Problem Set 11
 Suggested Solutions
 Econ 702, Spring 2005

Solution 1

$P($.$) is positive for some V$. Let the promised value of always giving the agent y_{1} (lowest possible endowment). This is calculated by the following:

$$
V_{1}=\sum_{t=0}^{\infty} \beta^{t} u\left(y_{1}\right)
$$

Then the value of the moneylender who promised V_{1} is:

$$
P\left(V_{1}\right)=\sum_{t} \beta^{t} \sum_{s} \Pi_{s}\left(y_{s}-y_{1}\right)
$$

This is trivially strictly positive (as long as there is a positive probability of realization of $y_{s}>y_{1}$).

On the other hand, $P($.$) is negative for some V$. Let the promised value of always giving the agent y_{S} (highest possible endowment). This is calculated by the following:

$$
V_{S}=\sum_{t=0}^{\infty} \beta^{t} u\left(y_{S}\right)
$$

Then the value of the moneylender who promised V_{S} is:

$$
P\left(V_{S}\right)=\sum_{t} \beta^{t} \sum_{s} \Pi_{s}\left(y_{s}-y_{S}\right)
$$

This is trivially strictly positive (as long as there is a positive probability of realization of $y_{s}<y_{S}$).

Solution 2

We know

$$
V^{A}=\frac{\sum_{s} \Pi_{s} u\left(y_{s}\right)}{1-\beta}
$$

Thus,

$$
V_{A M}=\frac{u\left(\overline{c_{S}}\right)}{1-\beta}=u\left(y_{S}\right)+\beta \frac{\sum_{s} \Pi_{s} u\left(y_{s}\right)}{1-\beta}
$$

Because y_{S} is the best possible endowment shock,

$$
\begin{aligned}
\frac{u\left(\overline{c_{S}}\right)}{1-\beta} & =u\left(y_{S}\right)+\beta \frac{\sum_{s} \Pi_{s} u\left(y_{s}\right)}{1-\beta} \\
& <u\left(y_{S}\right)+\beta \frac{\sum_{s} \Pi_{s} u\left(y_{S}\right)}{1-\beta} \\
& =\frac{u\left(y_{S}\right)}{1-\beta}
\end{aligned}
$$

Therefore, we know

$$
\overline{c_{S}}<y_{S}
$$

Solution 3

Note that a complete proof of this requires more than what we cover below but to have the basic idea following should suffice. The recursive SPP problem is,

$$
\begin{equation*}
P(V)=\max _{\left\{c_{s}, \omega_{s}\right\}_{s=1}^{S}} \sum_{s} \Pi_{s}\left[\left(y_{s}-c_{s}\right)+\beta P\left(\omega_{s}\right)\right] \tag{1}
\end{equation*}
$$

subject to

$$
\begin{gather*}
u\left(c_{s}\right)+\beta \omega_{s} \geq u\left(y_{s}\right)+\beta V^{A} \quad \forall s \tag{2}\\
u\left(Y_{s}-c_{s}\right)+\beta P\left(\omega_{s}\right) \geq u\left(Y_{s}-y_{s}^{1}\right)+\beta V^{A} \quad \forall s \tag{3}\\
\sum_{s} \Pi_{s}\left[u\left(c_{s}\right)+\beta \omega_{s}\right] \geq V \tag{4}
\end{gather*}
$$

where $Y_{s}=y_{s}^{1}+y_{s}^{2}$. Note that $P($.$) here traces out the constrained Pareto$ frontier in this problem, i.e. the set of sustainable allocations. Sustainability here refers to the allocations being Subgame Perfect. So given ω_{s} the value promised to the other agent is $P\left(\omega_{s}\right)$. Note that the autarky is the worst possible SPE (requires proof but it is true), i.e. worst punishment for anyone violating a contract and thus participation constraints have the value of autarky as the promised value of walking out of a contract. We know then, $\omega_{s} \in\left[V^{A}, V_{\max }\right]$ for some $V_{\max }$. Now suppose first PC binds, than we know $c_{s} \leq y_{s}^{1}$ since $\omega_{s} \geq V^{A}$, if second PC binds as well we have $c_{s} \geq y_{s}^{1}$ since we know $P\left(\omega_{s}\right) \geq V^{A}$. Then if both PCs bind we have $c_{s}=y_{s}^{1}$ and $\omega_{s}=V^{A}=P\left(\omega_{s}\right) \Rightarrow V^{A}=P\left(V^{A}\right)$ which cannot be true as long as there exist some SP allocation that is not autarky, which can be shown to be the case.

