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Solution 1

The Gini Index is given by the following formula:

Area enclosed by the Lorenz Curve and 45 degree line

Triangle made by connecting the points (0,0), (1,0), (1,1)

Define A=[0,a] (where a is wealth). Let our measure of agents be µ(a). Note
that if we have a mapping defining lorenz curve, we can find the Gini index by
integration.

Let x ∈ B = [0, 1] denote the percentage of population when our agents are
ordered increasingly with respect to their wealth level and also let y ∈ C = [0, 1]
denote the cumulative share of wealth.Then define f to be

f : B → C

our Lorenz curve. To define f, as an intermediate step lets define the mapping
z : B → A as, ∫ z(x)

0

µ(a)da = x (1)

so given x, a cut-off point for our population, the mapping z gives the wealth
level that seperates the bottom x percent of our population from top 1 − x
percent. Then we can define our lorenz curve as ,

f(x) =

∫ z(x)
0

aµ(a)da
∫ a
0
aµ(a)da

(2)

Then formula for the Gini index is,

g = 2 ∗ [0.5−

∫ 1

0

f(x)dx] (3)

Kurtosis measures the "fatness" of the tails of a distribution and the formula
is,

k =
µ4
σ4

where µ4 is the 4th central moment of the distribution and σ is the standart
deviation of the distribution. Then the formula in our framework is,

k =

∫
(a− a)4µ(a)da

(∫
(a− a)2µ(a)da

)2

where,

a =

∫
aµ(a)da

is the mean wealth in our economy.
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Solution 2

Q (s, a,B) = 1g(s,a)∈Ba

(
∑

s′∈Bs

Γss′

)

(Q(e, a,B) =
∑

ej∈B

Γee′1[{ej ,g(e,a)}∈B])

We need to show that Q constructed as above satisfies the conditions of a
transition function, which are:

1. ∀B ∈ A, Q(·, B) : A→R is measurable.

2. ∀(e, a) ∈ A = S ×A, Q(e, a, ·) is a probability measure.

Note that the definition of measurability requires,

{(e, a) ∈ A : Q(e, a,B) ≤ c} ∈ A for all c ∈ R

To show (1), givenB ∈ A, Ba andBe are fixed. Then 1g(s,a)∈Ba (1[{ej ,g(e,a)}∈B])has
value 0 or 1 only. And since Γ is a transition matrix for a Markov
chain,

∑
e′∈Bs

Γee′ is measurable by assumption. Therefore, Q(·,B) =
1g(e,a)∈Ba ·

∑
e′∈Bs

Γee′ is measurable through measurability of products
of measurable functions.

To show (2), given (e, a) ∈ A = S × A, we need to check the following
properties for probability measure

(a).The empty set has measure 0,

Q(s, a,⊘) = 0 (4)

That is B = ⊘, then Ba = ⊘and Bs = ⊘. Therefore 1g(s,a)∈Ba = 0 and∑
s′∈Bs

Γss′ = 0. Done.
(b).Always non-negative for any event and normalized to one for the whole

set of events,

Q(s, a,B) ≥ 0 for all B ∈ A (5)

Q(s, a, S ×Aa) = 1 (6)

Non-negativity is trivial since 1[{ej ,g(e,a)}∈B] takes only values of 0 or 1 and
the entries of Markov matrix is non-negative by definition. Normalizing to
unity for B = S × A, then Ba = A and Bs = S, follows from the agent’s
decision rule g(e, a) ∈ [a, a] = A is in the asset space A for some finete [a, a]
to be determined endogenously as we will see soon, thus 1g(s,a)∈A = 1. And by
definition the property of Markov transition matrix,

∑
e′∈S Γee′ = 1. Therefore

Q(e, a, S ×A) = 1
(c).Measure of union of countable infinite set of disjoint subsets of A are

equal to the sum of their measures. For the case of two subsets the following
has to hold and this can be generalized to countable infinity,

Q(e, a,Bi ∪Bj) = Q(e, a,Bi) +Q(e, a,Bj) if Bi ∩Bj = ⊘ (7)
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Case 1): If g(s, a) /∈ (Bi ∪ Bj)a, then g(s, a) /∈ Bi,a and g(s, a) /∈ Bj,a. So
1g(s,a)∈Ba

= 0 for all (Bi ∪Bj)a, Bi,a and Bj,a. Thus (??) holds trivial.
Case 2): If g(e, a) ∈ (Bi ∪ Bj)a, 1g(s,a)∈(Bi∪Bj)a = 1. Note that g(e, a) ∈

(Bi)a or g(e, a) ∈ (Bj)a since they are disjoint and g is a well defined function,
w.l.o.g. assuming g(e, a) ∈ (Bi)athen we know Q(e, a,Bi ∪ Bj) = Q(e, a,Bi ∪
(Bj)s) and,

1g(s,a)∈(Bi∪Bj)a = 1g(s,a)∈(Bi)a + 1g(s,a)∈(Bj)a

Q(e, a,Bi ∪Bj) =
∑

e′∈(Bi∪Bj)s

Γee′1[{g(e,a)}∈(Bi∪Bj)a] =

∑

e′∈(Bi∪Bj)s

Γee′1[{g(e,a)}∈(Bi)a] +
∑

e′∈(Bi∪Bj)s

Γee′1[{g(e,a)}∈(Bj)a]

and one of the summation terms in RHS has to be equal to zero. As assumed
the second term is zero then,

Q(e, a,Bi ∪Bj) =
∑

e′∈(Bi∪Bj)s

Γee′1[{g(e,a)}∈(Bi)a]

and we also know (Bi ∪Bj)s = ⊘ and by the property of the Markov transition
matrix,

∑

e′∈(Bi∪Bj)s

Γee′1[{g(e,a)}∈(Bi)a] =
∑

e′∈(Bi)s

Γee′1[{g(e,a)}∈(Bi)a]+
∑

e′∈(Bj)s

Γee′1[{g(e,a)}∈(Bi)a]

and thus

Q(e, a,Bi ∪Bj) = Q(e, a,Bi ∪ (Bj)s) = Q(e, a,Bi) +Q(e, a,Bj)

and Q is indeed a transition function. Note that throughout the solution it
is assumed B ⊂ S ×A i.e. B is representable as a cross product.

Solution 3

Γ =

[
Γee Γeu
Γue Γ uu

]

Stationary distribution is eigenvector associated with eigen value 1.

ΓTx∗ = x∗

where x∗ = (e∗, u∗)

Γeee+ Γueu = e

Γeue+ Γuuu = u

And we normalized
e+ u = 1

Thus, the stationary distribution for employment states is,

x∗ =

[
Γue

1− (Γee − Γue)
,

1− Γue
1− (Γee − Γue)

]
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Solution 4

The problem here is that the state space for an agent is not compact. For
the neoclassical growth model, we had a production technology and we made
the assumption of Inada conditions on the production function. This guaran-
tees that the level of capital stock in equilibrium stays bounded because of the
curvature in the production function, saving too small is not optimal since the
marginal productivity of capital goes up without bound and saving too much
is not optimal either because the marginal productivity of capital goes to zero.
However in this problem, there is nothing that is preventing our fishermen from
storing too many fish. In other words there is no upper bound for a′. Note that
there is a lower bound which is imposed by Mother Nature: You can’t store
negative amounts.

We use the following theorem to show that there is an upper bound:

Theorem 5 If β < 1
1+r =q, then ∃a such that, if a0 < a, at < a ∀t.

If β < 1
1+r , this means that you are too impatient and even the returns that

you will get from saving today, r, will not offset that impatience.You’d rather
consume today than later (you’re discounting the future too much to wait). So
if you are impatient enough compared with the returns from technology, gains
from saving disappear eventually, and you stop saving more. And hence we have
an upper bound on savings.

Given the compact domain, we can apply the Contraction Mapping Theorem
if this problem can be represented as an operator that is a contraction and the
solution exists and it is unique.

Theorem 6 (Contraction Mapping Theorem) If (M,d) a complete metric space
and T: M→M is a contraction then,

1. T has a unique fixed point.

2. The sequence {ϕn} such that ϕn+1 = Tϕn will converge to V for any
initial condition V0.

You can easily show with the appropriate assumptions this operator is indeed
a CM using Blackwell’s sufficient conditions and your skills obtained in 704.
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