
Econ 702
Problem Set 2

Suggested Answers

Problem 1 In this problem the agent has two different ways to transfer
resources from the present to the future: either by saving capital, or by buying
state contigent claims. As we did in class, consider the following "experiment":
if the agent sacrifices one unit of consumption and uses it as capital in the
next period his return will be Rt+1(ht, zt+1), conditional on the realization of
the shock in period t + 1. So, for example, if zt+1 = zm, the return will be
Rt+1(ht, z

m).
How can we replicate this return in terms of state contigent claims? Suppose

that the agent buys the following quantities: Rt+1(ht, z
1) from the state 1 conti-

gent claim, Rt+1(ht, z
2) from the state 2 contigent claim, ..., Rt+1(ht, z

M ) from
the state M contigent claim. Then, clearly, regardless of the state that occurs
the return to the agent, by the two alternative ways of transfering resources will
be the same. The last step is to make sure that the expenditure (or just the
cost) of the two alternatives was also equal. Since we’ve been considering the
case in which the agent has to sacrifice one unit of consumption, the arbitrage
condition is

P
m

qt+1(ht, z
m) Rt+1(ht, z

m) = 1, m = 1, 2, ...,M.

Problem 2 The problem is given by:

max
ct(ht),kt+1(ht)

P
t
βt
P
ht

π(ht)u (ct(ht))

s.t : ct(ht) + kt+1(ht)+
P
zt+1

qt(ht, zt+1)

bt+1(ht, zt+1) = wt(ht) + kt(ht−1)Rt(ht) + bt(ht−1, zt)

The Langrangian of this problem is given by

L = P
t
βt
P
ht

π(ht)u (ct(ht))

+
X
t

X
ht

λt(ht)

"
ct(ht) + kt+1(ht) +

P
zt+1

qt(ht, zt+1)bt+1(ht, zt+1)− wt(ht)− kt(ht−1)Rt(ht)− bt(ht−1, zt)

#
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Take the first order conditions

{ct(ht)} : βtπ(ht)uc(ct(ht)) = λt(ht) (1)

{bt+1(ht, zi)} : λt(ht) qt(ht, z
i) = λt+1(ht, z

i) (2)

Then, replacing the Langrangian multiplier from (1) into (2) gives

βtπ(ht)uc(ct(ht)) qt(ht, z
i) = βt+1π(ht, z

i)uc(ct+1(ht+1))

With the random shock being Markovian, we know that π(ht, zi) = π(ht)Γji,
where Γji is the probability of state i occuring in period t + 1 given that the
current state is i. Using this observation in the above expression we get

π(ht)uc(ct(ht)) qt(ht, z
i) = β\π(ht)Γjiuc(ct+1(ht+1)) and so

qt(ht, z
i) = βΓji

jiuc(ct+1(ht+1))
uc(ct(ht))

Finally, let’s use the particular functional form that we have for prefernces,
u(c) = 1

1−σ c
1−σ, so that uc = c−σ. Then, the expression for the price of the

state contigent claim is

qt(ht, z
i) = βΓji

(ct)
−σ

(ct+1)−σ
= βΓji

³
ct+1
ct

´σ
,where i, j = 1, 2, 3.

Problem 3 The Social Planner’s Problem is given by

max
ct(ht),kt+1(ht)

P
t
βt
P
ht

π(ht)u (ct(ht))

s.t : ct(ht) + kt+1(ht) = ztf (kt(ht−1), 1)− δkt(ht−1)

We will solve the problem in its recursive formulation. In general, showing
the equivalence between the recursive problem and the problem of chosing infi-
nite sequences (the originel problem) is not easy. However, for the purposes of
this excercise, you can take as given that the two problems are equivalent, and
thus proceed with (the easier) recursive version. This is given by
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V (k, z) = max
c,k0

"
u(c) + β

MX
m=1

ΓimV (k
0, zm)

#

s.t : c+ k0 = zf(k, 1)− δk or

V (k, z) = max
c,k0

"
u(zf(k, 1)− δk − k0) + β

MX
m=1

ΓimV (k
0, zm)

#

The First Order condition with respect to k0 is:

−uc(c) + β
MX
m=1

Γim
∂
∂k0V (k

0, zm) = 0

In order to obtain an expression for the partial derivative of the value func-
tion we derive the envelope condition. Suppose that the solution has the form
k0 = g(k, z). Then,

∂V (k,z)
∂k = uc(c)

h
zf1(k, 1)− δ − ∂g(k,z)

∂k

i
+ β

MX
m=1

Γim
∂
∂k0V (k

0, zm)∂g(k,z)∂k

Now gather all the terms that contain ∂g(k,z)
∂k . We have

∂V (k,z)
∂k = ∂g(k,z)

∂k

"
−uc(c) + β

MX
m=1

Γim
∂
∂k0V (k

0, zm)

#
+ uc(c) [zf1(k, 1)− δ] =

uc(c) [zf1(k, 1)− δ]

where the last equality follows from the First Order condition. Then from
the Benveniste-Scheinkman Theorem we have

uc(c) = β
MX
m=1

Γimuc(c
0) [zmf1(k0, 1)− δ] (Euler Equation)
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Next, we want to characterize the Steady State of this economy. We know
that the Steady State is a situation where k0 = g(k) = k, and let this particular
capital stock be denoted by kS . Of course, in order to find the Steady State we

have to set the random shock equal to its theoretical mean,
−
z . Moreover, by

plugging kS in the budjet constraint, it is clear that the consumption will also
be constant. Denote it by cS . Then, using the Euler Equation,

uc(c
S) = β

MX
m=1

Γimuc(c
S)
h−
zf1(k

S , 1)− δ
i

or

uc(c
S) = βuc(c

S)
h−
zf1(k

S , 1)− δ
i MX
m=1

Γim or

1 = β
h−
zf1(k

S , 1)− δ
i

The last thing to do is to use the specific functional form for the production
function, f(k, 1) = kθ, so that f1(k, 1) = θkθ−1. Then,

1 = β
h−
zθ
¡
kS
¢θ−1 − δ

i
which gives

kS =

µ
βθ
−
z

1+βδ

¶1/(1−θ)

Using the budget constraint we can also find that

cS =

µ
βθ
−
z

1+βδ

¶1/(1−θ) ·−
z
1+θ ³

βθ
1+βδ

´θ
− (1 + δ)

¸

Problem 4 Example 1: Logarithmic preferences and Cobb-Douglas produc-
tion function. The recursive version of this problem is

V (k) = max
k0
[ln(c) + βV (k0)]

s.t : c+ k0 = Aka or

V (k) = max
k0
\ [ln(Aka − k0) + βV (k0)]
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We know that the value function has the form V (k) = E + F ln(k), where
E and F are constants to be determined. So we can write

E + F ln(k) = max
k0
\ [ln(Aka − k0) + βE + βF ln(k)]

This is a well behaved concave program and the First Order condition will
be sufficient as well as necessary. Taking the FOC we can find that

k0 = βFA
1+βF k

a and so

E + F ln(k) = ln(Aka − βFA
1+βF k

a) + βE + βF ln( βFA1+βF k
a) or

E + F ln(k) = ln
³
Aka

³
1− βF

1+βF

´´
+ βE + βF ln( βFA1+βF ) + aβF ln(k) (1)

So by the method of undetermined coefficients

F = a+ aβF or F = a
1−aβ

Plug the value of F in (1) and after some algebra you can find that

E = (1− β)−1
h
ln (A (1− βa)) + aβ

1−aβ ln (Aaβ)
i

so that

V (k) = (1− β)−1
h
ln (A (1− βa)) + aβ

1−aβ ln (Aaβ)
i
+ a

1−aβ k

What about the policy function? Recall that

k0 = βFA
1+βF k

a and so

k0 =
β a
1−aβA

1+β a
1−aβ

ka or

k0 = aβ(Aka) = g(k)

Hence, in this particular example, the optimal policy is to invest a fraction
aβ of the total output and consume the rest.

Example 2: CRRA preferences and linear constraint. The recursive version
is
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V (A) = max
c,A0

h
1

1−ac
1−a + βV (A0)

i
s.t : A0 = R(A− c) or

V (A) = max
c

h
1

1−ac
1−a + βV (R(A− c))

i

Note that here, unlike the previous example, we replaced A0, not c. Take
the First Order condition with respect to consumption:

c−a = βB(1− a)R1−a(A− c)−a or

c
h
1 + (βB(1− a)R1−a)−

1
a

i
= A (βB(1− a)R1−a)−

1
a or setting

k , (βB(1− a)R1−a)

c = k−
1
a

1+k−
1
a
A

We will guess that the value function has the form V (A) = BA1−a, so we
can write

BA1−a = 1
1−a

µ
k−

1
a

1+k−
1
a
A

¶1−a
+ βBR1−a

µ
1− k−

1
a

1+k−
1
a

¶1−a
A1−a or

B = 1
1−a

µ
k−

1
a

1+k−
1
a

¶1−a
+ βBR1−a

µ
1

1+k−
1
a

¶1−a
or

B =

µ
1

1+k−
1
a

¶1−a h
1

1−ak
a−1
a + βBR1−a

i
(2)

But note that

k
a−1
a =

£
(βB(1− a)R1−a)

¤a−1
a and so (2) becomes

B =

µ
1

1+k−
1
a

¶1−a h
1

1−a
£
(βB(1− a)R1−a)

¤a−1
a + βBR1−a

i
or

B =

µ
1

1+k−
1
a

¶1−a h
(1− a)−

1
aβ−

1
aB−

1
aR

−(1−a)
a + 1

i
βBR1−a or
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k−
1
a = β−

1
aR

−(1−a)
a − 1 or£

βB(1− a)R1−a
¤− 1

a = β−
1
aR

−(1−a)
a − 1 and after some algebra

B = 1
1−a

·
β−

1
aR
−(1−a)

a −1
β−

1
aR
−(1−a)

a

¸−a
= 1

1−a
h
1− β

1
aR

1−a
a

i−a
So the value function is given by

V (A) = 1
1−a

h
1− β

1
aR

1−a
a

i−a
A1−a

In order to obtain a closed form solution for the decision rule, recall that

c = k−
1
a

1+k−
1
a
A , λA (3).

Then note that

k−
1
a =

£
(βB(1− a)R1−a)

¤− 1
a or after replacing B and a few lines of algebra

k−
1
a = β−

1
aR

a−1
a − 1 and so

λ = β−
1
aR

a−1
a −1

β−
1
aR

a−1
a

which implies (from (3)) that

c(A) =
h
1− β

1
aR

1−a
a

i
A

Finally, use the budget constraint to obtain

A0 = R(A− c) = R
³
1− 1 + β

1
aR

1−a
a

´
A or

A0 = g(A) = (βR)
1
aA

Problem 5 First to make sure T is a well defined operator we have to make
sure that a solution to the maximization problem exists and unique. Sufficient
conditions for these are a compact and convex choice set and an strictly concave
and continuous objective function. We can bound the asset holdings of the agent
with a natural debt limit and apropriate assumptions on technology such that
a0 ∈ [a, a] .This would imply a closed and bounded set for consumption if we
make sure the price functions are bounded. Note that if Inada conditions are
assumed about technology we have,
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F (0, 1) = 0, limK→∞ F1(K, 1) = 0, limK→0 F1(K, 1) =∞

so as K → ∞ the consumption is bounded below by −a. To make sure we
have an upper bound we have to assume Ge(K) is a nicely behaved continuous
function with the following property;

Ge(K) 6= 0 for any K 6= 0

such that asset returns do not go to infinity. Given these assumptions with
U being continuous,strictly concave,F being continuously differentiable and our
asset space being convex, T is a well defined operator.
Now let C be the set of continuous and bounded real-valued functions on R2.
Define a mapping T : C → C as follows:

Tϕ = max {u (c) + βϕ (K0, a0;G)}
s.t : c+ a0 = w(K) + aR(K)

K0 = Ge (K)

T is a contraction mapping because ∀ϕ,ψ ∈ C

Tϕ = u (g (K)) + βϕ (G (K)) =
u (g (K)) + βψ (G (K)) + β[ϕ (G (K))− ψ (G (K))] ≤

≤ maxg {u (g (K)) + βψ (G (K))}+ β kϕ− ψk = Tψ + β kϕ− ψk

By a symmetric argument we can establish, kTϕ− Tψk ≤ β kϕ− ψk. There-
fore, T is a contraction.
We can show (C, d) is a complete metric space. then by the Contraction

Mapping theorem (or Banach fixed point theorem),
1) T has a unique fixed point: There is a unique V ∈ C such that TV = V.
2) The sequence defined by V n+1 = TV n will converge to the fixed point V

for any initial condition V0.

b) To get the desired properties of the resulting value function we have
to make certain assumptions on the primitives. The continuity of the value
function comes from the fact that continuity assumption on U and compactness
of the our state space. Under these assumptions, the Theorem of the Maxi-
mum states that the resulting value function is continous. For boundedness we
can assume that U bounded and it would suffice but as you will notice the most
widely used functional forms for utility functions do not satisfy the boundedness
property. In that case, making sure that our state space is compact will ensure
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boundedness if our value function is continuous. The other two useful charac-
teristics we would want our value function to have is strict concavity and strict
increasing properties. To show these are indeed true if we assume U strictly
incresing and strictly concave, we can take advantage of the contraction prop-
erty of the operator T . We can show that the space of increasing and concave
functions are complete and closed. If T maps increasing and concave functions
into increasing and concave functions, which is true under our assumptions on
U , then the convergent sequence of functions our operator generates must have
a limiting function that is both increasing and concave by closedness property.
Furthermore if we can show that the operator T .maps increasing and concave
functions to strictly increasing and strictly concave functions, which is the case
with our assumptions on U , then our value function must be strictly increasing
and strictly concave since TV = V .
For a rigorous discussion of these issues, see Randy’s Homework.
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