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José-V́ıctor Ŕıos-Rull (Penn)

SED Annual Conference
Session: Credit and Macroeconomic Stabilization

ITAM, Mexico City, Mexico
June 30, 2018

Dempsey (Ohio State) Credit Scoring, CCDR (2018) SED Mexico City, June 2018 1 / 18



Why do people pay back rather than file for bankruptcy?

Benefits: Ch 7 offers credit protection

Costs: Filing costs (low), bankruptcy can hurt your reputation

direct: lower credit scores, higher interest rates, restricted access

indirect: difficulties renting, getting hired, in relationships

Quantitative models of default get too much unsecured credit =⇒ need
additional punishments

literature assumes exclusion, stigma, etc.

we tackle the reputation problem in a quantitative framework

delivers a theory of credit scoring

Evidence: credit scores and prices Evidence: bankruptcy and credit scores
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What we do

Can reputation effects simultaneously explain small amounts of
unsecured credit, low interest rates, and low default rates?

Construct an incomplete markets model with adverse selection

people differ in persistent wealth, income, type, and “reputation”
I type – propensity to default, borrow too much (β), unobservable
I reputation – lender’s “best guess” of β (+ other traits → credit score)

also transitory traits that impact default today only

lenders have to infer types via reputation to price loans

Map the model to the data

target wealth distribution, key credit moments

compare model implied credit score dynamics to data

Vary the notion of punishment

compare 3 economies: full info, benchmark, “extra” reputation
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What we find

Yes — reputation matters.

Key mechanism

low β types more like to borrow too much, default

=⇒ these actions signal bad type, reflected in lenders’ assessment

reflected in pricing function, reigning in credit

Quantitative results
1 compared to full information case, benchmark model features

I lower levels of default (by 42%), interest rates (by 83%)
I wider dispersion of interest rates (factor of 25)
I why? better able to separate types

2 individuals would need to be compensated for a bad reputation
3 non-price effects play a role: 1% reduction in earnings for bad credit

score reduces default by 28%
Literature
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Model environment: households

HH have preferences ordered by u(c), s.t. to 2 unobservable shocks

persistent: discount rate β ∈ {βL, βH}, drawn from Γβ(β, β′)

transitory: additive, action-specific shocks ε drawn from G ε(ε)

Earnings are comprised of 2 observable components

persistent: e, follows Γe(e, e ′)

transitory: z , drawn from G z(z)

Each period, HH take action (d , a′)

a′ ∈ A = {a1, ..., 0, ..., aN(a)}: asset (or debt) position for next period

d ∈ {0, 1}: default decision. If HH defaults (d = 1), then
I HH cannot save that period (a′ = 0)
I and loses κ of income (c = e + z − κ) →“static” punishment
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Model environment: intermediaries

risk neutral, perfectly competitive (free entry)

borrow at exogenous interest rate r , intermediation cost ι on debt

observe earnings (e and z) and choices (d , a′)

Inference problem: cannot observe β or ε(d ,a
′) when pricing loans

β persistent =⇒ actions can signal type
ε transitory =⇒ adds confusion

I GEV / logit assumption =⇒ all actions chosen with prob > 0

Solution: assign reputation, subjective prior s = Pr(β = βH)

update via Bayes rule using observables (d , a′) and ω = (e, z , a, s) to
revise type score ψ(d ,a′)(ω)

Pricing: offer discount loans at prices q(0,a
′)(ω), where

q(0,a
′)(ω) =

{
p(0,a′)(ω)
1+r+ι if a′ < 0
1

1+r if a′ ≥ 0,

Timing Type scoring and pricing
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HH problem: overview

V (β, ω, ε) = max
(d,a′)∈F(ω)

v (d,a′)(β, ω)︸ ︷︷ ︸
fundamental value

+ ε(d,a
′)︸ ︷︷ ︸

∼GEV

,

α’s determine correlation b/w εi shocks for i w/in each nest
high α =⇒ low variance of ε shocks for options in nest
highest v (d,a′)(β, ω) =⇒ modal action

Fundamental value Feasibility GEV Nests
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HH problem: decision rules

Results in 4 decision rules / probabilities

default, σD(β, ω)

borrowing, cond. on not defaulting: σB(β, ω|¬D)

debt [asset] level, cond. on not defaulting and borrowing [saving]:
σa

′
(β, ω|¬D,B) [σa

′
(β, ω|¬D,¬B)]

Can combine nest-level decisions into a single function σ(d ,a
′)(β, ω), e.g.

σ(0,a
′)(β, ω) = σN(β, ω)σB(β, ω|N)σa

′
(β, ω|N,B) if a′ < 0

substitute for σ =⇒ functions of only v (d ,a
′)(β, ω) and α’s

used by intermediary to price / assess reputation
I show up in denominator of Bayesian posterior =⇒ always positive (if

feasible) is desirable

Nests D / ND B / S a′ IIA
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Equilibrium definition

Definition

A stationary recursive competitive equilibrium (SRCE) comprises:

pricing function q∗(ω) (vector-valued)

type scoring function, ψ∗(ω) (vector-valued) Details

quantal response function, σ∗(β, ω) (vector-valued)

steady state distribution, µ∗(β, ω) Details

such that

σ∗(β, ω) is consistent with HH optimization

q∗(ω) implies lenders break even, with repayment probabilities implied by σ∗

ψ∗(ω) satisfies Bayes’ Rule

µ∗(β, ω) is stationary

Theorem
There exists a SRCE.
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Targeted model moments: wealth and credit

select basic preference and filing cost parameters

externally calibrate earnings process

SMM on remaining 8 preference parameters
I match wealth and credit market moments (25 total)

Moment Data Model

Credit Default rate (%) 0.33 0.50

Average interest rate (%) 12.89 11.49

Fraction of HH in debt (%) 6.49 7.13

Debt to income ratio (%) 0.26 0.20

Interest rate dispersion (%) 6.58 5.59

Wealth Mean wealth to mean earnings 3.22 1.91

Correlation b/w wealth and earnings 0.52 0.65

Distributional and transition moments Data: debt Data: default
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Parameterization

Parameters Notation Value

Selected CRRA ν 3.0

risk-free rate (%) r 1.0

filing costs to mean income (%) κ 2.0

External var. of log(z) [transitory] σz 0.0421

persistence of log(e) ρe 0.914

variance of log(e) σe 0.206

Internal high type discount factor βH 0.954

low type discount factor βL 0.920

βL → βH transition prob Γβ(β′H |βL) 0.090

βL → βH transition prob Γβ(β′L|βH) 0.121

EV scale parameter, default α1 349

EV scale parameter, borrow / save α2 158

EV scale parameter, a ≥ 0 level αs
3 164

EV scale parameter, a < 0 level αb
3 306
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Bankruptcy and credit scores

(a) Data [Jagtiani and Li (2014)]
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3 economies

1 Full information (FI)
I type observable =⇒ no inference problem
I obviates credit score, but actual type can directly affect prices

2 Dynamic Punishment (DP) [benchmark]
I credit score is tracked and updated through time
I affects loan pricing function only

3 Dynamic Punishment with Earnings Effects (DP+)
I same pricing, credit scoring tracking as DP model
I extra: good (bad) credit score raises (lowers) earnings

e + z → e + z + (1 + λ)s + (1− λ)(1− s),

with λ = 1% (similar results for utility cost).
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Impact of information on price schedules
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Impact of default on price schedules
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Dynamics around default
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Reputation and the credit market

Model

Moment Data FI DP DP+

Default rate (%) 0.33 0.87 0.50 0.36

Average interest rate (%) 12.89 69.07 11.49 6.08

Fraction of HH in debt (%) 6.49 3.70 7.13 6.29

Debt to income ratio (%) 0.26 0.26 0.20 0.20

Interest rate dispersion (%) 6.58 76.5 5.59 3.34

Mean wealth to mean earnings 3.22 2.23 1.91 2.02

Corr b/w wealth and earnings 0.52 0.63 0.65 0.64

full information economy severely punishes bad types

DP+: even slight non-price punishment does a lot

Separation
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Individuals’ value of reputation
How much compensation is required to accept worst reputation?

W (β, ω) = W (β, e, z , a+τ(β, ω), s)
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agg. debt (a < 0) saving (a ≥ 0)
τ (%) total s = s total s = s

aggregate 0.024 0.164 0.414 0.013 0.011
high β 0.022 0.151 0.405 0.013 0.010
low β 0.026 0.177 0.495 0.013 0.015
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Key takeaways

Model mechanism

credit scores allow lenders to track reputation and infer default
probability, price loans better

default signals bad type, shifts interest rates up, reigns in borrowing

Quantitative results

reputation model outperforms full information case

non-price impact of credit score matters

reputation is worth something, especially if have a good reputation,
debt
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Credit scores and prices

Back
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Bankruptcy and credit scores

Back
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Some related literature
Equilibrium models of bankruptcy

full information, exogenous punishment
I Chatterjee et al. (2007), Livshits et al. (2007), sovereign debt

asymmetric info, static signaling, exogenous punishment
I Athreya et al. (2009, 2012), Livshits et al. (2015)

asymmetric info, dynamic signaling, endogenous punishment
I Chatterjee et al. (2008), Mateos-Planas et al. (2017)

important issue with asymmetric info: off equilibrium path beliefs

Discrete choice models

estimation of logit / nested logit models: McFadden (1973), Train
(2009)

dynamic models: Rust (1987)

make sense of behavior in experimental data (quantal response
equilibrium): McKelvey and Palfrey (1995, 1996)

Back
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Timing

1 HH begin period with state (β, e, a, s)

2 HH receive transitory earnings and preference shocks
I z ∼ G z(z)
I ε = {ε(d,a′)}(d,a′)∈Y ∼ G ε(ε), which is GEV with scale 1/αj in nest j

(details next slide)

3 Given price schedule q = {q(0,a′)(ω)}, agents choose (d , a′)

4 Intermediaries revise type scores from s → s ′ via Bayes rule and the
type scoring function ψ(d ,a′)(ω)

5 Next period states are drawn:
I β′ ∼ Γβ(β′|β)
I e′ ∼ Γe(e′|e)
I s ′ ∼ Γs(s ′|ψ)

Back
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HH problem: fundamental value

The individual’s decision problem is to solve

V (β, ω, ε) = max
(d ,a′)∈F(ω)

v (d ,a
′)(β, ω) + ε(d ,a

′),

where ε = {ε(d ,a′)}(d ,a′)∈Y is drawn from a GEV distribution. GEV

F(ω) is the set of feasible actions given state ω Details

The conditional value function for a given feasible action is

v (d,a′)(β, ω) = u
(
c(d,a

′)
)

+β
∑

z′,β′,s′,e′

(
Γβ(β, β′)Γe(e, e′)Γs(ψ, s ′)G z(z ′)

×
∫

V (β′, ω′, ε′)dG ε(ε′)

)
Back to HH overview
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Budget feasibility and actions

Set of all possible default and asset choices:

Y = {(d , a′) : (d , a′) ∈ {0} × A or (d , a′) = (1, 0)}

Given observable state ω and a set of equilibrium functions f = (q, ψ), the
set of feasible actions is

F(ω|f ) ⊆ Y

which contains all actions (d , a′) ∈ Y such that c(d ,a
′) > 0, where

consumption is pinned down by the budget constraint

c(d ,a
′) =


e + z + a− q(0,a

′)(ω)a′ if d = 0, a′ < 0

e + z + a− a′

1+r if d = 0, a′ ≥ 0

e + z − κ if d = 1, a′ = 0

Back

Dempsey (Ohio State) Credit Scoring, CCDR (2018) SED Mexico City, June 2018 8 / 31



Generalized extreme value distribution

[From Train (2009)]

Let the set of alternatives j ∈ {1, ..., J} be grouped into K
non-overlapping nests

each alternative j belongs to a single nest Bk , k ∈ {1, ...,K}

Then, the transitory preference shocks ε = {εj}Jj=1 follow a distribution
with CDF

exp

− K∑
k=1

∑
j∈Bk

exp (−εj/λk)

λk


Consider two alternative actions, i ∈ Bk and j ∈ B`

if k 6= `, then εi and εj are uncorrelated

if k = `, then εi and εj are correlated

Back
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HH problem: overview of 3 phases

1 default (D) vs no default (N) D / ND

D = {1, 0} and N = {B, S}

2 conditional on no default, borrow (B) vs save (S) B / S

B = {(0, a′)|a′ < 0} and S = {(0, a′)|a′ ≥ 0}

3 conditional on borrow (save), choose specific debt (asset) level a′

Disciplines the correlations b/w choices at each decision node

with extreme value preference shocks, implies a 3-tier nested logit
structure

Analyze this problem working backwards through these three decisions.
Back to tree Back to decision rules
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HH problem: debt / asset choice
Using discrete choice results, conditional on not defaulting and on
borrowing, the probability of choosing a debt level a′ < 0 is

σ(0,a
′)(β, ω|N,B) =

χ(0,a′)(ω) exp{αB
3 v

(0,a′)(β, ω)}∑
ã′∈B χ

(0,ã′)(ω) exp{αB
3 v

(0,ã′)(β, ω)}

χ(0,a′)(ω) is an indicator equal to 1 if action (0, a′) is feasible for an
agent in state ω

I formally, χ(0,a′)(ω) = 1 ⇐⇒ (0, a′) ∈ F(ω)

We can define the expected value of borrowing, then, via the inclusive
value or logsum formula

W B(β, ω) =
1

αB
3

ln

[∑
a′∈B

χ(0,a′)(ω) exp{αB
3 v

(0,a′)(β, ω)}

]
.

The procedure is similar for savings levels, replacing a′ < 0 with a′ ≥ 0 and
B with S in the above formulas.

Back to decision rules Back to 3 phases
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HH problem: borrow / save choice

Similarly, conditional on not defaulting, the probability of borrowing is

σB(β, ω|N) =
χB(ω) exp{α2W

B(β, ω)}
χB(ω) exp{α2W B(β, ω)}+ χS(ω) exp{α2W S(β, ω)}

χj(ω) is an indicator equal to one if there is any feasible action in set
j ∈ {B,S} for an agent with observable state ω

I formally, χj(ω) = 1 ⇐⇒ j ∪ F(ω) 6= ∅ for j ∈ {B,S}
similar for saving, replacing B with S above

I 2 choices =⇒ σS(β, ω|N) = 1− σB(β, ω|N)

We can define the expected value of not defaulting, then, via the inclusive
value or logsum formula

WN(β, ω) =
1

α2
ln
[
χB(ω) exp{α2W

B(β, ω)}+ χS(ω) exp{α2W
S(β, ω)}

]
.

Back to decision rules Back to 3 phases
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HH problem: default / no default choice
Similarly, the probability of defaulting is

σD(β, ω) =
χD(ω) exp{α1W

D(β, ω)}
χD(ω) exp{α1WD(β, ω)}+ χD(ω) exp{α1WN(β, ω)}

χi (ω) is an indicator equal to one if there is any feasible action in set
i ∈ {D,N} for an agent with observable state ω

I formally, χi (ω) = 1 ⇐⇒ i ∪ F(ω) 6= ∅ for i ∈ {D,N}
I χD(ω) = 1 if and only if a < 0

similar for no default, replacing D with N above
I 2 choices =⇒ σN(β, ω) = 1− σD(β, ω)

WD(β, ω) = v (1,0)(β, ω)

We can define an agent’s total expected value, then, via the inclusive value
or logsum formula

W (β, ω) =
1

α1
ln
[
χD(ω) exp{α1W

D(β, ω)}+ χN(ω) exp{α1W
N(β, ω)}

]
.

Back to decision rules Back to 3 phases
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Independence of irrelevant alternatives (1)

For any two options (d , a′) and (d̃ , ã′) within a given nest k, we have

σ(d ,a
′)(β, ω)

σ(d̃ ,ã′)(β, ω)
=

χ(d,a′)(ω) exp{αkv
(d,a′)(β,ω)}∑

(d̂,â′)∈k χ
(d̂,â′)(ω) exp{αkv (d̂,â′)(β,ω)}

χ(d̃,ã′)(ω) exp{αkv (d̃,ã′)(β,ω)}∑
(d̂,â′)∈k χ

(d̂,â′)(ω) exp{αkv (d̂,â′)(β,ω)}

= exp
{
αk

(
v (d ,a

′)(β, ω)− v (d̃ ,ã
′)(β, ω)

)}
,

assuming both actions are feasible.

this is the IIA property

ratio of choice probs depend only on relative action values

Back to HH decision rules More
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Independence of irrelevant alternatives (2)
Is IIA sensible in our environment? Consider 2 variants

Changing the value of alternatives

IIA is typically about changing “attributes” of an alternative

our choices have no (differential) attributes

Changing the alternatives (i.e. changing asset grid points)

our choices are scalar quantities, and for aggregates we can compute

∑
a′

a′ ×

∑
β,ω

µ(β, ω) · σ(0,a′)(β, ω)


how sensitive are such means to grid density / bounds?

I bounds: only matter if “new region” is close to / includes modal choice
I density: only matters ifα is low

Back to HH decision rules Back to IIA 1 Details Numerical Example
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IIA and grid density: details
Suppose there are N choices, a1, ..., aN .

let σi be the decision prob on i (must have
∑N

i=1 σi = 1)

define xi ,j = σi/σj for all i , j = 1, ...,N (xi ,i = 1)

define the mean choice to be

µ =
N∑
i=1

σiai = σ1

N∑
i=1

xi ,1ai

Now, add an additional L choices, aN+1, ..., aN+L

let σ̃i be the decision prob on i
I now

∑N+L
i=1 σ̃i = 1 and µ̃ =

∑N+L
i=1 σ̃iai

IIA =⇒ σ̃i/σ̃j = xij for all i , j = 1, ...,N as before. Therefore,

µ̃

µ
=

σ̃1
σ1︸︷︷︸

shift in choice probs

×

[
1 +

∑N+L
i=N+1 xi ,1ai∑N
i=1 xi ,1ai

]
︸ ︷︷ ︸

shift in actions

Calculation Back to IIA main Back to HH decision rules
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IIA and grid density: numerical example

Consider the following application:

N = 21

{a1, ..., aN} is an evenly spaced grid on [−0.2, 0.0] (every 0.01)

maxi σi = 11, so the modal action is a11 = −0.1

Back to HH decision rules Back to IIA main
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IIA and grid density: calculation

µ̃− µ
µ

=
1

µ

(
N+L∑
i=1

σ̃iai −
N∑
i=1

σiai

)

=
σ̃N+1

∑N+L
i=N+1 xi ,N+1ai

µ
+

(σ̃1 − σ1)
∑N

i=1 xi ,1ai
µ

=
σ̃N+1

∑N+L
i=N+1 xi ,N+1ai

σ1
∑N

i=1 xi ,1ai
+
σ̃1 − σ1
σ1

=
σ̃1
σ1

[
1 +

xN+1,1
∑N+L

i=N+1 xi ,N+1ai∑N
i=1 xi ,1ai

]
− 1

=
σ̃1
σ1

[
1 +

∑N+L
i=N+1 xi ,1ai∑N
i=1 xi ,1ai

]
− 1

Back Back to HH decision rules
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Lender problem: type scoring and debt pricing
Given actions and observables, type updating function is

ψ(d,a′)(ω) = Pr (β′ = βH | (d , a′), ω)

=
∑
β

Γβ(β, βH)
σ(d,a′)(β, ω)s(β)∑
β̃ σ

(d,a′)(β̃, ω)s(β̃)

Perfect competition, deep pockets =⇒ breakeven pricing

q(0,a
′)(ω) =

{
p(0,a′)(ω)
1+r+ι if a′ < 0
1

1+r if a′ ≥ 0,

where p(·) is the assessed repayment probability using both the type score ψ and
the decision rules σ

p(0,a
′)(ω) =

∑
s′,e′,z′

{
Γs(ψ(d,a′)(ω), s ′)Γe(e, e′)G (z ′)

×
[
s ′
(

1− σ(1,0)(βH , ω
′)
)

+ (1− s ′)
(

1− σ(1,0)(βL, ω
′)
)]}

Back to environment Back to Eqm.
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Type scores and the likelihood ratio
Define the likelihood ratio for decisions to be:

x (d ,a
′)(ω) =

σ(d ,a
′)(βH , ω)

σ(d ,a′)(βL, ω)

Then the type score updating function can be rewritten as

ψ(d ,a′)(ω) =
Γβ(β′H |βH)σ(d ,a

′)(βH , ω)s + Γβ(β′H |βL)σ(d ,a
′)(βL, ω)(1− s)

σ(d ,a′)(βH , ω)s + σ(d ,a′)(βL, ω)(1− s)

=
Γβ(β′H |βH)x (d ,a

′)(ω)s + Γβ(β′H |βL)(1− s)

x (d ,a′)(ω)s + (1− s)

And a simple calculation shows that as long as Γβ(β′H |βH) > Γβ(β′H |βL)

∂ψ(d ,a′)(ω)

∂x (d ,a′)(ω)
> 0,

so the type score is increasing in the likelihood ratio.
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Stationary distribution

Let T ∗ be the operator mapping a distribution of agents today into a
distribution tomorrow. Then,

T ∗(β, ω, β′, ω′) = σ(d ,a
′)(β, ω)Γs(ψ(d ,a′)(ω), s ′)Γβ(β, β′)Γe(e, e ′)H(z ′)

and the distribution µ(β, ω) evolves via

µ′(β′, ω′) =
∑
β,ω

T ∗(β, ω, β′, ω′)µ(β, ω)

A stationary distribution is a fixed point of this expression.
Back to Eqm.
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Targeted model moments: distributions and transitions

Earnings → Data Dynamic Model Static Model

Wealth ↓ T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 0.20 0.10 0.03 0.15 0.13 0.05 0.14 0.11 0.04

T2 0.09 0.14 0.10 0.07 0.12 0.14 0.08 0.13 0.15

T3 0.03 0.09 0.22 0.03 0.09 0.21 0.04 0.09 0.22

Table: Joint distribution of earnings and wealth tertiles

Wealth, t + 2 → Data Dynamic Model Static Model

Wealth, t ↓ T1 T2 T3 T1 T2 T3 T1 T2 T3

T1 0.76 0.22 0.02 0.83 0.12 0.05 0.50 0.18 0.31

T2 0.20 0.62 0.18 0.10 0.66 0.24 0.09 0.75 0.16

T3 0.04 0.14 0.82 0.03 0.08 0.90 0.03 0.08 0.89

Table: Wealth tertile transitions

Back
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Data details: debt

Source: 2007 SCF

Computation details

for debt stats, debtor ⇐⇒ negative net worth
I exclude debts of greater than 120% of annual income

Statistic Value
Total debt in group ($B) $71.3 A
Total HH in group 7,541,007 B
Total HH in US 116,107,641 C
2007 Nominal GDP ($B) $14,478 D
Debt / HH (A / C) $614.50 A / C
Fraction of HH in debt (B / C) 6.493% B / C
GDP per HH (D / C) $124,692 D / C
Debt to income ratio ((A / C) / (D / C)) 0.493% A / D

Back to targets Distributional and transition moments
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Data details: default rates

Sources: all for data year 2007 for consistency with SCF (used for debt
statistics)

Federal reserve chargeoff data for chargeoffs

US courts for bankruptcy filings (nonbusiness, chapter 7)

US census for total number of HH

Computation details

use as denominator # of households (not individuals)

sum up all filings across all quarters, divide by #HH from census

then, there is a further adjustment: married couples filing together

Back to targets Distributional and transition moments

Dempsey (Ohio State) Credit Scoring, CCDR (2018) SED Mexico City, June 2018 25 / 31



Trends in agents’ state around default
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4 economies

1 Full information (FI)
I type observable =⇒ no inference problem
I obviates credit score, but actual type can directly affect prices

2 Dynamic Punishment (DP) [benchmark]
I credit score is tracked and updated through time
I affects loan pricing function only

3 Static Punishment (SP)
I no tracking of credit scores or assets
I only punishment is the cost of filing

4 Dynamic Punishment with Earnings Effects (DP+)
I same pricing, credit scoring tracking as DP model
I extra: good (bad) credit score raises (lowers) earnings

Dempsey (Ohio State) Credit Scoring, CCDR (2018) SED Mexico City, June 2018 28 / 31



Reputation and the credit market

Model

Moment Data FI SP DP DP+

Default rate (%) 0.33 0.87 0.49 0.50 0.36

Average interest rate (%) 12.89 69.07 11.01 11.49 6.08

Fraction of HH in debt (%) 6.49 3.70 8.25 7.13 6.29

Debt to income ratio (%) 0.26 0.26 0.24 0.20 0.20

Interest rate dispersion (%) 6.58 76.5 5.17 5.59 3.34

Mean wealth to mean earnings 3.22 2.23 1.90 1.91 2.02

Corr b/w wealth and earnings 0.52 0.63 0.65 0.65 0.64

full information economy severely punishes bad types

DP+: even slight non-price punishment does a lot

current work: why SP and DP performance so close?
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Measuring separation: absolute distance

Dynamic Static Full info
AD Measure # # ∆Dyn # ∆Dyn

Total 0.519 0.517 0.0025 0.560 -0.0786
Action 1.125 1.114 0.0106 1.492 -0.3676
saving 1.210 1.213 -0.0031 1.549 -0.3384
borrowing 0.012 0.011 0.0006 0.027 -0.0147

Default 0.034 0.029 0.0051 0.097 -0.0634

AD =
∑

ω,(d,a′)

∣∣∣σ(d,a′)(βH , ω)− σ(d,a′)(βL, ω)
∣∣∣ · µ̃(ω)

Alternatives: AD(action) =
∑
ω

∣∣∣∣∣∑
a′

a′
[
σ(0,a′)(βH , ω)− σ(0,a′)(βL, ω)

]∣∣∣∣∣ · µ̃(ω)

AD(default) =
∑
ω

∣∣∣σ(1,0)(βH , ω)− σ(1,0)(βL, ω)
∣∣∣ · µ̃(ω)

Back Other options
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Measuring separation: alternatives

1 Utility cost (UC) of imitation. Let (di (ω), a′i (ω)) be the modal action of
type i in state ω. Compute

UC =
∑
ω

[
v (di (ω),a

′
i (ω))(βi , ω)− v (dj (ω),a

′
j (ω))(βi , ω)

]
,

for j 6= i (i.e. can do relative to either high or low type).

2 An equilibrium approach. Solve model twice,changing only βL from (1) to
(2) so that types are “farther apart.” Compare:

I decisions under parameterization (1)
I decisions under parameterization (2)
I decisions under parameterization (1) given prices from (2)

Back
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