Course in Heterogeneity: Econ 081

VIII: Wealth, Wages, and Employment

Jose-Victor Rios-Rull

University College London
Nov/Dec 2023
Based on joint work with Per Krusell and Jinfeng Luo

Introduction

- The Aiyagari (1994) model provides a theory of wealth conditional on earnings.

Introduction

- The Aiyagari (1994) model provides a theory of wealth conditional on earnings.
- But what about a theory of earnings (labor income)? Depends on whether employed and if so then

Introduction

- The Aiyagari (1994) model provides a theory of wealth conditional on earnings.
- But what about a theory of earnings (labor income)? Depends on whether employed and if so then
- Hours Worked

Introduction

- The Aiyagari (1994) model provides a theory of wealth conditional on earnings.
- But what about a theory of earnings (labor income)? Depends on whether employed and if so then
- Hours Worked
- Quantity of Skills

Introduction

- The Aiyagari (1994) model provides a theory of wealth conditional on earnings.
- But what about a theory of earnings (labor income)? Depends on whether employed and if so then
- Hours Worked
- Quantity of Skills
- Permanent attributes such as age/sex education

Introduction

- The Aiyagari (1994) model provides a theory of wealth conditional on earnings.
- But what about a theory of earnings (labor income)? Depends on whether employed and if so then
- Hours Worked
- Quantity of Skills
- Permanent attributes such as age/sex education
- Some Randomness that we often call shocks

Introduction

- The Aiyagari (1994) model provides a theory of wealth conditional on earnings.
- But what about a theory of earnings (labor income)? Depends on whether employed and if so then
- Hours Worked
- Quantity of Skills
- Permanent attributes such as age/sex education
- Some Randomness that we often call shocks
- Price of those skills (evolution of the skill premia that very recently seems to have switched back)

What about wage dispersion?

- To what extent do identical workers command different wages?

What about wage dispersion?

- To what extent do identical workers command different wages?
- In New Keynesian Models Wage Rigidity is often Assumed.

What about wage dispersion?

- To what extent do identical workers command different wages?
- In New Keynesian Models Wage Rigidity is often Assumed.
- But what would wage be rigid upwards? Can't people switch jobs?

What about wage dispersion?

- To what extent do identical workers command different wages?
- In New Keynesian Models Wage Rigidity is often Assumed.
- But what would wage be rigid upwards? Can't people switch jobs?
- How easy is to hire?

What about wage dispersion?

- To what extent do identical workers command different wages?
- In New Keynesian Models Wage Rigidity is often Assumed.
- But what would wage be rigid upwards? Can't people switch jobs?
- How easy is to hire?
- We will develop a model where there is wage dispersion and we can talk about wage changes over the cycle. It requires

What about wage dispersion?

- To what extent do identical workers command different wages?
- In New Keynesian Models Wage Rigidity is often Assumed.
- But what would wage be rigid upwards? Can't people switch jobs?
- How easy is to hire?
- We will develop a model where there is wage dispersion and we can talk about wage changes over the cycle. It requires
- Heterogeneity of Workers and Wages

What about wage dispersion?

- To what extent do identical workers command different wages?
- In New Keynesian Models Wage Rigidity is often Assumed.
- But what would wage be rigid upwards? Can't people switch jobs?
- How easy is to hire?
- We will develop a model where there is wage dispersion and we can talk about wage changes over the cycle. It requires
- Heterogeneity of Workers and Wages
- Gross Worker Flows

What about wage dispersion?

- To what extent do identical workers command different wages?
- In New Keynesian Models Wage Rigidity is often Assumed.
- But what would wage be rigid upwards? Can't people switch jobs?
- How easy is to hire?
- We will develop a model where there is wage dispersion and we can talk about wage changes over the cycle. It requires
- Heterogeneity of Workers and Wages
- Gross Worker Flows
- Relate to Business Cycles Version of Aiyagari (1994)

Details of the Model

- We pose an environment where the joint distribution of employment, wages, and wealth, is determined and where

Details of the Model

- We pose an environment where the joint distribution of employment, wages, and wealth, is determined and where
- Workers are risk averse, so only use self-insurance.

Details of the Model

- We pose an environment where the joint distribution of employment, wages, and wealth, is determined and where
- Workers are risk averse, so only use self-insurance.
- Workers sometimes lose their jobs or quit or switch generating gross flows that are a form of employment and wage risk.

Details of the Model

- We pose an environment where the joint distribution of employment, wages, and wealth, is determined and where
- Workers are risk averse, so only use self-insurance.
- Workers sometimes lose their jobs or quit or switch generating gross flows that are a form of employment and wage risk.
- The economy aggregates into a modern economy (total wealth, labor shares, consumption/investment ratios)

Details of the Model

- We pose an environment where the joint distribution of employment, wages, and wealth, is determined and where
- Workers are risk averse, so only use self-insurance.
- Workers sometimes lose their jobs or quit or switch generating gross flows that are a form of employment and wage risk.
- The economy aggregates into a modern economy (total wealth, labor shares, consumption/investment ratios)
- We model Business cycles. In particular, we add the study of gross employment flows jointly to the other standard objects.

Details of the Model

- We pose an environment where the joint distribution of employment, wages, and wealth, is determined and where
- Workers are risk averse, so only use self-insurance.
- Workers sometimes lose their jobs or quit or switch generating gross flows that are a form of employment and wage risk.
- The economy aggregates into a modern economy (total wealth, labor shares, consumption/investment ratios)
- We model Business cycles. In particular, we add the study of gross employment flows jointly to the other standard objects.
- We use the volatility of gross flows to estimate the extent of wage rigidity.

Literature

- The steady state of this economy has as its core Aiyagari (1994) meets Merz (1995), Andolfatto (1996) meets Moen (1997).

Literature

- The steady state of this economy has as its core Aiyagari (1994) meets Merz (1995), Andolfatto (1996) meets Moen (1997).
- Related Lise (2013), Hornstein, Krusell, and Violante (2011), Krusell, Mukoyama, and Șahin (2010), Ravn and Sterk (2016, 2017), Den Haan, Rendahl, and Riegler (2015).

Literature

- The steady state of this economy has as its core Aiyagari (1994) meets Merz (1995), Andolfatto (1996) meets Moen (1997).
- Related Lise (2013), Hornstein, Krusell, and Violante (2011), Krusell, Mukoyama, and Șahin (2010), Ravn and Sterk (2016, 2017), Den Haan, Rendahl, and Riegler (2015).
- Especially Eeckhout and Sepahsalari (2018), Chaumont and Shi (2022), Griffy (2021).

What are the uses?

- The study of Business cycles including gross flows in and out of employment, unemployment and outside the labor force
- Policy analysis where now risk, employment, wealth (including its distribution) and wages are all responsive to policy.
- Get some insights into the extent of wage rigidity
- Life-Cycle versions of these ideas (under construction) will allow us to assess how age dependent policies fare.

Today: Build the Theory Sequentially and discuss \& Fluctuations from two types of shocks

- In Steady State

Today: Build the Theory Sequentially and discuss \& Fluctuations from two types of shocks

- In Steady State
(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2018)): Not a lot of wage dispersion. Not a lot of job creation in expansions.

Today: Build the Theory Sequentially and discuss \& Fluctuations from two types of shocks

- In Steady State
(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2018)): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits: Higher wage dispersion may arise to keep workers longer (quits via extreme value shocks). trumps wages and wage

Today: Build the Theory Sequentially and discuss \& Fluctuations from two types of shocks

- In Steady State
(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2018)): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits: Higher wage dispersion may arise to keep workers longer (quits via extreme value shocks). trumps wages and wage
(3) Add Aiming Shocks to reduce the correlation between highest wealth and highest wages when out of unemployment

Today: Build the Theory Sequentially and discuss \mathcal{E}
 Fluctuations from two types of shocks

- In Steady State
(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2018)): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits: Higher wage dispersion may arise to keep workers longer (quits via extreme value shocks). trumps wages and wage
(3) Add Aiming Shocks to reduce the correlation between highest wealth and highest wages when out of unemployment
4 On the Job Search workers may get outside offers and take them. (Similar but not the same as in Chaumont and Shi (2022)).

Today: Build the Theory Sequentially and discuss \&

Fluctuations from two types of shocks

- In Steady State
(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2018)): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits: Higher wage dispersion may arise to keep workers longer (quits via extreme value shocks). trumps wages and wage
(3) Add Aiming Shocks to reduce the correlation between highest wealth and highest wages when out of unemployment
4 On the Job Search workers may get outside offers and take them. (Similar but not the same as in Chaumont and Shi (2022)).
(5) Add Job Posting Shocks to ensure that all wages are possible even those where firms may make loses (important in business cycles)

Today: Build the Theory Sequentially and discuss \&

Fluctuations from two types of shocks

- In Steady State
(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2018)): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits: Higher wage dispersion may arise to keep workers longer (quits via extreme value shocks). trumps wages and wage
(3) Add Aiming Shocks to reduce the correlation between highest wealth and highest wages when out of unemployment
4 On the Job Search workers may get outside offers and take them. (Similar but not the same as in Chaumont and Shi (2022)).
(5) Add Job Posting Shocks to ensure that all wages are possible even those where firms may make loses (important in business cycles)
(6) Outside of the Labor Force

Today: Build the Theory Sequentially and discuss \&

Fluctuations from two types of shocks

- In Steady State
(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2018)): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits: Higher wage dispersion may arise to keep workers longer (quits via extreme value shocks). trumps wages and wage
(3) Add Aiming Shocks to reduce the correlation between highest wealth and highest wages when out of unemployment
4 On the Job Search workers may get outside offers and take them. (Similar but not the same as in Chaumont and Shi (2022)).
(5) Add Job Posting Shocks to ensure that all wages are possible even those where firms may make loses (important in business cycles)
(6) Outside of the Labor Force
(7) All of the Above

Today: Build the Theory Sequentially and discuss \&

Fluctuations from two types of shocks

- In Steady State
(1) Exogenous Job Destruction and Worker Quits. Built on top of Growth Model. (GE version of Eeckhout and Sepahsalari (2018)): Not a lot of wage dispersion. Not a lot of job creation in expansions.
(2) Add Endogenous Quits: Higher wage dispersion may arise to keep workers longer (quits via extreme value shocks). trumps wages and wage
(3) Add Aiming Shocks to reduce the correlation between highest wealth and highest wages when out of unemployment
4 On the Job Search workers may get outside offers and take them. (Similar but not the same as in Chaumont and Shi (2022)).
(5) Add Job Posting Shocks to ensure that all wages are possible even those where firms may make loses (important in business cycles)
(6) Outside of the Labor Force
(7) All of the Above
- Outside Steady State Employers commit to a wage schedule $w(z)$ that depends on the aggregate state.

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)
- Both endogenous quits and on-the-job yield counter factual procyclical unemployment and massive on the job search.

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)
- Both endogenous quits and on-the-job yield counter factual procyclical unemployment and massive on the job search.
- Allowing the wage of an already formed job match to respond some to aggregate shocks corrects this.

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)
- Both endogenous quits and on-the-job yield counter factual procyclical unemployment and massive on the job search.
- Allowing the wage of an already formed job match to respond some to aggregate shocks corrects this.
- Getting the right relative volatility of old and new wages and the amount of job-to-job moves and quits provides a way to measure wage rigidity.

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)
- Both endogenous quits and on-the-job yield counter factual procyclical unemployment and massive on the job search.
- Allowing the wage of an already formed job match to respond some to aggregate shocks corrects this.
- Getting the right relative volatility of old and new wages and the amount of job-to-job moves and quits provides a way to measure wage rigidity.
- With partial wage rigidity the model fares reasonably well with the data. A few things still to improve. (Excessive Job-to-JOB transitions)

Key Findings

- If wages are fully fixed and committed (Drastic Wage rigidity)
- Both endogenous quits and on-the-job yield counter factual procyclical unemployment and massive on the job search.
- Allowing the wage of an already formed job match to respond some to aggregate shocks corrects this.
- Getting the right relative volatility of old and new wages and the amount of job-to-job moves and quits provides a way to measure wage rigidity.
- With partial wage rigidity the model fares reasonably well with the data. A few things still to improve. (Excessive Job-to-JOB transitions)
- Similar behavior to that in the Shimer/Hagedorn-Manowski debate. Here we can try to move towards an accommodation of both points of view.

A Brief Look At Data: Relevant Volatility Properties in U.S.

Mean St Dev Relt Correl
Perc to Output w Output Source

A Brief Look Аt Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)
Annual Switches	$25-35$	4.62	0.70	Fujita and Nakajima (2016)

A Brief Look At Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)
Annual Switches	$25-35$	4.62	0.70	Fujita and Nakajima (2016)
Consumption	75	0.78	0.86	NIPA

A Brief Look Аt Data: Relevant Volatility Properties in U.S.

	Mean Perc	St Dev Relt to Output	Correl w Output	Source
Average Wage	-	$0.44-0.84$	$0.24-0.37$	Haefke et al. (2013)
New Wage	-	$0.68-1.09$	$0.79-0.83$	Haefke et al. (2013)
Unemployment	$4-6$	4.84	-0.85	Campolmi and Gnocchi (2016)
Annual Quits	$10-40$	4.20	0.85	Brown et al. (2021)
Annual Switches	$25-35$	4.62	0.70	Fujita and Nakajima (2016)
Consumption	75	0.78	0.86	NIPA
Investment	25	4.88	0.90	NIPA

Developing the Model in Incremental Steps

(1) Exogenous Quits (GE version of Eeckhout and Sepahsalari (2018))

Developing the Model in Incremental Steps

(1) Exogenous Quits (GE version of Eeckhout and Sepahsalari (2018))
(2) Endogenous Quits using Extreme Value Shocks

Developing the Model in Incremental Steps

(1) Exogenous Quits (GE version of Eeckhout and Sepahsalari (2018))
(2) Endogenous Quits using Extreme Value Shocks

- A detour with Aiming Shocks

Developing the Model in Incremental Steps

(1) Exogenous Quits (GE version of Eeckhout and Sepahsalari (2018))
(2) Endogenous Quits using Extreme Value Shocks

- A detour with Aiming Shocks
(3) Firms shocks to generate profit differences

Developing the Model in Incremental Steps

(1) Exogenous Quits (GE version of Eeckhout and Sepahsalari (2018))
(2) Endogenous Quits using Extreme Value Shocks

- A detour with Aiming Shocks
(3) Firms shocks to generate profit differences
(4) On the Job Search (related, to but different, from Chaumont and Shi (2022)).

Developing the Model in Incremental Steps

(1) Exogenous Quits (GE version of Eeckhout and Sepahsalari (2018))
(2) Endogenous Quits using Extreme Value Shocks

- A detour with Aiming Shocks
(3) Firms shocks to generate profit differences
(4) On the Job Search (related, to but different, from Chaumont and Shi (2022)).
© Outside the Labor Force

1- Exog Quits: Precautionary Savings, Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good

1- Exog Quits: Precautionary Savings, Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.

1- Exog Quits: Precautionary Savings, Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)

1- Exog Quits: Precautionary Savings, Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.

1- Exog Quits: Precautionary Savings, Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.

1- Exog Quits: Precautionary Savings, Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).

1- Exog Quits: Precautionary Savings, Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).
- No state contingent claims, nor borrowing.
- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).
- No state contingent claims, nor borrowing.
- If employed, workers get w and save.

1- Exog Quits: Precautionary Savings, Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).
- No state contingent claims, nor borrowing.
- If employed, workers get w and save.
- If unemployed, workers produce b and search in some market $\{w, \theta\}$.

1- Exog Quits: Precautionary Savings, Competitive Search

- Jobs are created by firms (plants). A plant with capital plus a worker produce one unit of the good
- Firms pay flow cost \bar{c} to post a vacancy in market $\{w, \theta\}$.
- Firms cannot change the wage afterwards (like a machine programmed to pay w)
- Plants (and their capital) are destroyed at rate δ^{f}.
- Workers quit exogenously at rate δ^{h} leaving firms idle.
- Households differ only in wealth and wages (if working).
- No state contingent claims, nor borrowing.
- If employed, workers get w and save.
- If unemployed, workers produce b and search in some market $\{w, \theta\}$.
- General equilibrium: Workers own firms.

Order of Events of Exog Quits Model

(1) Households enter the period with or without a job: $\{e, u\}$.

Order of Events of Exog Quits Model

(1) Households enter the period with or without a job: $\{e, u\}$.
(2) Production \& Consumption: Employed produce z on the job. Unemployed produce b at home. They choose savings.

Order of Events of Exog Quits Model

(1) Households enter the period with or without a job: $\{e, u\}$.
(2) Production \& Consumption: Employed produce z on the job. Unemployed produce b at home. They choose savings.
(3) Firm Destruction and Exogenous Quits:

Some Firms are destroyed (rate δ^{f}) They cannot search this period.
Some workers quit their jobs for exogenous reasons δ^{h}.
Total job destruction is δ.

Order of Events of Exog Quits Model

(1) Households enter the period with or without a job: $\{e, u\}$.
(2) Production \& Consumption: Employed produce z on the job. Unemployed produce b at home. They choose savings.
(3) Firm Destruction and Exogenous Quits:

Some Firms are destroyed (rate δ^{f}) They cannot search this period.
Some workers quit their jobs for exogenous reasons δ^{h}.
Total job destruction is δ.
(4) Search: Firms and the unemployed choose wage w and tightness θ.

Order of Events of Exog Quits Model

(1) Households enter the period with or without a job: $\{e, u\}$.
(2) Production \& Consumption: Employed produce z on the job. Unemployed produce b at home. They choose savings.
(3) Firm Destruction and Exogenous Quits:

Some Firms are destroyed (rate δ^{f}) They cannot search this period.
Some workers quit their jobs for exogenous reasons δ^{h}.
Total job destruction is δ.
(4) Search: Firms and the unemployed choose wage w and tightness θ.
(5) Job Matching : $M(V, U)$: Some vacancies meet some unemployed job searchers. A match becomes operational the following period. Job finding and job filling rates $\psi^{h}(\theta)=\frac{M(V, U)}{U}, \psi^{f}(\theta)=\frac{M(V, U)}{V}$.

Exog Quits Model: Household Problem

- Individual state: wealth and wage

Exog Quits Model: Household Problem

- Individual state: wealth and wage
- If employed: (a, w)

Exog Quits Model: Household Problem

- Individual state: wealth and wage
- If employed: (a, w)
- If unemployed: (a)

Exog Quits Model: Household Problem

- Individual state: wealth and wage
- If employed: (a, w)
- If unemployed: (a)
- Problem of the employed: (Standard)

$$
\begin{aligned}
V^{e}(a, w)= & \max _{c, a^{\prime}} u(c)+\beta\left[(1-\delta) V^{e}\left(a^{\prime}, w\right)+\delta V^{u}\left(a^{\prime}\right)\right] \\
\text { s.t. } & c+a^{\prime}=a(1+r)+w, \quad a \geq 0
\end{aligned}
$$

Exog Quits Model: Household Problem

- Individual state: wealth and wage
- If employed: (a, w)
- If unemployed: (a)
- Problem of the employed: (Standard)

$$
\begin{aligned}
V^{e}(a, w)= & \max _{c, a^{\prime}} u(c)+\beta\left[(1-\delta) V^{e}\left(a^{\prime}, w\right)+\delta V^{u}\left(a^{\prime}\right)\right] \\
\text { s.t. } & c+a^{\prime}=a(1+r)+w, \quad a \geq 0
\end{aligned}
$$

- Problem of the unemployed: Choose which wage to look for

$$
\begin{aligned}
V^{u}(a)= & \max _{c, a^{\prime}, w} u(c)+\beta\left\{\psi^{h}[\theta(w)] V^{e}\left(a^{\prime}, w\right)+\left[1-\psi^{h}[\theta(w)]\right] V^{u}\left(a^{\prime}\right)\right\} \\
\text { s.t. } & c+a^{\prime}=a(1+r)+b, \quad a \geq 0
\end{aligned}
$$

$\theta(w)$ is an equilibrium object

Characterization of a worker's decisions

- Standard Euler equation for savings

$$
u_{c}=\beta(1+r) E\left\{u_{c}^{\prime}\right\}
$$

Characterization of a worker's decisions

- Standard Euler equation for savings

$$
u_{c}=\beta(1+r) E\left\{u_{c}^{\prime}\right\}
$$

- Households with more wealth are able to insure better against unemployment risk.

Characterization of a worker's decisions

- Standard Euler equation for savings

$$
u_{c}=\beta(1+r) E\left\{u_{c}^{\prime}\right\}
$$

- Households with more wealth are able to insure better against unemployment risk.
- From wage applicants $\max _{w} \psi^{h}[\theta(w)]\left[V^{e}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)\right]$ so

$$
\psi^{h}[\theta(w)] V_{w}^{e}\left(a^{\prime}, w\right)=\psi_{\theta}^{h}[\theta(w)] \theta_{w}(w)\left[V^{u}\left(a^{\prime}\right)-V^{e}\left(a^{\prime}, w\right)\right]
$$

Characterization of a worker's decisions

- Standard Euler equation for savings

$$
u_{c}=\beta(1+r) E\left\{u_{c}^{\prime}\right\}
$$

- Households with more wealth are able to insure better against unemployment risk.
- From wage applicants $\max _{w} \psi^{h}[\theta(w)]\left[V^{e}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)\right]$ so

$$
\psi^{h}[\theta(w)] V_{w}^{e}\left(a^{\prime}, w\right)=\psi_{\theta}^{h}[\theta(w)] \theta_{w}(w)\left[V^{u}\left(a^{\prime}\right)-V^{e}\left(a^{\prime}, w\right)\right]
$$

- Up to a certain level of wealth, richer households apply to higher wages. After that, it seems not. Consistent with theory

Worker's wage application decision

Worker's saving decision

Firms Post vacancies: Choose wages \& filling probabilities

- Value of wage-w job: uses constant \bar{k} capital that depreciates at rate $\delta^{k}(\Omega=\bar{k})$

$$
\Omega(w)=z-\bar{k} \delta^{k}-w+\frac{1-\delta^{f}}{1+r}\left[\left(1-\delta^{h}\right) \Omega(w)+\delta^{h} \Omega\right]
$$

Firms Post vacancies: Choose wages \& filling probabilities

- Value of wage-w job: uses constant \bar{k} capital that depreciates at rate $\delta^{k}(\Omega=\bar{k})$

$$
\Omega(w)=z-\bar{k} \delta^{k}-w+\frac{1-\delta^{f}}{1+r}\left[\left(1-\delta^{h}\right) \Omega(w)+\delta^{h} \Omega\right]
$$

- Affine in $w: \quad \Omega(w)=\left[z+\bar{k}\left(\frac{1-\delta^{f}}{1+r} \delta^{h}-\delta^{k}\right)-w\right] \frac{1+r}{r+\delta^{f}+\delta^{h}-\delta^{f} \delta^{h}}$

Block Recursivity Applies (firms can be ignorant of Eq)

Firms Post vacancies: Choose wages \& filling probabilities

- Value of wage-w job: uses constant \bar{k} capital that depreciates at rate $\delta^{k}(\Omega=\bar{k})$

$$
\Omega(w)=z-\bar{k} \delta^{k}-w+\frac{1-\delta^{f}}{1+r}\left[\left(1-\delta^{h}\right) \Omega(w)+\delta^{h} \Omega\right]
$$

- Affine in $w: \quad \Omega(w)=\left[z+\bar{k}\left(\frac{1-\delta^{f}}{1+r} \delta^{h}-\delta^{k}\right)-w\right] \frac{1+r}{r+\delta^{f}+\delta^{h}-\delta^{f} \delta^{h}}$

Block Recursivity Applies (firms can be ignorant of Eq)

- Value of creating a firm: $\psi^{f}[\theta(w)] \Omega(w)+\left[1-\psi^{f}[\theta(w)]\right] \Omega$

Firms Post vacancies: Choose wages \& filling probabilities

- Value of wage-w job: uses constant \bar{k} capital that depreciates at rate $\delta^{k}(\Omega=\bar{k})$

$$
\Omega(w)=z-\bar{k} \delta^{k}-w+\frac{1-\delta^{f}}{1+r}\left[\left(1-\delta^{h}\right) \Omega(w)+\delta^{h} \Omega\right]
$$

- Affine in $w: \quad \Omega(w)=\left[z+\bar{k}\left(\frac{1-\delta^{f}}{1+r} \delta^{h}-\delta^{k}\right)-w\right] \frac{1+r}{r+\delta^{f}+\delta^{h}-\delta^{f} \delta^{h}}$

Block Recursivity Applies (firms can be ignorant of Eq)

- Value of creating a firm: $\psi^{f}[\theta(w)] \Omega(w)+\left[1-\psi^{f}[\theta(w)]\right] \Omega$
- Free entry condition requires that for all offered wages

$$
\bar{c}+\bar{k}=\psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}+\left[1-\psi^{f}[\theta(w)]\right] \frac{\Omega}{1+r},
$$

Standard Stationary Equilibrium

- Functions $\left\{V^{e}, V^{u}, \Omega, g^{\prime e}, g^{\prime \mu}, w^{u}, \theta\right\}$, an interest rate r, and a stationary distribution x over (a, w), s.t.

Standard Stationary Equilibrium

- Functions $\left\{V^{e}, V^{u}, \Omega, g^{\prime e}, g^{\prime \mu}, w^{u}, \theta\right\}$, an interest rate r, and a stationary distribution x over (a, w), s.t.
(1) $\left\{V^{e}, V^{u}, g^{\prime e}, g^{\prime \mu}, w^{u}\right\}$ solve households' problems, $\{\Omega\}$ solves the firm's problem.

Standard Stationary Equilibrium

- Functions $\left\{V^{e}, V^{u}, \Omega, g^{\prime e}, g^{\prime \mu}, w^{u}, \theta\right\}$, an interest rate r, and a stationary distribution x over (a, w), s.t.
(1) $\left\{V^{e}, V^{u}, g^{\prime e}, g^{\prime \mu}, w^{u}\right\}$ solve households' problems, $\{\Omega\}$ solves the firm's problem.
(2) Zero profit condition holds for active markets

$$
\bar{c}+\bar{k}=\psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}+\left[1-\psi^{f}[\theta(w)]\right] \frac{\bar{k}\left(1-\delta-\delta_{k}\right)}{1+r}, \quad \forall w \text { offered }
$$

Standard Stationary Equilibrium

- Functions $\left\{V^{e}, V^{u}, \Omega, g^{\prime e}, g^{\prime \mu}, w^{u}, \theta\right\}$, an interest rate r, and a stationary distribution x over (a, w), s.t.
(1) $\left\{V^{e}, V^{u}, g^{\prime e}, g^{\prime \mu}, w^{u}\right\}$ solve households' problems, $\{\Omega\}$ solves the firm's problem.
(2) Zero profit condition holds for active markets

$$
\bar{c}+\bar{k}=\psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}+\left[1-\psi^{f}[\theta(w)]\right] \frac{\bar{k}\left(1-\delta-\delta_{k}\right)}{1+r}, \quad \forall w \text { offered }
$$

(3) An interest rate r clears the asset market

$$
\int_{A \times(W \cup 0)} a d x=\int_{A \times(W \cup 0)} \Omega(w) d x+\mu^{0} \bar{k} .
$$

Summary: Properties of Exogenous Quits Model

- Risk-averse, only partially insured workers, endogenous unemployment

Summary: Properties of Exogenous Quits Model

- Risk-averse, only partially insured workers, endogenous unemployment
- Wage dispersion small—wealth doesn't matter too much

Summary: Properties of Exogenous Quits Model

- Risk-averse, only partially insured workers, endogenous unemployment
- Wage dispersion small-wealth doesn't matter too much
- When solved with aggregate shocks ...

Summary: Properties of Exogenous Quits Model

- Risk-averse, only partially insured workers, endogenous unemployment
- Wage dispersion small—wealth doesn't matter too much
- When solved with aggregate shocks ...
- It is almost like a two-agent model (employed, unemployed) of Pissarides despite curved utility and savings

Model 2: Endogenous Quits: Extreme Value Taste Shocks

- Temporary Shocks to the utility of working or not working: Some workers quit. (in addition to any intrinsic taste for leisure)

Model 2: Endogenous Quits: Extreme Value Taste Shocks

- Temporary Shocks to the utility of working or not working: Some workers quit. (in addition to any intrinsic taste for leisure)
- Wealth is not observable and contracts cannot be contingent on it.(Unlike Chaumont and Shi (2022)).
- Temporary Shocks to the utility of working or not working: Some workers quit. (in addition to any intrinsic taste for leisure)
- Wealth is not observable and contracts cannot be contingent on it. (Unlike Chaumont and Shi (2022)).
- As long as very few agents on the decreasing part of wealth applying function, wealth can be inferred from the wage agents applied to.
- Temporary Shocks to the utility of working or not working: Some workers quit. (in addition to any intrinsic taste for leisure)
- Wealth is not observable and contracts cannot be contingent on it. (Unlike Chaumont and Shi (2022)).
- As long as very few agents on the decreasing part of wealth applying function, wealth can be inferred from the wage agents applied to.
- Hence it is still Block Recursive

Model 2: Endogenous Quits: Extreme Value Taste Shocks

- Temporary Shocks to the utility of working or not working: Some workers quit. (in addition to any intrinsic taste for leisure)
- Wealth is not observable and contracts cannot be contingent on it.(Unlike Chaumont and Shi (2022)).
- As long as very few agents on the decreasing part of wealth applying function, wealth can be inferred from the wage agents applied to.
- Hence it is still Block Recursive
- Adds a (smoothed) quitting motive so that conditional on wealth, high wage workers quit less often.

Model 2: Endogenous Quits: Extreme Value Taste Shocks

- Temporary Shocks to the utility of working or not working: Some workers quit. (in addition to any intrinsic taste for leisure)
- Wealth is not observable and contracts cannot be contingent on it.(Unlike Chaumont and Shi (2022)).
- As long as very few agents on the decreasing part of wealth applying function, wealth can be inferred from the wage agents applied to.
- Hence it is still Block Recursive
- Adds a (smoothed) quitting motive so that conditional on wealth, high wage workers quit less often.
- Firms may want to pay high wages to retain workers.

Endogenous Quits Model: Time-line

(1) Workers enter period with or without a job: $\{e, u\}$.
(2) Production occurs and consumption/saving choice ensues:
(3) Exogenous job/firm destruction happens.
(4) Quitting:

- The employed, e, draw shocks $\left\{\epsilon^{e}, \epsilon^{u}\right\}$ and make quitting decision. Job losers cannot search this period.
© Search: New or Idle firms post vacancies. Choose $\{w, \theta\}$.
(6) Matches occur

Quitting Model: Workers

- Workers receive i.i.d shocks $\left\{\epsilon^{e}, \epsilon^{u}\right\}$ to the utility of working or not

Quitting Model: Workers

- Workers receive i.i.d shocks $\left\{\epsilon^{e}, \epsilon^{u}\right\}$ to the utility of working or not
- Value of the employed right before receiving those shocks:

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}\right\} d F^{\epsilon}
$$

V^{e} and V^{u} are values after quitting decision as described before.

Quitting Model: Workers

- Workers receive i.i.d shocks $\left\{\epsilon^{e}, \epsilon^{u}\right\}$ to the utility of working or not
- Value of the employed right before receiving those shocks:

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}\right\} d F^{\epsilon}
$$

V^{e} and V^{u} are values after quitting decision as described before.

- If $\left\{\epsilon^{e}, \epsilon^{u}\right\} \sim G(\mu, \alpha)$ (Gumbel) then the ex-ante quitting probability $q(a, w)$ is

$$
q(a, w)=\frac{e^{V^{u}(a) / \alpha}}{e^{V^{e}(a, w) / \alpha}+e^{V^{u}(a) / \alpha}}
$$

Quitting Model: Workers

- Workers receive i.i.d shocks $\left\{\epsilon^{e}, \epsilon^{u}\right\}$ to the utility of working or not
- Value of the employed right before receiving those shocks:

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}\right\} d F^{\epsilon}
$$

V^{e} and V^{u} are values after quitting decision as described before.

- If $\left\{\epsilon^{e}, \epsilon^{u}\right\} \sim G(\mu, \alpha)$ (Gumbel) then the ex-ante quitting probability $q(a, w)$ is

$$
q(a, w)=\frac{e^{V^{u}(a) / \alpha}}{e^{V^{e}(a, w) / \alpha}+e^{V^{u}(a) / \alpha}}
$$

- Lower $\alpha \rightarrow$ lower chance of quitting (less capricious).

Quitting Model: Workers

- Workers receive i.i.d shocks $\left\{\epsilon^{e}, \epsilon^{u}\right\}$ to the utility of working or not
- Value of the employed right before receiving those shocks:

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}\right\} d F^{\epsilon}
$$

V^{e} and V^{u} are values after quitting decision as described before.

- If $\left\{\epsilon^{e}, \epsilon^{u}\right\} \sim G(\mu, \alpha)$ (Gumbel) then the ex-ante quitting probability $q(a, w)$ is

$$
q(a, w)=\frac{e^{V^{u}(a) / \alpha}}{e^{V^{e}(a, w) / \alpha}+e^{V^{u}(a) / \alpha}}
$$

- Lower $\alpha \rightarrow$ lower chance of quitting (less capricious).
- The higher the wage the higher the difference bw V^{e} and V^{u}, so longer job durations.

Quitting Model: Workers

- Workers receive i.i.d shocks $\left\{\epsilon^{e}, \epsilon^{u}\right\}$ to the utility of working or not
- Value of the employed right before receiving those shocks:

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}\right\} d F^{\epsilon}
$$

V^{e} and V^{u} are values after quitting decision as described before.

- If $\left\{\epsilon^{e}, \epsilon^{u}\right\} \sim G(\mu, \alpha)$ (Gumbel) then the ex-ante quitting probability $q(a, w)$ is

$$
q(a, w)=\frac{e^{V^{u}(a) / \alpha}}{e^{V^{e}(a, w) / \alpha}+e^{V^{u}(a) / \alpha}}
$$

- Lower $\alpha \rightarrow$ lower chance of quitting (less capricious).
- The higher the wage the higher the difference bw V^{e} and V^{u}, so longer job durations.
- Firms could pay more to keep workers longer.

Quitting Model: Workers Problem

- Problem of the employed: just change \widehat{V}^{e} for V^{e}

$$
\begin{aligned}
V^{e}(a, w) & =\max _{c, a^{\prime}} u(c)+\beta\left[(1-\delta) \widehat{V}^{e}\left(a^{\prime}, w\right)+\delta V^{u}(a)\right] \\
\text { s.t. } & c+a^{\prime}=a(1+r)+w, \quad a \geq 0
\end{aligned}
$$

- We let $\mu=-\alpha \gamma-\ln (2)$ so that $E\left\{\max \left[\epsilon_{1}^{\mu}, \epsilon_{2}^{\mu}\right]\right\}=0$. To avoid the option value of working we have also add $E\left\{\max \left[\epsilon_{\mathbf{1}}^{u}, \epsilon_{\mathbf{2}}^{u}\right]\right\} \quad$ to the utility of the unemployed
- Alternatively we could accept the fact that a job is an option to get utility.

Quitting Model: Value of the firm

- Free entry condition requires that for all offered wages

$$
\bar{c}+\bar{k}=\frac{1}{1+r}\left\{\psi^{f}[\theta(w)] \Omega^{0}(w)+\left[1-\psi^{f}[\theta(w)]\right] \Omega\right\}
$$

$\Omega^{j}(w)$: Value with with j-tenured worker.

Quitting Model: Value of the firm

- Free entry condition requires that for all offered wages

$$
\bar{c}+\bar{k}=\frac{1}{1+r}\left\{\psi^{f}[\theta(w)] \Omega^{0}(w)+\left[1-\psi^{f}[\theta(w)]\right] \Omega\right\}
$$

$\Omega^{j}(w)$: Value with with j-tenured worker.

- Probability of retaining a worker with tenure j at wage w is $\ell^{j}(w)$.
(One to one mapping between wealth and tenure)

$$
\ell^{j}(w)=1-q\left[g^{e, j}(a, w), w\right]
$$

$g^{e, j}(a, w)$ savings rule of a j-tenured worker that was hired with wealth a

Quitting Model: Value of the firm

- Free entry condition requires that for all offered wages

$$
\bar{c}+\bar{k}=\frac{1}{1+r}\left\{\psi^{f}[\theta(w)] \Omega^{0}(w)+\left[1-\psi^{f}[\theta(w)]\right] \Omega\right\}
$$

$\Omega^{j}(w)$: Value with with j-tenured worker.

- Probability of retaining a worker with tenure j at wage w is $\ell^{j}(w)$.
(One to one mapping between wealth and tenure)

$$
\ell^{j}(w)=1-q\left[g^{e, j}(a, w), w\right]
$$

$g^{e, j}(a, w)$ savings rule of a j-tenured worker that was hired with wealth a

- Firm's value

$$
\Omega^{j}(w)=z-\bar{k} \delta^{k}-w+\frac{1-\delta^{f}}{1+r}\left\{\ell^{j}(w) \Omega^{j+1}(w)+\left[1-\ell^{j}(w)\right] \Omega\right\}
$$

Quitting Model: Solving forward for the Value of the firm

$$
\Omega^{0}(w)=\left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta^{f}-\delta_{k}\right) k Q^{0}(w),
$$

$$
\begin{aligned}
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta^{f}}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta^{f}}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

- New equilibrium objects $\left\{Q^{0}(w), Q^{1}(w)\right\}$. Rest is unchanged.

Quitting Model: Solving forward for the Value of the firm

$$
\Omega^{0}(w)=\left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta^{f}-\delta_{k}\right) k Q^{0}(w)
$$

$$
\begin{aligned}
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta^{f}}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right] \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta^{f}}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

- New equilibrium objects $\left\{Q^{0}(w), Q^{1}(w)\right\}$. Rest is unchanged.
- Except for when there are agents in a decreasing part of the wage applying function, it is Block Recursive because wealth can be inferred from w and j. (No need to index contracts by wealth (as in Chaumont and Shi (2022))).

Do we get More Wage Dispersion?

- This Model has the potential to get more wage dispersion

Do we get More Wage Dispersion?

- This Model has the potential to get more wage dispersion
- Conditional on wealth higher wages lead to less quitting.

Do we get More Wage Dispersion?

- This Model has the potential to get more wage dispersion
- Conditional on wealth higher wages lead to less quitting.
- So firms are willing to pay more to keep workers longer

Do we get More Wage Dispersion?

- This Model has the potential to get more wage dispersion
- Conditional on wealth higher wages lead to less quitting.
- So firms are willing to pay more to keep workers longer

BUT we will see a problem

Value of the firm as wage varies: The Poor

- For the poorest, employment duration increases when wage goes up.

Value of the firm as wage varies: The Poor

- For the poorest, employment duration increases when wage goes up.
- Firms value is increasing in the wage

Value of the firm as wage varies: The Rich

- For the richest, employment duration increases but not fast enough.
- Firm value is slowly decreasing in wages (less than static profits).

Firm Value: Omega

Value of the firm: Accounting for Worker Selection

- Large drop from below to above equilibrium wages.
- In Equilibrium wage dispersion COLLAPSES due to selection.

- Related to the Diamond dispersion paradox but for very different

Effect of Quitting: The Mechanism

- Two forces shape the dispersion of wages

Effect of Quitting: The Mechanism

- Two forces shape the dispersion of wages
- Agents quit less at higher paid jobs, which enlarge the spectrum of wages that firms are willing to pay (for a given range of vacancy filling probability).

Effect of Quitting: The Mechanism

- Two forces shape the dispersion of wages
- Agents quit less at higher paid jobs, which enlarge the spectrum of wages that firms are willing to pay (for a given range of vacancy filling probability).
- However, by paying higher wages, firms attract workers with more wealth.

Effect of Quitting: The Mechanism

- Two forces shape the dispersion of wages
- Agents quit less at higher paid jobs, which enlarge the spectrum of wages that firms are willing to pay (for a given range of vacancy filling probability).
- However, by paying higher wages, firms attract workers with more wealth.
- Wealthy people quit more often, shrink employment duration.

Effect of Quitting: The Mechanism

- Two forces shape the dispersion of wages
- Agents quit less at higher paid jobs, which enlarge the spectrum of wages that firms are willing to pay (for a given range of vacancy filling probability).
- However, by paying higher wages, firms attract workers with more wealth.
- Wealthy people quit more often, shrink employment duration.
- In equilibrium, the wage gap is narrow (disappears?) and the effect of wealth dominates. sraph

Main Shortcoming

- Comes from the perfect correlation between age and wealth (at time of starting the job).

Main Shortcoming

- Comes from the perfect correlation between age and wealth (at time of starting the job).
- Need to overcome it. Two ways that may be complementarity

Main Shortcoming

- Comes from the perfect correlation between age and wealth (at time of starting the job).
- Need to overcome it. Two ways that may be complementarity
(1) On the Job Search

Main Shortcoming

- Comes from the perfect correlation between age and wealth (at time of starting the job).
- Need to overcome it. Two ways that may be complementarity
(1) On the Job Search
(2) Aiming Shocks: (EV) Shocks that distort the wage applying decision.

Main Shortcoming

- Comes from the perfect correlation between age and wealth (at time of starting the job).
- Need to overcome it. Two ways that may be complementarity
(1) On the Job Search
(2) Aiming Shocks: (EV) Shocks that distort the wage applying decision.
- Direct search with noise.

Model 3: Aiming and Quitting Shocks Time-line

(1) Workers enter period with or without a job: $\{e, u\} . V^{e}, V^{u}$ defined here.
(2) Production \& Consumption:
(3) Exogenous Separation.
(4) Quitting $\widehat{V}^{e}\left(a^{\prime}, w\right)$, determined here.
(5) Search: Firms choose $\{w, \theta\}$. The unemployed asses the value of all wage applying options, receive match specific aiming shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise become u^{\prime}.
(6) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(7) Matching

Aiming and Quitting Shocks: Household Probl

- After saving, the unemployed problem is

$$
\widehat{V}^{u}\left(a^{\prime}\right)=\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left[1-\psi^{h}\left(w^{\prime}\right)\right] V^{u}\left(a^{\prime}\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}
$$

Aiming and Quitting Shocks: Household Probl

- After saving, the unemployed problem is

$$
\widehat{V}^{u}\left(a^{\prime}\right)=\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left[1-\psi^{h}\left(w^{\prime}\right)\right] V^{u}\left(a^{\prime}\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}
$$

- $h\left(w^{\prime} ; a^{\prime}\right)$ is now the logit choice density of wage for wealth level a^{\prime}

$$
h\left(w^{\prime} ; a^{\prime}\right)=\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
$$

no longer FOC for which wage to apply.

Aiming and Quitting Shocks: Household Probl

- After saving, the unemployed problem is

$$
\widehat{V}^{u}\left(a^{\prime}\right)=\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left[1-\psi^{h}\left(w^{\prime}\right)\right] V^{u}\left(a^{\prime}\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}
$$

- $h\left(w^{\prime} ; a^{\prime}\right)$ is now the logit choice density of wage for wealth level a^{\prime}

$$
h\left(w^{\prime} ; a^{\prime}\right)=\frac{\exp \left\{\alpha^{w}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)\right]\right\}}{\int \exp \left\{\alpha^{w}\left[\psi^{h}(\widetilde{w}) V^{e}(a, \widetilde{w})+\left(1-\psi^{h}(\widetilde{w})\right) V^{u}\left(a^{\prime}\right)\right]\right\} d \widetilde{w}}
$$

no longer FOC for which wage to apply.

- After saving, the employed choose whether to quit as before

$$
\begin{aligned}
& \widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}\right\} d F^{\epsilon} \\
& V^{e}(a, w) \text { and } V^{u}(a) \text { are as before beginning of period values. }
\end{aligned}
$$

Aiming and Quitting Shocks: Household Probl

- The employed solve

$$
\begin{aligned}
V^{e}(a, w)= & \max _{c, a^{\prime} \geq 0} u(c)+\beta\left[(1-\delta) \widehat{V}^{e}\left(a^{\prime}, w\right)+\delta V^{u}\left(a^{\prime}\right)\right] \\
\text { s.t. } & c+a^{\prime}=a(1+r)+w
\end{aligned}
$$

Aiming and Quitting Shocks: Household Probl

- The employed solve

$$
\begin{aligned}
V^{e}(a, w)= & \max _{c, a^{\prime} \geq 0} u(c)+\beta\left[(1-\delta) \widehat{V}^{e}\left(a^{\prime}, w\right)+\delta V^{u}\left(a^{\prime}\right)\right] \\
\text { s.t. } & c+a^{\prime}=a(1+r)+w
\end{aligned}
$$

- The unemployed face the problem

$$
\begin{aligned}
V^{u}(a)= & \max _{c, a^{\prime} \geq 0} u(c)+\beta \widehat{V}^{u}\left(a^{\prime}\right) \\
\text { s.t. } & c+a^{\prime}=a(1+r)+b
\end{aligned}
$$

Aiming and Quitting Shocks Model: Value of the Firm

- The value of the firm is again given like in the Quitting Model

$$
\begin{aligned}
\Omega^{0}(w)= & \left(z-w-\delta_{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

Aiming and Quitting Shocks Model: Value of the Firm

- The value of the firm is again given like in the Quitting Model

$$
\begin{aligned}
\Omega^{0}(w)= & \left(z-w-\delta_{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

- Except that now the probability of keeping a worker after j periods is

$$
\ell^{j}(w)=\int\left\{1-q\left[g^{e, j}(a, w), w\right]\right\} h(w ; a) d x^{u}(a)
$$

Aiming and Quitting Shocks Model: Value of the Firm

- The value of the firm is again given like in the Quitting Model

$$
\begin{aligned}
\Omega^{0}(w)= & \left(z-w-\delta_{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

- Except that now the probability of keeping a worker after j periods is

$$
\ell^{j}(w)=\int\left\{1-q\left[g^{e, j}(a, w), w\right]\right\} h(w ; a) d x^{u}(a)
$$

- Explicitly Not Block Recursive unless contracts were indexed by wealth which is illegal.

Aiming and Quitting Shocks: Equilibrium Properties

- Higher wage dispersion

Aiming and Quitting Shocks: Equilibrium Properties

- Higher wage dispersion
- Weaker but positive correlation between wage and wealth when hired

Aiming and Quitting Shocks: Equilibrium Properties

- Higher wage dispersion
- Weaker but positive correlation between wage and wealth when hired
- Smooth firm problem: Firm value $\Omega^{0}(w)$ has no sharp drop due to composition

Aiming and Quitting Shocks: Equilibrium Properties

- Higher wage dispersion
- Weaker but positive correlation between wage and wealth when hired
- Smooth firm problem: Firm value $\Omega^{0}(w)$ has no sharp drop due to composition
- Rich unemployed apply for higher wages (on average)

Aiming and Quitting Shocks: Equilibrium Properties

- Higher wage dispersion
- Weaker but positive correlation between wage and wealth when hired
- Smooth firm problem: Firm value $\Omega^{0}(w)$ has no sharp drop due to composition
- Rich unemployed apply for higher wages (on average)
- But have more dispersion in its applications as utility differentials are lower

Model 4: On the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.

Model 4: On the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:

Model 4: On the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation

Model 4: On the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{\mu}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.

Model 4: On the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Search: Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise become u^{\prime}.

Model 4: On the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Search : Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise become u^{\prime}.
(6) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.

Model 4: On the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) Search : Potential firms decide whether to enter and if so, the market (w) at which to post a vacancy; u and s assess the value of all wage applying options, receive match specific shocks $\left\{\epsilon^{w^{\prime}}\right\}$ and choose the wage level w^{\prime} to apply. Those who successfully find jobs become e^{\prime}, otherwise become u^{\prime}.
(6) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(7) Match

On the Job Search: Household Probl

- After saving, the unemployed problem is

$$
\widehat{V}^{u}\left(a^{\prime}\right)=\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}
$$

On the Job Search: Household Probl

- After saving, the unemployed problem is

$$
\widehat{V}^{u}\left(a^{\prime}\right)=\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}
$$

- After saving, the employed choose whether to quit, search or neither

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}, V^{s}\left(a^{\prime}, w\right)+\epsilon^{s}\right\} d F^{\epsilon}
$$

On the Job Search: Household Probl

- After saving, the unemployed problem is

$$
\widehat{V}^{u}\left(a^{\prime}\right)=\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left(1-\psi^{h}\left(w^{\prime}\right)\right) V^{u}\left(a^{\prime}\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}
$$

- After saving, the employed choose whether to quit, search or neither

$$
\widehat{V}^{e}\left(a^{\prime}, w\right)=\int \max \left\{V^{e}\left(a^{\prime}, w\right)+\epsilon^{e}, V^{u}\left(a^{\prime}\right)+\epsilon^{u}, V^{s}\left(a^{\prime}, w\right)+\epsilon^{s}\right\} d F^{\epsilon}
$$

- The value of searching is

$$
V^{s}\left(a^{\prime}, w\right)=\int \max _{w^{\prime}}\left[\psi^{h}\left(w^{\prime}\right) V^{e}\left(a^{\prime}, w^{\prime}\right)+\left[1-\psi^{h}\left(w^{\prime}\right)\right] V^{e}\left(a^{\prime}, w\right)+\epsilon^{w^{\prime}}\right] d F^{\epsilon}
$$

On the Job Search: Household choices

- The probabilities of quitting and of searching

$$
\begin{aligned}
& q\left(a^{\prime}, w\right)=\frac{1}{1+\exp \left(\alpha\left[V^{e}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)\right]\right)+\exp \left(\alpha\left[V^{s}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)+\mu^{s}\right]\right)} \\
& s\left(a^{\prime}, w\right)=\frac{1}{1+\exp \left(\alpha\left[V^{u}\left(a^{\prime}\right)-V^{s}\left(a^{\prime}, w\right)\right]\right)+\exp \left(\alpha\left[V^{e}\left(a^{\prime}, w\right)-V^{s}\left(a^{\prime}, w\right)-\mu^{s}\right]\right)} .
\end{aligned}
$$

$\mu^{s}<0$ is the mode of the shock ϵ^{s} which reflects the search cost.

On the Job Search: Household choices

- The probabilities of quitting and of searching

$$
\begin{aligned}
& q\left(a^{\prime}, w\right)=\frac{1}{1+\exp \left(\alpha\left[V^{e}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)\right]\right)+\exp \left(\alpha\left[V^{s}\left(a^{\prime}, w\right)-V^{u}\left(a^{\prime}\right)+\mu^{s}\right]\right)} \\
& s\left(a^{\prime}, w\right)=\frac{1}{1+\exp \left(\alpha\left[V^{u}\left(a^{\prime}\right)-V^{s}\left(a^{\prime}, w\right)\right]\right)+\exp \left(\alpha\left[V^{e}\left(a^{\prime}, w\right)-V^{s}\left(a^{\prime}, w\right)-\mu^{s}\right]\right)} .
\end{aligned}
$$

$\mu^{s}<0$ is the mode of the shock ϵ^{s} which reflects the search cost.

- Households solve

$$
\begin{aligned}
V^{e}(a, w) & =\max _{a^{\prime} \geq 0} u\left[a(1+r)+w-a^{\prime}\right]+\beta\left[\delta V^{u}\left(a^{\prime}\right)+(1-\delta) \widehat{V}^{e}\left(a^{\prime}, w\right)\right] \\
V^{u}(a) & =\max _{c, a^{\prime} \geq 0} u\left[a(1+r)+b-a^{\prime}\right]+\beta \widehat{V}^{u}\left(a^{\prime}\right)
\end{aligned}
$$

OJS Quitting Probabilities, Various wealths \& Wage Density

- The rich pursue often other activities (leisure?)
- The value of the firm is again given like in the Quitting Model

$$
\begin{aligned}
\Omega^{0}(w)= & \left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

the Job Search Model: Value of the Firm

- The value of the firm is again given like in the Quitting Model

$$
\begin{aligned}
\Omega^{0}(w)= & \left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

- Except that now the probability of keeping a worker after j periods is

$$
\begin{aligned}
& \ell^{j}(w)=1-\int h(w ; a) q\left[g^{e, j}(a, w), w\right] d x^{u}(a)- \\
& \quad \int h(w ; a) s\left[w ; g^{e, j}(a, w)\right]\left[\int \hat{h}\left[\widetilde{w} ; g^{e, j}(a, w), w\right] \xi \phi^{h}(\widetilde{w}) d(\widetilde{w})\right] d x^{u}(a)
\end{aligned}
$$

the Job Search Model: Value of the Firm

- The value of the firm is again given like in the Quitting Model

$$
\begin{aligned}
\Omega^{0}(w)= & \left(z-w-\delta^{k} k\right) Q^{1}(w)+\left(1-\delta-\delta_{k}\right) k Q^{0}(w), \\
& Q^{1}(w)=1+\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau} \prod_{i=0}^{\tau} \ell^{i}(w)\right], \\
& Q^{0}(w)=\sum_{\tau=0}^{\infty}\left[\left(\frac{1-\delta}{1+r}\right)^{1+\tau}\left[1-\ell^{\tau}(w)\right]\left(\prod_{i=0}^{\tau-1} \ell^{i}(w)\right)\right] .
\end{aligned}
$$

- Except that now the probability of keeping a worker after j periods is

$$
\begin{aligned}
& \ell^{j}(w)=1-\int h(w ; a) q\left[g^{e, j}(a, w), w\right] d x^{u}(a)- \\
& \quad \int h(w ; a) s\left[w ; g^{e, j}(a, w)\right]\left[\int \hat{h}\left[\widetilde{w} ; g^{e, j}(a, w), w\right] \xi \phi^{h}(\widetilde{w}) d(\widetilde{w})\right] d x^{u}(a)
\end{aligned}
$$

- Not block recursive but Q^{1} and Q^{2} are sufficient.

Model 4: Spread ofOn the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.

Model 4: Spread ofOn the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:

Model 4: Spread ofOn the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation

Model 4: Spread ofOn the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.

Model 4: Spread ofOn the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.

Model 4: Spread ofOn the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(6) Entry : Potential firms decide whether to enter by assessing the probability distribution of the profits given the wage posting policy of the firm managers. The right measure enter.

Model 4: Spread ofOn the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(6) Entry : Potential firms decide whether to enter by assessing the probability distribution of the profits given the wage posting policy of the firm managers. The right measure enter.
(7) Wage Posting : The managers of posting firms assess the profits of posting vacancies at all possible wages, and they receive EV shocks to those (expected) profits posting vacancies for all wages according to the EVS formula.

Model 4: Spread ofOn the Job Search: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) Quitting? Searching? Neither?: Employed draw shocks $\left(\epsilon^{e}, \epsilon^{u}, \epsilon^{s}\right)$ and make decision to quit, search, or neither. Those who quit become u^{\prime}, those who search join the u, in case of finding a job become $\left\{e^{\prime}, w^{\prime}\right\}$ but in case of no job finding remain e^{\prime} with the same wage w and those who neither become e^{\prime} with $w . \widehat{V}^{E}\left(a^{\prime}, w\right)$, is determined with respect to this stage.
(5) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.
(6) Entry : Potential firms decide whether to enter by assessing the probability distribution of the profits given the wage posting policy of the firm managers. The right measure enter.
(7) Wage Posting : The managers of posting firms assess the profits of posting vacancies at all possible wages, and they receive EV shocks to those (expected) profits posting vacancies for all wages according to the EVS formula.

8 Match

Mapping the Model to Data

Mapping the Model to Data: Adding Some Bells and Whis-

TLES

- Life cycle (Yaari (1965), Blanchard (1985)) with 50 years of expected duration

Mapping the Model to Data: Adding Some Bells and Whis-

TLES

- Life cycle (Yaari (1965), Blanchard (1985)) with 50 years of expected duration
- Provides a mechanism for having poor agents

Mapping the Model to Data: Adding Some Bells and Whis-

TLES

- Life cycle (Yaari (1965), Blanchard (1985)) with 50 years of expected duration
- Provides a mechanism for having poor agents
- Searching while on the job is slightly more inefficient than while unemployed.

TLES

- Life cycle (Yaari (1965), Blanchard (1985)) with 50 years of expected duration
- Provides a mechanism for having poor agents
- Searching while on the job is slightly more inefficient than while unemployed.
- Workers hired from the ranks of unemployment require some training

$$
\Omega^{0}(w)=z-\bar{k} \delta^{k}-w-C T+\frac{1-\delta^{f}}{1+r}\left\{\ell^{0}(w) \Omega^{1}(w)+\left[1-\ell^{0}(w)\right] \Omega\right\}
$$

Parameter Values: Period is half a quarter

Definition Value in Yearly Units

Parameter Values: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%

Parameter Values: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3

Parameter Values: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%

Parameter Values: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%

Parameter Values: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{\vee}	job posting cost	0.03

Parameter Values: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{v}	job posting cost	0.03
y	productivity on the job	1

Parameter Values: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{v}	job posting cost	0.03
y	productivity on the job	1
b / w	productivity at home	0.4

Parameter Values: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{v}	job posting cost	0.03
y	productivity on the job	1
b / w	productivity at home	0.4
σ	risk aversion	2

Parameter Values: Period is half a quarter

	Definition	Value in Yearly Units
r	interest rate	3%
K	fixed capital required	3
δ^{f}	firm destruction rate	2.88%
δ^{k}	capital maintenance rate	6.38%
c^{v}	job posting cost	0.03
y	productivity on the job	1
b / w	productivity at home	0.4
σ	risk aversion	2
Matching function	$m=\chi u^{\eta} v^{1-\eta}$, OJS	$\chi=0.3$
		$\eta=0.5$

Steady State Allocations in Yearly Units: Endog Quits \& OJS
interest rate 0.030
avg consumption 0.652
avg wage 0.683
avg wealth 2.938
stock market value 3.015
avg labor income 0.653
consumption to wealth ratio 0.222
labor income to wealth ratio 0.222
quit ratio 0.061
unemployment rate 0.087
job losers 0.089
wage of newly hired unemp 0.619
std consumption 0.013
std wage 0.004
std wealth 3.875
mean-min consumption 1.956
mean-min wage 1.153
UE transition 1.152
total vacancy 0.826
avg unemp duration 0.531
avg emp duration 9.108
avg job duration 0.317
OJS move rate 2.368

Job Finding Probability Curves

Wage Distributions: Baseline

Wage Distributions: Comparing with lower OJS

Wage Applications of the Unemployed by Wealth

Wage Applications of U and \bar{w} and densities of all

Summary of Steady States

- Wage dispersion: 1.153 , which vs ≈ 1.2 in the data.

Summary of Steady States

- Wage dispersion: 1.153 , which vs ≈ 1.2 in the data.
- Obviously, not a good theory of wealth inequality. Should complement it with other mechanisms.

Summary of Steady States

- Wage dispersion: 1.153 , which vs ≈ 1.2 in the data.
- Obviously, not a good theory of wealth inequality. Should complement it with other mechanisms.
- But it can deliver gross flows (3\% per month OJS and a bit less for quits).

Aggregate Fluctuations

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$
- We introduce a wage peg assumption: $w(z)=\varphi^{z} z w$

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$
- We introduce a wage peg assumption: $w(z)=\varphi^{z} z w$
- If wages were completely rigid there would be massive quits: counterfactual.

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$
- We introduce a wage peg assumption: $w(z)=\varphi^{z} z w$
- If wages were completely rigid there would be massive quits: counterfactual.
- By aiming at the Job to Job Volatility we can estimate the degree of wage rigidity φ^{2}

Introduce Aggregate Shocks (in a small open economy)

- We now pose a standard aggregate shock
(1) Productivity shocks z_{t} : Output $=$ EmpRate $\times\left(1+z_{t}\right)$
- We introduce a wage peg assumption: $w(z)=\varphi^{z} z w$
- If wages were completely rigid there would be massive quits: counterfactual.
- By aiming at the Job to Job Volatility we can estimate the degree of wage rigidity φ^{2}
- We use the Boppart et al. (2018) way of solving aggregates

Baseline: IRF to z shock: Typical Response when wages suf-

FICIENTLY FLEXIBLE

Figure 1: Wages

Figure 2: Unemployment Rate

- Obviously New wages move more than average wages
- Some response of unemployment

Baseline: IRF to z shock

Figure 3: J2J transitions

Figure 4: J2J search \& JFP

- Too much responsive j2j transitions
- Due to improved job finding probabilities, not more searchers

Assessing Performance in terms of standard hp-Filtered 2ND MOMENTS

- 1st order data moments are from standard database: CPS, JOLTS, LEHD and NIPA.
- 2nd order data moments are from Haefke et al. (2013), Campolmi and Gnocchi (2016), Brown et al. (2017) and Fujita and Nakajima (2016).

Productivity Shock $\rho=0.95$: Relative Volatility

- Wage adjustment estimate $\varphi^{w}=.8$:

Productivity Shock $\rho=0.95$: Relative Volatility

- Wage adjustment estimate $\varphi^{w}=.8$:

Model	Data
1	1
0.77	$0.44-0.84$

Productivity Shock $\rho=0.95$: Relative Volatility

- Wage adjustment estimate $\varphi^{w}=.8$:

	Model	Data
Output	1	1
Average Wage	0.77	$0.44-0.84$
New Wage	1.07	$0.68-1.09$

Productivity Shock $\rho=0.95$: Relative Volatility

- Wage adjustment estimate $\varphi^{w}=.8$:

	Model	Data
Output	1	1
Average Wage	0.77	$0.44-0.84$
New Wage	1.07	$0.68-1.09$
Unemployment	0.35	4.84

Productivity Shock $\rho=0.95$: Relative Volatility

- Wage adjustment estimate $\varphi^{w}=.8$:

	Model	Data
Output	1	1
Average Wage	0.77	$0.44-0.84$
New Wage	1.07	$0.68-1.09$
Unemployment	0.35	4.84
Quits + OJS moves	4.05	4.20

Productivity Shock $\rho=0.95$: Relative Volatility

- Wage adjustment estimate $\varphi^{w}=.8$:

	Model	Data
Output	1	1
Average Wage	0.77	$0.44-0.84$
New Wage	1.07	$0.68-1.09$
Unemployment	0.35	4.84
Quits + OJS moves	4.05	4.20
OJS moves	4.87	4.62

Table 1: Standard Deviation Relative to Output: Only Productivity Shock

Productivity Shock $\rho=0.95$: Relative Volatility

- Wage adjustment estimate $\varphi^{w}=.8$:

	Model	Data
Output	1	1
Average Wage	0.77	$0.44-0.84$
New Wage	1.07	$0.68-1.09$
Unemployment	0.35	4.84
Quits + OJS moves	4.05	4.20
OJS moves	4.87	4.62

Table 1: Standard Deviation Relative to Output: Only Productivity Shock

- Unemployment moves way way too little

Productivity Shock ($\rho=0.95$): Correlation

- Wage adjustment estimate $\varphi^{w}=.8$:

Productivity Shock ($\rho=0.95$): Correlation

- Wage adjustment estimate $\varphi^{w}=.8$:

Output	1	1
Average Wage	1	$0.24-0.37$

Productivity Shock ($\rho=0.95$): Correlation

- Wage adjustment estimate $\varphi^{w}=.8$:

Output	1	1
Average Wage	1	$0.24-0.37$
New Wage	1.	$0.79-0.83$

Productivity Shock ($\rho=0.95$): Correlation

- Wage adjustment estimate $\varphi^{w}=.8$:

	Model	Data
Output	1	1
Average Wage	1	$0.24-0.37$
New Wage	1.	$0.79-0.83$
Unemployment	-0.58	-0.85

Productivity Shock ($\rho=0.95$): Correlation

- Wage adjustment estimate $\varphi^{w}=.8$:

	Model	Data
Output	1	1
Average Wage	1	$0.24-0.37$
New Wage	1.	$0.79-0.83$
Unemployment	-0.58	-0.85
Quits + OJS moves	0.99	0.85

Productivity Shock ($\rho=0.95$): Correlation

- Wage adjustment estimate $\varphi^{w}=.8$:

	Model	Data
Output	1	1
Average Wage	1	$0.24-0.37$
New Wage	1.	$0.79-0.83$
Unemployment	-0.58	-0.85
Quits + OJS moves	0.99	0.85
OJS moves	1.	0.70

Table 2: Correlation with Contemprary Output: Only Productivity Shock

Productivity Shock ($\rho=0.95$): Correlation

- Wage adjustment estimate $\varphi^{w}=.8$:

	Model	Data
Output	1	1
Average Wage	1	$0.24-0.37$
New Wage	1.	$0.79-0.83$
Unemployment	-0.58	-0.85
Quits + OJS moves	0.99	0.85
OJS moves	1.	0.70

Table 2: Correlation with Contemprary Output: Only Productivity Shock

- Correlations are too large but appropriate

Summary of Fluctuations

- Same properties of standard real business cycle models on aggregates.

Summary of Fluctuations

- Same properties of standard real business cycle models on aggregates.
- Unemployment volatility is terrible.

Summary of Fluctuations

- Same properties of standard real business cycle models on aggregates.
- Unemployment volatility is terrible.
- Need to expand the model to a more detached workforce by adding outside the labor force.

Summary of Fluctuations

- Same properties of standard real business cycle models on aggregates.
- Unemployment volatility is terrible.
- Need to expand the model to a more detached workforce by adding outside the labor force.
- Either multi person households

Summary of Fluctuations

- Same properties of standard real business cycle models on aggregates.
- Unemployment volatility is terrible.
- Need to expand the model to a more detached workforce by adding outside the labor force.
- Either multi person households
- Markovian process on value of non working with many agents close to indifferent (easier)

Summary of Fluctuations

- Same properties of standard real business cycle models on aggregates.
- Unemployment volatility is terrible.
- Need to expand the model to a more detached workforce by adding outside the labor force.
- Either multi person households
- Markovian process on value of non working with many agents close to indifferent (easier)
- Job to job transitions volatility can be replicated

Summary of Fluctuations

- Same properties of standard real business cycle models on aggregates.
- Unemployment volatility is terrible.
- Need to expand the model to a more detached workforce by adding outside the labor force.
- Either multi person households
- Markovian process on value of non working with many agents close to indifferent (easier)
- Job to job transitions volatility can be replicated
- The amount of wage rigidity implied is small

Conclusions I

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:

Conclusions I

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)

Conclusions I

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.

Conclusions I

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits

Conclusions I

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical

Conclusions I

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits

Conclusions I

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits
- Employment

Conclusions I

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits
- Employment
- Investment and Consumption

Conclusions I

- Develop tools to get a joint theory of wages, employment and wealth that marry the two main branches of modern macro:
(1) Aiyagari models (output, consumption, investment, interest rates)
(2) Labor search models with job creation, turnover, wage determination, flows between employment, unemployment and outside the labor force.
(3) Add tools from Empirical Micro to generate quits
- Useful for business cycle analysis: We are getting procyclical
- Quits
- Employment
- Investment and Consumption
- Wages

Conclusions II

- Exciting set of continuation projects:
(1) Incorporate movements in and out of the labor force.
(2) Endogenous Search intensity on the part of firms and in general abandon the constant zero profit entry condition (Qiu (2022))
(3) Aiming Shocks to soften correlation between wages and wealth
(4) Efficiency Wages: Endogenous Productivity (firms use different technologies with different costs of idleness)
(5) Move towards more sophisticated household structures (more life cycle movements, multiperson households).

Extensions

Outside the Labor Force

Outside the Labor Force Model: Time-line

(1) Workers enter period with or without a job: V^{e}, V^{u}.
(2) Production \& Consumption:
(3) Exogenous Separation
(4) In the beginning of the period non Workers get a shock to the utility of either searching or not searching. They then choose whether to sit out and not search or to search. It is an extreme value shock.

Workers get a utility injection equal to the expected utility of the maximum of those two shocks to get no bias in the value of working versus not.
(5) Quitting? Searching? Neither?:
(6) Search
(7) $\widehat{V}^{u}\left(a^{\prime}\right),\left\{\Omega^{j}(w)\right\}$ are determined with respect to this stage.

8 Match

Firms choose Search Intensity

- The number of vacancies posted is chosen by firms
- Easy to implement
- Slightly Different steady state

Free entry with variable recruiting intensity

- Let $v(\bar{c})$ be a technology to post vacancies where \bar{c} is the cost paid.

Free entry with variable recruiting intensity

- Let $v(\bar{c})$ be a technology to post vacancies where \bar{c} is the cost paid.
- Then the free entry condition requires that for all offered wages

$$
0=\max _{\bar{c}}\left\{v(\bar{c}) \psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}+\left[1-v(\bar{c}) \psi^{f}[\theta(w)]\right] \frac{\bar{k}\left(1-\delta_{k}\right)}{1+r}-\bar{c}-\bar{k}\right\},
$$

Free entry with variable recruiting intensity

- Let $v(\bar{c})$ be a technology to post vacancies where \bar{c} is the cost paid.
- Then the free entry condition requires that for all offered wages

$$
0=\max _{\bar{c}}\left\{v(\bar{c}) \psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}+\left[1-v(\bar{c}) \psi^{f}[\theta(w)]\right] \frac{\bar{k}\left(1-\delta_{k}\right)}{1+r}-\bar{c}-\bar{k}\right\},
$$

- With FOC given by

$$
v_{\bar{c}}(\bar{c})\left\{\psi^{f}[\theta(w)]\left[\frac{\Omega(w)}{1+r}-\frac{\bar{k}\left(1-\delta_{k}\right)}{1+r}\right]\right\}=1
$$

How to make it consistent with the current steady state

- If $v(\bar{c})=\frac{v_{1} \bar{c}^{2}}{2}+v_{2 \bar{c}}$, we have

$$
\left(v_{1} \bar{c}+v_{2}\right)\left\{\psi^{f}[\theta(w)]\left[\frac{\Omega(w)}{1+r}-\frac{\bar{k}\left(1-\delta_{k}\right)}{1+r}\right]\right\}=1
$$

How to make it consistent with the current steady state

- If $v(\bar{c})=\frac{v_{1} \bar{c}^{2}}{2}+v_{2 \bar{c}}$, we have

$$
\left(v_{1} \bar{c}+v_{2}\right)\left\{\psi^{f}[\theta(w)]\left[\frac{\Omega(w)}{1+r}-\frac{\bar{k}\left(1-\delta_{k}\right)}{1+r}\right]\right\}=1
$$

- By Choosing v so that for the numbers that have now

$$
\left\{\left[\frac{v_{1} \bar{c}^{2}}{2}+v_{2} \bar{c}\right] \psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}+\left[1-\frac{v_{1} \bar{c}^{2}}{2}-v_{2} \bar{c}\right] \psi^{f}[\theta(w)] \frac{\bar{k}\left(1-\delta_{k}\right)}{1+r}\right\}=\bar{c}+\bar{k}
$$

How to make it consistent with the current steady state

- If $v(\bar{c})=\frac{v_{1} \bar{c}^{2}}{2}+v_{2 \bar{c}}$, we have

$$
\left(v_{1} \bar{c}+v_{2}\right)\left\{\psi^{f}[\theta(w)]\left[\frac{\Omega(w)}{1+r}-\frac{\bar{k}\left(1-\delta_{k}\right)}{1+r}\right]\right\}=1
$$

- By Choosing v so that for the numbers that have now

$$
\left\{\left[\frac{v_{1} \bar{c}^{2}}{2}+v_{2} \bar{c}\right] \psi^{f}[\theta(w)] \frac{\Omega(w)}{1+r}+\left[1-\frac{v_{1} \bar{c}^{2}}{2}-v_{2} \bar{c}\right] \psi^{f}[\theta(w)] \frac{\bar{k}\left(1-\delta_{k}\right)}{1+r}\right\}=\bar{c}+\bar{k}
$$

- Solving for $\left\{v_{1}, v_{2}\right\}$ that satisfy both equations given our choice of \bar{c} we are done

References

Aiyagari, S. R. (1994): "Uninsured Idiosyncratic Risk and Aggregate Saving," Quarterly Journal of Economics, 109, 659-684.
Andolfatto, D. (1996): "Business Cycles and Labor-Market Search," American Economic Review, 86(1), 112-132. Blanchard, O. J. (1985): "Debt, Deficits, and Finite Horizons," Journal of Political Economy, 93, 223-247.
Boppart, T., P. Krusell, and K. Mitman (2018): "Exploiting MIT shocks in heterogeneous-agent economies: the impulse response as a numerical derivative," Journal of Economic Dynamics and Control, 89, 68-92.
Brown, A. J., B. Kohlbrecher, C. Merkl, and D. J. Snower (2017): "The effects of productivity and benefits on unemployment: Breaking the link," Tech. rep., GLO Discussion Paper.
-_ (2021): "The effects of productivity and benefits on unemployment: Breaking the link," Economic Modelling, 94, 967-980.
Campolmi, A. and S. Gnocchi (2016): "Labor market participation, unemployment and monetary policy," Journal of Monetary Economics, 79, 17-29.
Chaumont, G. and S. Shi (2022): "Wealth Accumulation, On-the-Job Search and Inequality," Journal of Monetary Economics.
Den Haan, W., P. Rendahl, and M. Riegler (2015): "Unemployment (Fears) and Deflationary Spirals," CEPR Discussion Papers 10814, C.E.P.R. Discussion Papers.
Eeckhout, J. and A. Sepahsalari (2018): "The Effect of Asset Holdings on Worker Productivity," Unpublished Manuscript, UCL.
Fujita, S. and M. Nakajima (2016): "Worker flows and job flows: A quantitative investigation," Review of Economic Dynamics, 22, 1-20.
Griffy, B. S. (2021): "Search And The Sources Of Life-Cycle Inequality," International Economic Review, 62, 1321-1362.
Haefke, C., M. Sonntag, and T. Van Rens (2013): "Wage rigidity and job creation," Journal of Monetary Economics, 60, 887-899.
Hornstein, A., P. Krusell, and G. Violante (2011): "Frictional Wage Dispersion in Search Models: A Quantitative Assessment," American Economic Review, 101, 2873-2898.
Krusell, P., T. Mukoyama, and A. Sahin (2010): "Labour-Market Matching with Precautionary Savings and Aggregate Fluctuations," Review of Economic Studies, 77, 1477-1507.
Lise, J. (2013): "On-the-Job Search and Precautionary Savings," The Review of Economic Studies, 80, 1086-1113.
Merz, M. (1995): "Search in the Labor Market and the Real Business Cycle," Journal of Monetary Economics, 36, 269-300.
Moen, E. R. (1997): "Competitive Search Equilibrium," Journal of Political Economy, 105, 385-411.
Qiu, X. (2022): "The Great Labor Shortage," Mimeo, Penn.
Ravn, M. O. and V. Sterk (2016): "Macroeconomic Fluctuations with HANK \& SAM: An Analytical Approach,"

Steady-States

	m 1	m 2	m 3	m 4	m 4 (low xi)
β	0.975	0.972	0.975	0.976	0.976
interest rate	0.030	0.030	0.030	0.030	0.030
avg consumption	0.686	0.682	0.691	0.684	0.680
avg wage	0.707	0.719	0.696	0.689	0.690
avg wealth	2.789	2.763	2.361	3.041	2.919
stock market value	2.971	2.692	3.065	2.953	2.931
avg labor income	0.659	0.655	0.668	0.654	0.652
consumption to wealth ratio	0.246	0.247	0.293	0.225	0.233
labor income to wealth ratio	0.236	0.237	0.283	0.215	0.223
quit ratio	0.090	0.088	0.090	0.090	0.092
unemployment rate	0.129	0.165	0.076	0.097	0.106
job losers	0.117	0.115	0.117	0.117	0.119
wage of newly hired unemployed	0.707	0.719	0.656	0.677	0.689
std consumption	0.013	0.010	0.011	0.011	0.011
std wage	0.000	0.000	0.003	0.002	0.001
std wealth	2.989	2.715	2.624	3.606	3.677
mean-min consumption	2.057	2.045	2.072	2.051	2.039
mean-min wage	1.012	1.001	1.094	1.058	1.042
UE transition	0.121	0.114	0.128	0.125	0.126
total vacancy	0.544	0.308	0.704	0.578	0.707
avg unemp duration	1.062	1.449	0.589	0.773	0.745
avg emp duration	7.228	7.335	7.228	7.228	7.131
OJS move rate	0.000	0.000	0.420	0.395	0.292
avg job duration	7.228	7.335	1.814	1.898	2.342

Wage Distributions

Derive the Idle Value

- Value of an idle firm is

$$
\Omega^{0}=-\delta^{k} k+\frac{1-\delta^{f}}{1+r}\left[-c^{\vee}+\psi^{f} \Omega+\left(1-\psi^{f}\right) \Omega^{0}\right]
$$

- Free entry

$$
k=\frac{1}{1+r}\left[-c^{\vee}+\psi^{f} \Omega+\left(1-\psi^{f}\right) \Omega^{0}\right]
$$

- Newly entered firms do not receive the destruction shock immediately
- Vacancy posting cost is paid immediately before searching
- Combine the above

$$
\Omega^{0}=\left(1-\delta^{f}-\delta^{k}\right) k
$$

M4 Low Ave J-2-J 1\% Productivity Shock ($\rho=9$) [IRF]

Figure 5: Wages

Figure 6: Unemployment Rate

- Similar Wage Responses
- 70% more unemployment volatility: J: mainly comes from more responsive quits

M4 Low Ave J-2-J 1\% Productivity Shock ($\rho=.9$) IRF

Figure 7: Quits

Figure 8: Job-to-job Moves

- More quitting
- Similar (excessive) J-2-J transitions

M4 Low Ave J-2-J 1\% Delta Shock ($\rho=.95$)

Figure 9: Wages

Figure 10: Unemployment Rate

- Similar Wage Response
- 16% more unemployment response
- Note wage is not pegged to the delta shock

M4 Low Ave J-2-J 1\% Delta Shock ($\rho=.95$)

Figure 11: Quits

Figure 12: Job-to-job Moves

- More Quit similar (excessive) volatility for job-to-job transitions

M4 Low Ave J-2-J: Business Crcle Statistics

- Two ways to aggregate shocks

	shock corr $=0.95$		shock corr $=0$							
	Std		corr	Std	corr		1.00	1.00	1.00	1.00
:---	:---	:---	:---	:---						
output	0.41	0.93	0.41	0.90						
avg wage	1.69	0.76	1.38	0.52						
new wage	2.59	-0.73	2.80	-0.63						
unemployment	29.85	0.77	26.72	0.38						
quits + j2j movers	36.30	0.79	32.51	0.41						

M4 Low Ave J-2-J: Business Crcle Statistics

- Two ways to aggregate shocks

	shock corr $=0.95$		shock corr $=0$	
	Std	corr	Std	corr
output	1.00	1.00	1.00	1.00
avg wage	0.41	0.93	0.41	0.90
new wage	1.69	0.76	1.38	0.52
unemployment	2.59	-0.73	2.80	-0.63
quits + j2j movers	29.85	0.77	26.72	0.38
J2J movers	36.30	0.79	32.51	0.41

- Not too successful in reducing volatility of quits and J2J movers.

M4 Low Ave J-2-J: Business Crcle Statistics

- Two ways to aggregate shocks

	shock corr $=0.95$		shock corr $=0$	
	Std	corr	Std	corr
output	1.00	1.00	1.00	1.00
avg wage	0.41	0.93	0.41	0.90
new wage	1.69	0.76	1.38	0.52
unemployment	2.59	-0.73	2.80	-0.63
quits + j2j movers	29.85	0.77	26.72	0.38
J2J movers	36.30	0.79	32.51	0.41

- Not too successful in reducing volatility of quits and J2J movers.
- Need to look for alternatives.

M4 Higher Wage Peg: 1% Productivity Shock ($\rho=.95$)

Figure 13: Quits

Figure 14: OJS Searchers

- Higher wage peg lowers the reponse of on-the-job search and quit.
- Workers find it less so attractive to move/quit as existing wages now comove more with the productivity shock

M4 Higher Wage Peg: 1% Productivity Shock ($\rho=.95$)

Figure 15: Job-to-job transitions

Figure 16: Unemployment

- Job-to-job transition rate also lowers: from 12% to 9%. This is from
- less search on the job (see Fig 14)
- less improvement of job finding rate due to smaller s-s firm profits
- Also less persistence of the unemployment response (less turnover).
- However the j2j transition rate is still far more responsive than the unemployment

M4 Higher Wage Peg: Business Cycle Statistics

	Wage Peg $=0.5$			Wage Peg $=0.8$		
Output	Mean	Std	Corr	Mean	Std	Corr
	1	1	1	1	1	1

M4 Higher Wage Peg: Business Cycle Statistics

	Wage Peg $=0.5$			Wage Peg $=0.8$		
	Mean	Std	Corr	Mean	Std	Corr
	1	1	1	1	1	1
Output	0.690	0.51	1.00	0.690	0.76	0.99

M4 Higher Wage Peg: Business Cycle Statistics

	Wage Peg $=0.5$			Wage Peg $=0.8$		
	Mean	Std	Corr	Mean	Std	Corr
Output	1	1	1	1	1	1
Avg Wage	0.690	0.51	1.00	0.690	0.76	0.99
New Wage	0.689	0.95	1.00	0.689	1.04	0.99

M4 Higher Wage Peg: Business Cycle Statistics

	Wage Peg $=0.5$			Wage Peg $=0.8$		
	Mean	Std	Corr	Mean	Std	Corr
Output	1	1	1	1	1	1
Avg Wage	0.690	0.51	1.00	0.690	0.76	0.99
New Wage	0.689	0.95	1.00	0.689	1.04	0.99
Unemp Rate	10.6%	0.35	-0.48	10.6%	0.42	-0.64

M4 Higher Wage Peg: Business Cycle Statistics

	Wage Peg $=0.5$			Wage Peg $=0.8$		
	Mean	Std	Corr	Mean	Std	Corr
Output	1	1	1	1	1	1
Avg Wage	0.690	0.51	1.00	0.690	0.76	0.99
New Wage	0.689	0.95	1.00	0.689	1.04	0.99
Unemp Rate	10.6%	0.35	-0.48	10.6%	0.42	-0.64
Quits+J2J moves	38.4%	8.94	0.99	38.4%	6.65	-0.99

M4 Higher Wage Peg: Business Cycle Statistics

	Wage Peg $=0.5$			Wage Peg $=0.8$		
	Mean	Std	Corr	Mean	Std	Corr
Output	1	1	1	1	1	1
Avg Wage	0.690	0.51	1.00	0.690	0.76	0.99
New Wage	0.689	0.95	1.00	0.689	1.04	0.99
Unemp Rate	10.6%	0.35	-0.48	10.6%	0.42	-0.64
Quits+J2J moves	38.4%	8.94	0.99	38.4%	6.65	-0.99
J2J moves	29.2%	10.66	0.99	29.2%	8.50	-0.99

Table 3: M4 Compare Wage Pegs: Productivity Shock ($\rho=0.95$)

- Higher wage pegs lower the j 2 j transition volatility while raise the unemployment volatility
- However even we make the existing wages comove with productivity closely, the j 2 j transition volatility is still much higher than the unemployment volatility
- In the next several pages we take a closer look at this problem

M4 Higher Wage Peg: Business Cycle Statistics

	Wage Peg $=0.5$			Wage Peg $=0.8$		
	Mean	Std	Corr	Mean	Std	Corr
Output	1	1	1	1	1	1
Avg Wage	0.690	0.51	1.00	0.690	0.76	0.99
New Wage	0.689	0.95	1.00	0.689	1.04	0.99
Unemp Rate	10.6%	0.35	-0.48	10.6%	0.42	-0.64
Quits+J2J moves	38.4%	8.94	0.99	38.4%	6.65	-0.99
J2J moves	29.2%	10.66	0.99	29.2%	8.50	-0.99

Table 3: M4 Compare Wage Pegs: Productivity Shock ($\rho=0.95$)

- Higher wage pegs lower the j 2 j transition volatility while raise the unemployment volatility
- However even we make the existing wages comove with productivity closely, the j 2 j transition volatility is still much higher than the unemployment volatility
- In the next several pages we take a closer look at this problem

Quitting Makes a Big Difference

- Job finding Rates back

