

1\% Hike in Interest Rate - Export

1\% Hike in Interest Rate - HH

Export Price Shock

1\% Drop in Export Price - Aggregates

1\% Drop in Export Price - Prices and Output

1\% Drop in Export Price - Nontradable

i^{e} value (\% dev.)

1\% Drop in Export Price - Export

1\% Drop in Export Price - HH

NIPA Definition

NIPA

- Expenditure Account: $G D P=C+I+N X$
$\cdot C=p^{c} C^{H H}-\underbrace{\bar{W} x_{0}}_{\text {home production }}+\underbrace{\alpha \times r p^{h} H^{H H}}_{\text {imputed rent }}$
- $I=p^{i}\left(i^{e}+i^{x}\right)+p^{h} \times n e w H$
- Production Account:

$$
G D P=p^{e} y^{e}+p^{\times} y^{\times}+p^{h} n e w H-\kappa *\left(v^{e}+v^{\times}\right)-m^{e}-m^{\times}-m^{h}
$$

- Distributional Account

$$
G D P=w\left(I^{e}+I^{x}\right)+\pi^{e}+\pi^{x}+p^{i} \delta_{k}\left(k^{e}+k^{x}\right)+\underbrace{p^{s} s}_{\text {housing dep }}
$$

TO DO

NIPA

- Less detail before equations
- shares because fixed factors are owned by local
- imigrant $=0.001\left(y-y^{55}\right)$
- Permanent shock
- spell check
- smaller elasticity (Check literature)
- check NIPA again

