A Theory of Credit Scoring and the Competitive Pricing of Default Risk

> Satyajit Chatterjee (FRB Philadelphia) Dean Corbae (Wisconsin) Kyle Dempsey (Ohio State) José-Víctor Ríos-Rull (Penn)

SED Annual Conference

Session: Credit and Macroeconomic Stabilization ITAM, Mexico City, Mexico June 30, 2018 Why do people pay back rather than file for bankruptcy?

Benefits: Ch 7 offers credit protection

Costs: Filing costs (low), bankruptcy can hurt your reputation

- direct: lower credit scores, higher interest rates, restricted access
- indirect: difficulties renting, getting hired, in relationships

Quantitative models of default get too much unsecured credit \implies need additional punishments

- literature assumes **exclusion**, stigma, etc.
- we tackle the reputation problem in a quantitative framework
- delivers a theory of credit scoring

What we do

Can **reputation effects** simultaneously explain small amounts of unsecured credit, low interest rates, and low default rates?

Construct an incomplete markets model with adverse selection

- people differ in persistent wealth, income, type, and "reputation"
 - type propensity to default, borrow too much (β), unobservable
 - ▶ reputation lender's "best guess" of β (+ other traits → credit score)
- also transitory traits that impact default today only
- lenders have to infer types via reputation to price loans

Map the model to the data

- target wealth distribution, key credit moments
- compare model implied credit score dynamics to data

Vary the notion of punishment

• compare 3 economies: full info, benchmark, "extra" reputation

What we find

Yes — reputation matters.

Key mechanism

- low β types more like to borrow too much, default
- ullet \implies these actions signal bad type, reflected in lenders' assessment
- reflected in pricing function, reigning in credit

Quantitative results

- **(**) compared to **full information** case, benchmark model features
 - Iower levels of default (by 42%), interest rates (by 83%)
 - wider dispersion of interest rates (factor of 25)
 - why? better able to separate types
- Individuals would need to be compensated for a bad reputation
- Inon-price effects play a role: 1% reduction in earnings for bad credit score reduces default by 28%

Literature

Model environment: households

HH have **preferences** ordered by u(c), s.t. to 2 unobservable shocks

- persistent: discount rate $\beta \in \{\beta_L, \beta_H\}$, drawn from $\Gamma^{\beta}(\beta, \beta')$
- transitory: additive, action-specific shocks ϵ drawn from $G^{\epsilon}(\epsilon)$

Earnings are comprised of 2 observable components

- persistent: e, follows $\Gamma^e(e, e')$
- transitory: z, drawn from $G^{z}(z)$

Each period, HH take action (d, a')

- $a' \in \mathcal{A} = \{a_1, ..., 0, ..., a_{N(a)}\}$: asset (or debt) position for next period
- $d \in \{0,1\}$: default decision. If HH defaults (d = 1), then
 - HH cannot save that period (a' = 0)
 - ▶ and loses κ of income $(c = e + z \kappa) \rightarrow$ "static" punishment

Model environment: intermediaries

- risk neutral, perfectly competitive (free entry)
- borrow at exogenous interest rate r, intermediation cost ι on debt
- observe earnings (e and z) and choices (d, a')

Inference problem: cannot observe β or $\epsilon^{(d,a')}$ when pricing loans

- β persistent \implies actions can signal type
- ϵ transitory \implies adds confusion
 - \blacktriangleright GEV / logit assumption \implies all actions chosen with prob >0

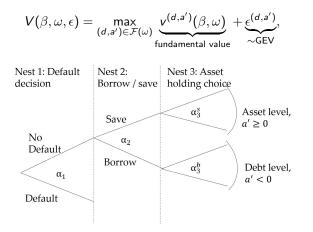
Solution: assign reputation, subjective prior $s = \Pr(\beta = \beta_H)$

• update via Bayes rule using observables (d, a') and $\omega = (e, z, a, s)$ to revise type score $\psi^{(d,a')}(\omega)$

Pricing: offer discount loans at prices $q^{(0,a')}(\omega)$, where

$$q^{(0,a')}(\omega)=egin{cases} rac{p^{(0,a')}(\omega)}{1+r\iota} & ext{ if } a'<0\ rac{1}{1+r} & ext{ if } a'\geq 0, \end{cases}$$

HH problem: overview



• α 's determine correlation b/w ϵ_i shocks for i w/in each nest

- high $\alpha \implies$ low variance of ϵ shocks for options in nest
- highest $v^{(d,a')}(\beta,\omega) \implies$ modal action

Feasibility

Dempsey (Ohio State)

Fundamental value

Credit Scoring, CCDR (2018)

HH problem: decision rules

Results in 4 decision rules / probabilities

- default, $\sigma^D(\beta, \omega)$
- borrowing, cond. on not defaulting: $\sigma^B(\beta, \omega | \neg D)$
- debt [asset] level, cond. on not defaulting and borrowing [saving]: $\sigma^{a'}(\beta, \omega | \neg D, B) \ [\sigma^{a'}(\beta, \omega | \neg D, \neg B)]$

Can combine nest-level decisions into a single function $\sigma^{(d,a')}(\beta,\omega)$, e.g.

$$\sigma^{(0,a')}(\beta,\omega) = \sigma^{N}(\beta,\omega)\sigma^{B}(\beta,\omega|N)\sigma^{a'}(\beta,\omega|N,B)$$
 if $a' < 0$

- substitute for $\sigma \implies$ functions of only $v^{(d,a')}(\beta,\omega)$ and α 's
- used by intermediary to price / assess reputation
 - \blacktriangleright show up in denominator of Bayesian posterior \implies always positive (if feasible) is desirable

 $\bullet \text{ Nests } \bullet \text{ D / ND } \bullet \text{ B / S } \bullet a' \bullet \text{ IIA}$

Equilibrium definition

Definition

A stationary recursive competitive equilibrium (SRCE) comprises:

- pricing function $q^*(\omega)$ (vector-valued)
- type scoring function, $\psi^*(\omega)$ (vector-valued) lacksquare
- quantal response function, $\sigma^*(\beta,\omega)$ (vector-valued)
- steady state distribution, $\mu^*(\beta,\omega)$ · Details

such that

- $\sigma^*(eta,\omega)$ is consistent with HH optimization
- $q^*(\omega)$ implies lenders break even, with repayment probabilities implied by σ^*
- $\psi^*(\omega)$ satisfies Bayes' Rule
- $\mu^*(\beta, \omega)$ is stationary

Theorem

There exists a SRCE.

Dempsey (Ohio State)

Targeted model moments: wealth and credit

- select basic preference and filing cost parameters
- externally calibrate earnings process
- SMM on remaining 8 preference parameters
 - match wealth and credit market moments (25 total)

	Moment	Data	Model
Credit	Default rate (%)	0.33	0.50
	Average interest rate (%)	12.89	11.49
	Fraction of HH in debt (%)	6.49	7.13
	Debt to income ratio (%)	0.26	0.20
	Interest rate dispersion (%)	6.58	5.59
Wealth	Mean wealth to mean earnings	3.22	1.91
	Correlation b/w wealth and earnings	0.52	0.65

Distributional and transition moment

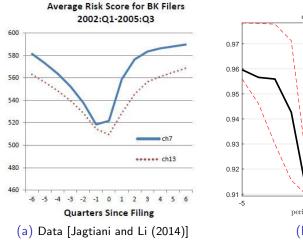
▶ Data: debt ▶

:) (> Data: default

Parameterization

	Parameters	Notation	Value
Selected	CRRA	ν	3.0
	risk-free rate (%)	r	1.0
	filing costs to mean income (%)	κ	2.0
External	var. of $log(z)$ [transitory]	σ_z	0.0421
	persistence of log(<i>e</i>)	$ ho_{e}$	0.914
	variance of log(<i>e</i>)	σ_e	0.206
Internal	high type discount factor	β_H	0.954
	low type discount factor	β_L	0.920
	$\beta_L \rightarrow \beta_H$ transition prob	$\Gamma^{eta}(eta_{H}^{\prime} eta_{L})$	0.090
	$\beta_L \rightarrow \beta_H$ transition prob	$\Gamma^{eta}(eta_L' eta_H)$	0.121
	EV scale parameter, default	α_1	349
	EV scale parameter, borrow $/$ save	α_2	158
	EV scale parameter, $a \ge 0$ level	α_3^s	164
	EV scale parameter, $a < 0$ level	α_3^b	306

Bankruptcy and credit scores



credit score, \mathcal{E} 5 periods after default (b) Model

Other objects

Dempsey (Ohio State)

3 economies

• Full information (FI)

- type observable \implies no inference problem
- obviates credit score, but actual type can directly affect prices

Oynamic Punishment (DP) [benchmark]

- credit score is tracked and updated through time
- affects loan pricing function only

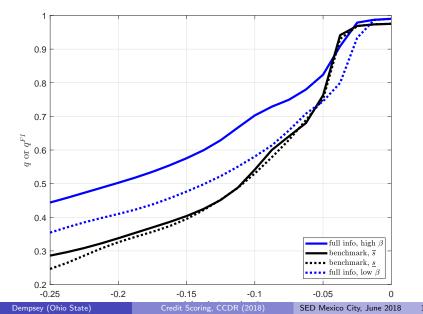
Operation Operation Opera

- same pricing, credit scoring tracking as DP model
- extra: good (bad) credit score raises (lowers) earnings

$$e + z \rightarrow e + z + (1 + \lambda)s + (1 - \lambda)(1 - s),$$

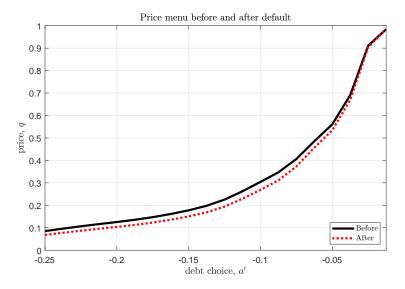
with $\lambda = 1\%$ (similar results for utility cost).

Impact of information on price schedules



14 / 18

Impact of default on price schedules



Reputation and the credit market

		Model			
Moment	Data	FI	DP	DP+	
Default rate (%)	0.33	0.87	0.50	0.36	
Average interest rate (%)	12.89	69.07	11.49	6.08	
Fraction of HH in debt (%)	6.49	3.70	7.13	6.29	
Debt to income ratio (%)	0.26	0.26	0.20	0.20	
Interest rate dispersion (%)	6.58	76.5	5.59	3.34	
Mean wealth to mean earnings	3.22	2.23	1.91	2.02	
Corr b/w wealth and earnings	0.52	0.63	0.65	0.64	

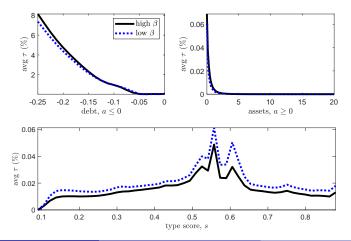
- full information economy severely punishes bad types
- DP+: even slight non-price punishment does a lot

Separation

Individuals' value of reputation

How much compensation is required to accept worst reputation?

$$W(eta,\omega) = W(eta,e,z,a+ au(eta,\omega),\underline{s})$$



Dempsey (Ohio State)

Key takeaways

Model mechanism

- credit scores allow lenders to track reputation and infer default probability, price loans better
- default signals bad type, shifts interest rates up, reigns in borrowing

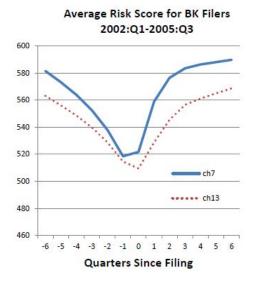
Quantitative results

- reputation model outperforms full information case
- non-price impact of credit score matters
- reputation is worth something, especially if have a good reputation, debt

Credit scores and prices

	Having an offer	Credit limit	Spread
VantageScore bins			
550-600	0.100^{***}	-208.749***	1.229***
	(0.009)	(34.383)	(0.181)
600-650	0.155^{***}	-251.378^{***}	2.249***
	(0.010)	(34.182)	(0.186)
650-700	0.223***	-208.157^{***}	1.693^{***}
	(0.011)	(32.610)	(0.203)
700-750	0.252^{***}	-100.237***	0.436^{**}
	(0.011)	(33.416)	(0.188)
750-800	0.285^{***}	102.084***	-0.367*
	(0.011)	(31.987)	(0.191)
800-850	0.292^{***}	326.984^{***}	-0.871***
	(0.012)	(35.524)	(0.190)
850-900	0.264^{***}	577.903***	-0.969***
	(0.012)	(31.360)	(0.185)
900-950	0.254^{***}	714.265***	-0.865***
	(0.011)	(33.499)	(0.192)
> 950	0.267***	809.787***	-0.770***
	(0.010)	(40.664)	(0.178)

Bankruptcy and credit scores



Some related literature

Equilibrium models of bankruptcy

- full information, exogenous punishment
 - ▶ Chatterjee et al. (2007), Livshits et al. (2007), sovereign debt
- asymmetric info, static signaling, exogenous punishment
 - Athreya et al. (2009, 2012), Livshits et al. (2015)
- asymmetric info, dynamic signaling, endogenous punishment
 - Chatterjee et al. (2008), Mateos-Planas et al. (2017)
- important issue with asymmetric info: off equilibrium path beliefs

Discrete choice models

- estimation of logit / nested logit models: McFadden (1973), Train (2009)
- dynamic models: Rust (1987)
- make sense of behavior in experimental data (quantal response equilibrium): McKelvey and Palfrey (1995, 1996)

Timing

- HH begin period with state (β, e, a, s)
- IH receive transitory earnings and preference shocks
 - z ~ G^z(z)
 ϵ = {ϵ^(d,a')}<sub>(d,a')∈𝔅 → G^ϵ(ϵ), which is GEV with scale 1/α_j in nest j (details next slide)
 </sub>
- Siven price schedule $q = \{q^{(0,a')}(\omega)\}$, agents choose (d,a')
- Intermediaries revise type scores from s → s' via Bayes rule and the type scoring function ψ^(d,a')(ω)
- Next period states are drawn:
 - $\beta' \sim \Gamma^{\beta}(\beta'|\beta)$ $e' \sim \Gamma^{e}(e'|e)$ $s' \sim \Gamma^{s}(s'|\psi)$

HH problem: fundamental value

The individual's decision problem is to solve

$$V(\beta, \omega, \epsilon) = \max_{(d,a') \in \mathcal{F}(\omega)} v^{(d,a')}(\beta, \omega) + \epsilon^{(d,a')}(\beta, \omega$$

where $\epsilon = \{\epsilon^{(d,a')}\}_{(d,a')\in\mathcal{Y}}$ is drawn from a GEV distribution. \frown GEV • $\mathcal{F}(\omega)$ is the set of feasible actions given state ω \frown Details

The conditional value function for a given feasible action is

$$\begin{aligned} v^{(d,a')}(\beta,\omega) &= u\left(c^{(d,a')}\right) \\ &+\beta \sum_{z',\beta',s',e'} \left(\Gamma^{\beta}(\beta,\beta')\Gamma^{e}(e,e')\Gamma^{s}(\psi,s')G^{z}(z')\right) \\ &\times \int V(\beta',\omega',\epsilon')dG^{\epsilon}(\epsilon') \end{aligned}$$

Back to HH overview

Budget feasibility and actions

Set of all possible default and asset choices:

$$\mathcal{Y} = \{(d,a'):\,(d,a')\in\{0\} imes\mathcal{A} ext{ or } (d,a')=(1,0)\}$$

Given observable state ω and a set of equilibrium functions $f = (q, \psi)$, the set of feasible actions is

$$\mathcal{F}(\omega|f) \subseteq \mathcal{Y}$$

which contains all actions $(d, a') \in \mathcal{Y}$ such that $c^{(d,a')} > 0$, where consumption is pinned down by the budget constraint

$$c^{(d,a')} = \begin{cases} e+z+a-q^{(0,a')}(\omega)a' & \text{if } d=0, a'<0\\ e+z+a-\frac{a'}{1+r} & \text{if } d=0, a'\geq 0\\ e+z-\kappa & \text{if } d=1, a'=0 \end{cases}$$

▶ Back

Generalized extreme value distribution

[From Train (2009)]

Let the set of alternatives $j \in \{1,...,J\}$ be grouped into K non-overlapping nests

• each alternative j belongs to a single nest B_k , $k \in \{1,...,K\}$

Then, the transitory preference shocks $\epsilon = \{\epsilon_j\}_{j=1}^J$ follow a distribution with CDF

$$\exp\left(-\sum_{k=1}^{K}\left[\sum_{j\in B_{k}}\exp\left(-\epsilon_{j}/\lambda_{k}\right)\right]^{\lambda_{k}}\right)$$

Consider two alternative actions, $i \in B_k$ and $j \in B_\ell$

- if $k \neq \ell$, then ϵ_i and ϵ_j are uncorrelated
- if $k = \ell$, then ϵ_i and ϵ_j are correlated

HH problem: overview of 3 phases

• default (D) vs no default (N) • D/ND

 $D = \{1, 0\}$ and $N = \{B, S\}$

2 conditional on no default, borrow (B) vs save (S) (S)

 $B = \{(0, a') | a' < 0\}$ and $S = \{(0, a') | a' > 0\}$

S conditional on borrow (save), choose specific debt (asset) level

Disciplines the correlations b/w choices at each decision node

 with extreme value preference shocks, implies a 3-tier nested logit structure

Analyze this problem working backwards through these three decisions.

Back to tree Back to decision rules

HH problem: debt / asset choice

Using discrete choice results, conditional on not defaulting and on borrowing, the probability of choosing a debt level a' < 0 is

$$\sigma^{(0,a')}(\beta,\omega|N,B) = \frac{\chi^{(0,a')}(\omega)\exp\{\alpha_3^B v^{(0,a')}(\beta,\omega)\}}{\sum_{\tilde{a}'\in B}\chi^{(0,\tilde{a}')}(\omega)\exp\{\alpha_3^B v^{(0,\tilde{a}')}(\beta,\omega)\}}$$

- $\chi^{(0,a')}(\omega)$ is an indicator equal to 1 if action (0,a') is feasible for an agent in state ω
 - ► formally, $\chi^{(0,a')}(\omega) = 1 \iff (0,a') \in \mathcal{F}(\omega)$

We can define the expected value of borrowing, then, via the inclusive value or logsum formula

$$W^{B}(\beta,\omega) = \frac{1}{\alpha_{3}^{B}} \ln \left[\sum_{\mathbf{a}' \in B} \chi^{(0,\mathbf{a}')}(\omega) \exp\{\alpha_{3}^{B} \mathbf{v}^{(0,\mathbf{a}')}(\beta,\omega)\} \right]$$

The procedure is similar for savings levels, replacing a' < 0 with $a' \ge 0$ and B with S in the above formulas.

Dempsey (Ohio State)

Credit Scoring, CCDR (2018)

HH problem: borrow / save choice

Similarly, conditional on not defaulting, the probability of borrowing is

$$\sigma^{B}(\beta,\omega|N) = \frac{\chi^{B}(\omega)\exp\{\alpha_{2}W^{B}(\beta,\omega)\}}{\chi^{B}(\omega)\exp\{\alpha_{2}W^{B}(\beta,\omega)\} + \chi^{S}(\omega)\exp\{\alpha_{2}W^{S}(\beta,\omega)\}}$$

- $\chi^{j}(\omega)$ is an indicator equal to one if there is any feasible action in set $j \in \{B, S\}$ for an agent with observable state ω
 - ► formally, $\chi^j(\omega) = 1 \iff j \cup \mathcal{F}(\omega) \neq \emptyset$ for $j \in \{B, S\}$
- similar for saving, replacing B with S above
 - 2 choices $\implies \sigma^{S}(\beta, \omega | N) = 1 \sigma^{B}(\beta, \omega | N)$

We can define the expected value of not defaulting, then, via the inclusive value or logsum formula

$$W^{N}(\beta,\omega) = \frac{1}{\alpha_{2}} \ln \left[\chi^{B}(\omega) \exp\{\alpha_{2} W^{B}(\beta,\omega)\} + \chi^{S}(\omega) \exp\{\alpha_{2} W^{S}(\beta,\omega)\} \right].$$

Back to decision rules A Back to 3 ph

HH problem: default / no default choice Similarly, the probability of defaulting is

$$\sigma^{D}(\beta,\omega) = \frac{\chi^{D}(\omega) \exp\{\alpha_{1} W^{D}(\beta,\omega)\}}{\chi^{D}(\omega) \exp\{\alpha_{1} W^{D}(\beta,\omega)\} + \chi^{D}(\omega) \exp\{\alpha_{1} W^{N}(\beta,\omega)\}}$$

- $\chi^i(\omega)$ is an indicator equal to one if there is any feasible action in set $i \in \{D, N\}$ for an agent with observable state ω
 - formally, $\chi^i(\omega) = 1 \iff i \cup \mathcal{F}(\omega) \neq \emptyset$ for $i \in \{D, N\}$

•
$$\chi^D(\omega) = 1$$
 if and only if $a < 0$

• similar for no default, replacing D with N above

▶ 2 choices
$$\implies \sigma^N(\beta, \omega) = 1 - \sigma^D(\beta, \omega)$$

•
$$W^D(\beta,\omega) = v^{(1,0)}(\beta,\omega)$$

We can define an agent's total expected value, then, via the inclusive value or logsum formula

$$W(\beta,\omega) = \frac{1}{\alpha_1} \ln \left[\chi^D(\omega) \exp\{\alpha_1 W^D(\beta,\omega)\} + \chi^N(\omega) \exp\{\alpha_1 W^N(\beta,\omega)\} \right].$$

ack to decision rules 🔪 🕨 Back to 3 phas

Independence of irrelevant alternatives (1)

For any two options (d,a') and (\tilde{d},\tilde{a}') within a given nest k, we have

$$\frac{\sigma^{(d,a')}(\beta,\omega)}{\sigma^{(\tilde{d},\tilde{a}')}(\beta,\omega)} = \frac{\frac{\chi^{(d,a')}(\omega)\exp\{\alpha_{k}v^{(d,a')}(\beta,\omega)\}}{\sum_{(\hat{d},\hat{a}')\in k}\chi^{(\hat{d},\hat{a}')}(\omega)\exp\{\alpha_{k}v^{(\hat{d},\hat{a}')}(\beta,\omega)\}}}{\frac{\chi^{(\tilde{d},\tilde{a}')}(\omega)\exp\{\alpha_{k}v^{(\tilde{d},\hat{a}')}(\beta,\omega)\}}{\sum_{(\hat{d},\hat{a}')\in k}\chi^{(\hat{d},\hat{a}')}(\omega)\exp\{\alpha_{k}v^{(\hat{d},\hat{a}')}(\beta,\omega)\}}} \\ = \exp\left\{\alpha_{k}\left(v^{(d,a')}(\beta,\omega) - v^{(\tilde{d},\tilde{a}')}(\beta,\omega)\right)\right\},$$

assuming both actions are feasible.

- this is the **IIA** property
- ratio of choice probs depend only on relative action values

▶ Back to HH decision rules

► More

Independence of irrelevant alternatives (2)

Is IIA sensible in our environment? Consider 2 variants

Changing the value of alternatives

- IIA is typically about changing "attributes" of an alternative
- our choices have no (differential) attributes

Changing the alternatives (i.e. changing asset grid points)

• our choices are scalar quantities, and for aggregates we can compute

$$\sum_{\mathbf{a}'} \mathbf{a}' \times \left[\sum_{\beta, \omega} \mu(\beta, \omega) \cdot \sigma^{(\mathbf{0}, \mathbf{a}')}(\beta, \omega) \right]$$

• how sensitive are such means to grid density / bounds?

- **bounds:** only matter if "new region" is close to / includes modal choice
- density: only matters if α is low

 • Back to HH decision rules
 • Back to IIA 1
 • Details
 • Numerical Example

 Dempsey (Ohio State)

 Credit Scoring, CCDR (2018)

 SED Mexico City, June 2018
 15 / 31

IIA and grid density: details

Suppose there are N choices, $a_1, ..., a_N$.

- let σ_i be the decision prob on *i* (must have $\sum_{i=1}^{N} \sigma_i = 1$)
- define $x_{i,j} = \sigma_i / \sigma_j$ for all i, j = 1, ..., N ($x_{i,i} = 1$)
- define the mean choice to be

$$\mu = \sum_{i=1}^{N} \sigma_i a_i = \sigma_1 \sum_{i=1}^{N} x_{i,1} a_i$$

Now, add an additional L choices, $a_{N+1}, ..., a_{N+L}$

• let
$$\tilde{\sigma}_i$$
 be the decision prob on i
• now $\sum_{i=1}^{N+L} \tilde{\sigma}_i = 1$ and $\tilde{\mu} = \sum_{i=1}^{N+L} \tilde{\sigma}_i a_i$
• IIA $\implies \tilde{\sigma}_i / \tilde{\sigma}_j = x_{ij}$ for all $i, j = 1, ..., N$ as before. Therefore,
 $\frac{\tilde{\mu}}{\mu} = \underbrace{\frac{\tilde{\sigma}_1}{\sigma_1}}_{\text{shift in choice probs}} \times \underbrace{\left[1 + \frac{\sum_{i=N+1}^{N+L} x_{i,1} a_i}{\sum_{i=1}^{N} x_{i,1} a_i}\right]}_{\text{shift in actions}}$
• Calculation • Back to IIA main • Back to HH decision rules

16 / 31

IIA and grid density: numerical example

Consider the following application:

- *N* = 21
- $\{a_1, ..., a_N\}$ is an evenly spaced grid on [-0.2, 0.0] (every 0.01)
- max_i $\sigma_i = 11$, so the modal action is $a_{11} = -0.1$

Back to HH decision rules Back to IIA main

IIA and grid density: calculation

$$\begin{aligned} \frac{\tilde{\mu} - \mu}{\mu} &= \frac{1}{\mu} \left(\sum_{i=1}^{N+L} \tilde{\sigma}_i a_i - \sum_{i=1}^N \sigma_i a_i \right) \\ &= \frac{\tilde{\sigma}_{N+1} \sum_{i=N+1}^{N+L} x_{i,N+1} a_i}{\mu} + \frac{(\tilde{\sigma}_1 - \sigma_1) \sum_{i=1}^N x_{i,1} a_i}{\mu} \\ &= \frac{\tilde{\sigma}_{N+1} \sum_{i=N+1}^{N+L} x_{i,N+1} a_i}{\sigma_1 \sum_{i=1}^N x_{i,1} a_i} + \frac{\tilde{\sigma}_1 - \sigma_1}{\sigma_1} \\ &= \frac{\tilde{\sigma}_1}{\sigma_1} \left[1 + \frac{x_{N+1,1} \sum_{i=N+1}^{N+L} x_{i,N+1} a_i}{\sum_{i=1}^N x_{i,1} a_i} \right] - 1 \\ &= \frac{\tilde{\sigma}_1}{\sigma_1} \left[1 + \frac{\sum_{i=N+1}^{N+L} x_{i,1} a_i}{\sum_{i=1}^N x_{i,1} a_i} \right] - 1 \end{aligned}$$

Back > Back to HH decision rules

Lender problem: type scoring and debt pricing Given actions and observables, type updating function is

$$\psi^{(d,a')}(\omega) = \Pr(\beta' = \beta_H \mid (d,a'), \omega)$$

=
$$\sum_{\beta} \Gamma^{\beta}(\beta, \beta_H) \frac{\sigma^{(d,a')}(\beta, \omega) s(\beta)}{\sum_{\tilde{\beta}} \sigma^{(d,a')}(\tilde{\beta}, \omega) s(\tilde{\beta})}$$

Perfect competition, deep pockets \implies breakeven pricing

$$q^{(0,a')}(\omega)=egin{cases} rac{p^{(0,a')}(\omega)}{1+r+\iota} & ext{if } a'<0\ rac{1}{1+r} & ext{if } a'\geq 0, \end{cases}$$

where $p(\cdot)$ is the assessed repayment probability using both the type score ψ and the decision rules σ

$$p^{(0,a')}(\omega) = \sum_{s',e',z'} \left\{ \Gamma^{s}(\psi^{(d,a')}(\omega),s')\Gamma^{e}(e,e')G(z') \\ \times \left[s'\left(1 - \sigma^{(1,0)}(\beta_{H},\omega')\right) + (1 - s')\left(1 - \sigma^{(1,0)}(\beta_{L},\omega')\right) \right] \right\}$$

Back to environment > Back to Eqm.

Dempsey (Ohio State)

Type scores and the likelihood ratio

Define the likelihood ratio for decisions to be:

$$x^{(d,a')}(\omega) = \frac{\sigma^{(d,a')}(\beta_H,\omega)}{\sigma^{(d,a')}(\beta_L,\omega)}$$

Then the type score updating function can be rewritten as

$$\begin{split} \psi^{(d,a')}(\omega) &= \frac{\Gamma_{\beta}(\beta'_{H}|\beta_{H})\sigma^{(d,a')}(\beta_{H},\omega)s + \Gamma_{\beta}(\beta'_{H}|\beta_{L})\sigma^{(d,a')}(\beta_{L},\omega)(1-s)}{\sigma^{(d,a')}(\beta_{H},\omega)s + \sigma^{(d,a')}(\beta_{L},\omega)(1-s)} \\ &= \frac{\Gamma_{\beta}(\beta'_{H}|\beta_{H})x^{(d,a')}(\omega)s + \Gamma_{\beta}(\beta'_{H}|\beta_{L})(1-s)}{x^{(d,a')}(\omega)s + (1-s)} \end{split}$$

And a simple calculation shows that as long as $\Gamma_{\beta}(\beta'_{H}|\beta_{H}) > \Gamma_{\beta}(\beta'_{H}|\beta_{L})$

$$\frac{\partial \psi^{(d,a')}(\omega)}{\partial x^{(d,a')}(\omega)} > 0,$$

so the type score is increasing in the likelihood ratio.

Dempsey (Ohio State)

Stationary distribution

Let T^* be the operator mapping a distribution of agents today into a distribution tomorrow. Then,

$$T^*(\beta,\omega,\beta',\omega') = \sigma^{(d,a')}(\beta,\omega)\Gamma^s(\psi^{(d,a')}(\omega),s')\Gamma^\beta(\beta,\beta')\Gamma^e(e,e')H(z')$$

and the distribution $\mu(\beta,\omega)$ evolves via

$$\mu'(eta',\omega') = \sum_{eta,\omega} T^*(eta,\omega,eta',\omega')\mu(eta,\omega)$$

A stationary distribution is a fixed point of this expression. • Back to Eqm.

Targeted model moments: distributions and transitions

$Earnings \to$	Data			Dyna	amic N	lodel	Sta	tic Mo	del
Wealth \downarrow	T1	T2	T3	T1	T2	T3	T1	T2	Т3
T1	0.20	0.10	0.03	0.15	0.13	0.05	0.14	0.11	0.04
Τ2	0.09	0.14	0.10	0.07	0.12	0.14	0.08	0.13	0.15
Т3	0.03	0.09	0.22	0.03	0.09	0.21	0.04	0.09	0.22

Table: Joint distribution of earnings and wealth tertiles

Wealth, $t+2 ightarrow$	Data			Dyna	amic N	lodel	Sta	tic Mo	del
Wealth, $t\downarrow$	T1	T2	T3	T1	T2	T3	T1	T2	Т3
T1	0.76	0.22	0.02	0.83	0.12	0.05	0.50	0.18	0.31
T2	0.20	0.62	0.18	0.10	0.66	0.24	0.09	0.75	0.16
Т3	0.04	0.14	0.82	0.03	0.08	0.90	0.03	0.08	0.89

Table: Wealth tertile transitions

Data details: debt

Source: 2007 SCF

Computation details

- \bullet for debt stats, debtor \iff negative net worth
 - exclude debts of greater than 120% of annual income

Statistic	Value	
Total debt in group (\$B)	\$71.3	A
Total HH in group	7,541,007	В
Total HH in US	116,107,641	C
2007 Nominal GDP (\$B)	\$14,478	D
Debt / HH (A / C)	\$614.50	A / C
Fraction of HH in debt (B $/$ C)	6.493%	B / C
GDP per HH (D / C)	\$124,692	D / C
Debt to income ratio ((A / C) / (D / C))	0.493%	A / D

Back to targets Distributional and transition moments

Data details: default rates

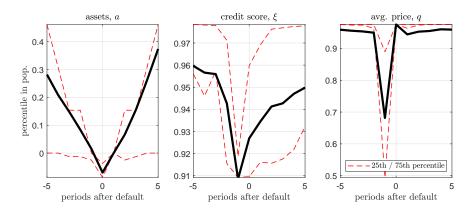
Sources: all for data year 2007 for consistency with SCF (used for debt statistics)

- Federal reserve chargeoff data for chargeoffs
- US courts for bankruptcy filings (nonbusiness, chapter 7)
- US census for total number of HH

Computation details

- use as denominator # of households (not individuals)
- sum up all filings across all quarters, divide by #HH from census
- then, there is a further adjustment: married couples filing together

Trends in agents' state around default



Back to prices

4 economies

1 Full information (FI)

- type observable \implies no inference problem
- obviates credit score, but actual type can directly affect prices

Oynamic Punishment (DP) [benchmark]

- credit score is tracked and updated through time
- affects loan pricing function only

3 Static Punishment (SP)

- no tracking of credit scores or assets
- only punishment is the cost of filing

Oynamic Punishment with Earnings Effects (DP+)

- same pricing, credit scoring tracking as DP model
- extra: good (bad) credit score raises (lowers) earnings

Reputation and the credit market

		Model				
Moment	Data	FI	SP	DP	DP+	
Default rate (%)	0.33	0.87	0.49	0.50	0.36	
Average interest rate (%)	12.89	69.07	11.01	11.49	6.08	
Fraction of HH in debt (%)	6.49	3.70	8.25	7.13	6.29	
Debt to income ratio (%)	0.26	0.26	0.24	0.20	0.20	
Interest rate dispersion (%)	6.58	76.5	5.17	5.59	3.34	
Mean wealth to mean earnings	3.22	2.23	1.90	1.91	2.02	
Corr b/w wealth and earnings	0.52	0.63	0.65	0.65	0.64	

- full information economy severely punishes bad types
- DP+: even slight non-price punishment does a lot
- current work: why SP and DP performance so close?

Measuring separation: absolute distance

	Dynamic	St	atic	Full info		
AD Measure	#	#	# ∆Dyn		$\Delta \mathbf{Dyn}$	
Total	0.519	0.517	0.0025	0.560	-0.0786	
Action	1.125	1.114	0.0106	1.492	-0.3676	
saving	1.210	1.213	-0.0031	1.549	-0.3384	
borrowing	0.012	0.011	0.0006	0.027	-0.0147	
Default	0.034	0.029	0.0051	0.097	-0.0634	

$$\begin{aligned} \mathsf{AD} &= \sum_{\omega,(d,a')} \left| \sigma^{(d,a')}(\beta_H,\omega) - \sigma^{(d,a')}(\beta_L,\omega) \right| \cdot \tilde{\mu}(\omega) \\ \mathsf{Alternatives:} \ \mathsf{AD}(\mathsf{action}) &= \sum_{\omega} \left| \sum_{a'} a' \left[\sigma^{(0,a')}(\beta_H,\omega) - \sigma^{(0,a')}(\beta_L,\omega) \right] \right| \cdot \tilde{\mu}(\omega) \\ \mathsf{AD}(\mathsf{default}) &= \sum_{\omega} \left| \sigma^{(1,0)}(\beta_H,\omega) - \sigma^{(1,0)}(\beta_L,\omega) \right| \cdot \tilde{\mu}(\omega) \end{aligned}$$

Back 🔶 Other options

Dempsey (Ohio State)

Measuring separation: alternatives

Utility cost (UC) of imitation. Let (d_i(ω), a'_i(ω)) be the modal action of type i in state ω. Compute

$$UC = \sum_{\omega} \left[\mathbf{v}^{(d_i(\omega), \mathbf{a}'_i(\omega))}(\beta_i, \omega) - \mathbf{v}^{(d_j(\omega), \mathbf{a}'_j(\omega))}(\beta_i, \omega) \right],$$

for $j \neq i$ (i.e. can do relative to either high or low type).

- An equilibrium approach. Solve model twice, changing only β_L from (1) to (2) so that types are "farther apart." Compare:
 - decisions under parameterization (1)
 - decisions under parameterization (2)
 - decisions under parameterization (1) given prices from (2)