Econ 8108, Macroeconomic Theory
 Problem Set 1
 Suggested solutions by Ali Shourideh

Note: These are only outline of solutions and you should complete some details regarding each problem.
Problem 1
Define the following space of sequences as

$$
\ell^{\infty}=\left\{x=\left(x_{0}, x_{1}, \cdots\right) ; x_{t}=\left(x_{1 t}, x_{2 t}\right) \in \mathbb{R}_{+}^{2}\right\}
$$

Then using the techniques introduced in the first mini we know that $\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$ is a Banach Space where $\|x\|_{\infty}=\sup _{t}\left\{\left|x_{t}\right|_{2}\right\}$ where $|\cdot|_{2}$ is the Euclidean norm in \mathbb{R}^{2}. Now define:

$$
\begin{aligned}
& U(x)=\sum_{t=0}^{\infty} \beta^{t} u\left(x_{2 t}\right), \quad \forall x \in \ell^{\infty} \\
& \Gamma\left(k_{0}\right)=\left\{x ; x \in \ell^{\infty}, x_{10}=k_{0}, x_{2 t}+x_{1 t+1}=f\left(x_{1 t}\right), \quad \forall t \geq 0\right\}
\end{aligned}
$$

For U to be well defined, we need a bounded-ness condition on u similar to those in SLP chapter 4 . Now the sequence problem becomes the following problem:

$$
\max _{x \in \Gamma\left(k_{0}\right)} U(x)
$$

Notice that $U: \ell^{\infty} \rightarrow \mathbb{R}$ is continuous. So to proof existence of solution, we can use Extreme Value Theorem. There is a version of extreme value theorem for general metric spaces and it states that the image of any sequentially compact set under a continuous function, is also compact. Therefore, we should give conditions on f so that $\Gamma(k)$ is a sequentially compact subset of ℓ^{∞}. We know that in metric spaces, sequential compactness is equivalent to total bounded-ness and completeness. The definitions of the terms defined are the following:

- Sequentially compact: A set X is said to be sequentially compact if every sequence in X has a convergent subsequence.
- Totally bounded: A subset A of a metric space X is said to be totally bounded if

$$
\forall \epsilon>0, \quad \exists\left\{x_{1}, \cdots, x_{n}\right\} \subset A ; \text { s.t. } \quad A \subset \cup_{k=1}^{n} B\left(x_{k}, \epsilon\right)
$$

We know from first mini that $\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$ is complete, problem set 1 . Therefore, we need a condition on f to for $\Gamma(k)$ to be closed and totally bounded. Closed-ness can be implied by continuity of f (why?). If we impose a condition similar to the condition in exercise 5.1 in SLP, we can get total bounded-ness of $\Gamma(k)$ which is the following:

$$
\exists k^{*} ; \text { s.t. } \quad k<k^{*} \Rightarrow k<f(k)<k^{*}=f\left(k^{*}\right) ; k>k^{*} \Rightarrow k^{*}<f(k)<k
$$

Under this condition it can be easily shown that we get our desired property and therefore, our sequence problem has a solution.

For uniqueness, we should impose that u, f are strictly concave. Then, if there exists $x_{1} \neq x_{2} \in \Gamma(k)$ such that $U\left(x_{1}\right)=U\left(x_{2}\right)$, by concavity of $f, x_{\lambda}=\lambda x_{1}+(1-\lambda)\left(x_{2}\right) \in \Gamma(k)$ -why?. Moreover, by strict concavity of $u, U\left(x_{\lambda}\right)>\lambda U\left(x_{1}\right)+(1-\lambda) U\left(x_{2}\right)$. Therefore, two maximums cannot exist. ${ }^{1}$
Q.E.D.

Problem 3

The only condition that we need is continuity of $G(K)$, so that we can apply the theorem of maximum. Define the contraction as the following:

$$
T_{G} v(K, a)=\max _{a^{\prime} \in \mathcal{A}} u\left(a R(K)+w(K)-a^{\prime}\right)+\beta v\left(G(K), a^{\prime}\right)
$$

where T is defined over $C(\mathcal{K} \times \mathcal{A})$. By theorem of maximum, $T v$ is continuous in a, K. Therefore, if we prove that T satisfies Blackwell properties, we can show that T is a contraction. The Blackwell properties are obviously satisfied using the same reasoning as in chapter 4 of SLP. Therefore, T is a contraction.
Q.E.D.

Problem 4

Here, we will show that V, the solution to the dynamic programming problem is weakly concave. We cannot use the methods developed in SLP to show that V is strictly concave, since the technology in terms of asset holding is linear. I suspect that there is still a way to prove st. concavity, but I have not written it down! To show weak concavity, we use the corollary of Contraction Mapping Theorem in chapter 3 of SLP. That is we show that T_{G} takes concave functions to concave functions. Now define the following set:

$$
S=\{v \in C(\mathcal{K} \times \mathcal{A}) ; \forall K \in \mathcal{K}, v(\cdot, K): \mathcal{A} \rightarrow \mathbb{R} \text { is concave. }\}
$$

Consider a $v \in S$. consider a_{1}, a_{2} and suppose that the optimal choice of a^{\prime} under these asset holdings are $a_{1}^{\prime}, a_{2}^{\prime}$. Therefore, we have

$$
\begin{aligned}
& T_{G} v\left(K, a_{i}\right)=u\left(R(K) a_{i}+w(K)-a_{i}^{\prime}\right)+\beta v\left(G(K), a_{i}^{\prime}\right) \\
& \Rightarrow u\left(R(K) a_{\lambda}+w(K)-a_{\lambda}^{\prime}\right)+\beta v\left(G(K), a_{\lambda}^{\prime}\right) \geq \\
& \left.\lambda\left[u\left(R(K) a_{1}+w(K)-a_{1}^{\prime}\right)+\beta v\left(G(K), a_{1}^{\prime}\right)\right]\right]+(1-\lambda)\left[u\left(R(K) a_{2}+w(K)-a_{2}^{\prime}\right)+\beta v\left(G(K), a_{2}^{\prime}\right)\right]
\end{aligned}
$$

where we have used concavity of v, u. Notice that by definition of the max operator
$T_{G} v\left(K, a_{\lambda}\right) \geq u\left(R(K) a_{\lambda}+w(K)-a_{\lambda}^{\prime}\right)+\beta v\left(G(K), a_{\lambda}^{\prime}\right) \geq \lambda T_{G} v\left(K, a_{1}\right)+(1-\lambda) T_{G} v\left(K, a_{2}\right)$
so $T_{G} v \in S$.
Q.E.D.

Problem 5

To show the equivalence between the two problems, we need an extra assumption:

[^0]
Assumption 0.1

$$
\forall K_{0}, K_{t}=G\left(K_{t-1}\right), a_{t+1} \leq R\left(K_{t}\right) a_{t}+w\left(K_{t}\right) ; \lim _{t \rightarrow \infty} \beta^{t} V\left(K_{t}, a_{t}\right)=0
$$

One sufficient condition for this is u bounded.
Now, suppose we have a RERCE. We can construct capital stocks and prices as follows:

$$
a_{t}=K_{t}=G\left(K_{t-1}\right), t \geq 1 ; w_{t}=w\left(K_{t}\right), R_{t}=R\left(K_{t}\right), c_{t}=R\left(K_{t}\right) K_{t}+w\left(K_{t}\right)-K_{t+1}
$$

Now consider the sequence problem of the household:

$$
\begin{array}{ll}
\max _{a_{t}, c_{t}} & \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \\
\text { s.t. } & c_{t}+a_{t+1}=R_{t} a_{t}+w_{t} \\
& \text { given } a_{0}=K_{0}
\end{array}
$$

We want to show that the allocation constructed above is the solution to this sequence problem. Consider any other allocation $\left\{\hat{c}_{t}, \hat{a}_{t}\right\}$ that satisfies the budget constraint. We will have the following:

$$
\begin{aligned}
\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) & =V\left(K_{0}, a_{0}\right)=u\left(c_{0}\right)+\beta V\left(K_{1}, a_{1}\right) \geq u\left(\hat{c}_{0}\right)+\beta V\left(K_{1}, \hat{a}_{1}\right) \\
& \geq u\left(\hat{c}_{0}\right)+\beta\left[u\left(\hat{c}_{1}\right)+\beta V\left(K_{2}, \hat{a}_{2}\right)\right] \geq u\left(\hat{c}_{0}\right)+\beta\left[u\left(\hat{c}_{1}\right)+\beta\left[u\left(\hat{c}_{2}\right)+\beta V\left(K_{3}, \hat{a}_{3}\right)\right]\right] \\
& \geq \cdots \geq u\left(\hat{c}_{1}\right)+\beta u\left(\hat{c}_{2}\right)+\cdots+\beta^{t} u\left(\hat{c}_{t}\right)+\beta^{t+1} V\left(K_{t+1}, \hat{a}_{t+1}\right) \quad \text { - by induction. } \\
& \geq \sum_{t=0}^{\infty} \beta^{t} u\left(\hat{c}_{t}\right)+\lim _{t \rightarrow \infty} \beta^{t+1} V\left(K_{t+1}, \hat{a}_{t+1}\right)=\sum_{t=0}^{\infty} \beta^{t} u\left(\hat{c}_{t}\right) \quad \text { - by assumption } 0.1
\end{aligned}
$$

where we have used the definition of max operator in the above derivations. So we have proved that $\left\{c_{t}, a_{t}\right\}$ is a solution to household's sequence problem.

[^0]: ${ }^{1}$ There is an obvious fixable mistake in the solution to the last part, what is it??!!

