Problem Set 11 Econ 702, Spring 2005

Problem 1 In the model with one-side lack of commitment, the value of contract to grandmother is P(V) if she promised V to her granddaughter.

$$P(V) = \max_{\{c_s, \omega_s\}_{s=1}^s} \sum_s \prod_s [(y_s - c_s) + \beta P(\omega_s)]$$

subject to

$$\begin{split} u(c_s) + \beta \omega_s &\geq u(y_s) + \beta V^A \quad \forall s \\ &\sum_s \Pi_s [u(c_s) + \beta \omega_s] \geq V \end{split}$$

Show that there exits a V such that P(V) > 0, i.e. there exist gains from trade.

Problem 2 In model with one-side lack of commitment, when granddaughter gets the best shock y_S , the best autarky value conditional on current shock is

$$V_{AM} = u\left(y_S\right) + \beta V_A$$

Define $\overline{c_S}$ such that

$$V_{AM} = \frac{u\left(\overline{c_S}\right)}{1-\beta}$$

Show $\overline{c_S} < y_S$.

Problem 3 Consider the two sided lack of commitment problem. Show that both participation constraints cannot bind simultaneously.