Health Heterogeneity and the Preferences for Consumption Growth

Jay H. Hong Josep Pijoan-Mas José-Víctor Ríos-Rull

Seoul National University CEMFI, CEPR Minnesota, Mpls Fed, CAERP

Colloque CIREQ Montréal de macroéconomie
La santé et la vieillesse
April 2015
Introduction

- A big question in Macroeconomics is what determines savings.
 - The old are special (DeNardi, French, Jones (2015), Ameriks, Briggs, Caplin, Shapiro Tonetti (2015))
 - There is an increasing number of them.

- Two fundamental characteristics of the old
 - Their health worsens with age
 - It does so at different rate for people in different socio-economic groups
 Pijoan-Mas, Ríos-Rull (2014)

▷ How do age and health shape preferences and consumption decisions?
 - Surprisingly, little work exploring effects of health on consumption
We estimate the effect of health on the marginal utility of consumption

- We use a model where the evolution of health is itself endogenous
- But we use only the consumption Euler equation to estimate structural parameters
 - We exploit differences in consumption growth by age, education, wealth, and health groups
 - We use estimates of health transitions by age, education, and wealth.
 - We interpret them as the outcome of optimal behavior.

▷ Hence, *we do not need to know the whole health production technology.*
Conventional wisdom

The marginal utility of consumption falls when health declines

- Domeij, Johannesson (2006) and Scholz, Seshadri (2012)
 - Exploit the average joint decline of health and consumption with age
 - But age-consumption decline may be due to other reasons
 Gourinchas, Parker (2002); Aguiar, Hurst (2013)

- Finkelstein, Luttmer, Notowidigdo (2012)
 - Subjective well-being increases with health, more so for individuals with larger permanent income
 - But not necessarily related to consumption expenditure

- Koijen, Van Nieuwerburgh, Yogo (2012)
 - Households own too little long-term care insurance, too many annuities
Main findings

1. At age 65, better health gives higher marginal utility of consumption
 - You need healthy time to enjoy life

2. However, as individuals age, this difference narrows down
 - Consumption expenditure also substitutes for healthy time
 - Hence, low health may give high marginal utility of consumption

3. We provide some direct evidence of the age effect of health on consumption composition
Model: main elements

- Individuals differ in:
 - age \((i)\), education \((e)\), health \((h)\), wealth \((a)\), income \((s)\)

- They choose
 - nonmedical expend \((c)\), medical expend \((x)\), health-related behaviour \((y)\)

- Education \(e \in E = \{c, h, d\}\) is predetermined.
 - (potentially) different patience \(\beta^e\)
 - (potentially) different income process \(\pi^e,i(s' | s, h)\)
 - (potentially) maybe different health technologies \(\Gamma^e,i\)

- Health stock \(h \in H\) evolves stochastically \(\Gamma^e,i(h' | h, x, y)\)
 - different survival probability \(\gamma^i(h)\)
 - different income process \(\pi^e,i(s' | s, h)\)
 - different value of medical expenditure \(\varepsilon^i(h)\)
 - different value of non-medical expenditure \(\chi^i(h)\)
Preferences

Within period utility function:

\[u^i(h, c, x, y) = \chi^i(h) \frac{c^{1-\sigma_c}}{1-\sigma_c} - \nu_0 y^{\nu_1} - \frac{\varepsilon^i(h)}{x^{\sigma_x}} \]

\[\sigma_c, \sigma_x, \nu_0, \nu_1 > 0 \]

- \(\chi^i(h) \) regulates the health-dependence of \(u_c \)
 - It is the object of interest.

- We choose not to make \(\nu_0 \) health-dependent: we think of \(y \) as preventive health-behavior

- \(\varepsilon^i(h) \) regulates the health-dependence of \(u_x \)
 - In the main exercise we will ignore this part.
 - But extension: \(\varepsilon^i(h) \) stochastic to address the role of medical expenditure uncertainty in consumption growth.
The Optimization Problem

- The Bellman equation:

\[
v^{e,i}(a, h, s) = \max_{c,x,y} \left\{ u^i(h, c, x, y) \right. \\
+ \beta^e \psi^i(h) \sum_{s',h'} \Gamma^i(h' | h, x, y) \pi^{e,i}(s' | s, h) \mathbb{E}_{\varepsilon'}|h' v^{e,i+1}(a', h', s') \left. \right\}
\]

\[
\text{s.t.} \quad c + x + a' = a (1 + r) + s
\]

- The model can be solved to deliver decision rules

\[
c^{e,i}(a, h, s), \quad x^{e,i}(a, h, s), \quad y^{e,i}(a, h, s)
\]
The FOC

▷ Consumption Euler equation,

\[\chi^i(h) c^{-\sigma_c} = \beta^e \psi^i(h) (1 + r) \sum_{s',h'} \Gamma^i(h' \mid h, x, y) \pi^{e,i}(s' \mid s, h) \chi^{i+1}(h')(c')^{-\sigma_c} \]

▷ Optimal health expenditure

\[\chi^i(h) c^{-\sigma_c} = \beta^e \psi^i(h) \sum_{s',h'} \Gamma^i_x(h' \mid h, x, y) \pi^{e,i}(s' \mid s, h) v^{e,i+1}(s', h', a') \]

\[- \varepsilon^i(h) - \sigma_x x^{-\sigma_x - 1} \quad \text{in extension} \]

▷ Optimal health behavior

\[u_y = \beta^e \psi^i(h) \sum_{s',h'} \Gamma^i_y(h' \mid h, x, y) \pi^{e,i}(s' \mid s, h) v^{e,i+1}(s', h', a') \]
Problem: Estimating the Law of Motion for Health

Need to measure *effects of health investments* on health evolution

\[\Gamma_i^{x}(h' \mid h, x, y) \quad \text{and} \quad \Gamma_i^{y}(h' \mid h, x, y) \quad \text{and} \quad \Gamma_i^{y}(h' \mid h, x, y) \]

- Very hard to measure directly due to endogeneity bias
 (typically one finds \(\Gamma_i^{x} < 0 \) and \(\Gamma_i^{y} < 0 \))
- In addition, a substantial part of \(x \) is not strictly health care
Our Solution

1) Use only the Euler equation of consumption
 - No need to solve the full dynamic problem
 - No need to measure $\Gamma^i_x (h' | h, x, y)$ and $\Gamma^i_y (h' | h, x, y)$

2) Replace health investments by their optimal policies
 - Take the law of motion for health
 \[\Gamma^i (h' | h, x, y) \]
 - replace the x and y by their optimal policies
 \[x^{e,i} (a, h, s) \text{ and } y^{e,i} (a, h, s) \]
 - Then, the law of motion of health is function of the state variables:
 \[\Gamma^{e,i} (h' | a, h, s) \]
 which is easy to estimate
Consumption growth and information about $\chi(h)$

$$\beta^e \psi^i(h) (1 + r) \sum_{h'} \Gamma^{e,i}(h' | h,a) \frac{\chi^{i+1}(h')}{\chi^i(h)} \left(\frac{c^{e,i+1}(h', a')}{c^{e,i}(h,a)} \right)^{-\sigma} = 1$$

1/ If health was constant ($\Gamma^{e,i}$ diagonal), *higher consumption growth for high health* due to $\psi^i(h)$

2/ With changing health
 - Changes in health affect consumption growth through $\chi^{i+1}(h')/\chi^i(h)$
 - If health and consumption are complements ($\chi(h_g) > \chi(h_b)$)
 Consumption growth higher for low health
 - If health and consumption are substitutes ($\chi(h_g) < \chi(h_b)$)
 Consumption growth higher for high health

3/ If health expenditure uncertainty differs across health types, a further reason for consumption growth differences
The model moment conditions

- For each agent of type \((e, i, a, h)\):

 - The realised value of the Euler eqn. depends on the shock \(h'\)

 \[
 f(e, i, a, h; h') = \beta^e (1 + r) \frac{\chi(h')}{\chi(h)} \left(\frac{c^{e,i+1}(h', a^{e,i+1}(h, a))}{c^{e,i}(h, a)} \right)^{-\sigma} - 1
 \]

 - So we can rewrite the Euler equation in expectation as:

 \[
 \mathbb{E}_{h' \mid e, i, a, h} \left[f(e, i, a, h; h') \right] = \psi^i(h) \sum_{h'} \Gamma^{e,i}(h' \mid h, a) f(e, i, a, h; h') = 0
 \]

 - Which give one moment condition for every type
The Empirical Analog

- We have a discretized state space \(\Omega \equiv E \times I \times A \times H \)

 \(\Omega \text{ is a discrete set with } M \text{ elements indexed by } m. \)

- For each individual \(j \) we observe
 - current state \(\omega_j \in \Omega \)
 - realized shocks tomorrow \(h'_j \)
 - consumption chosen tomorrow

- Hence, the empirical analog of our orthogonality conditions requires to compute the average consumption growth for each type \(\omega_j, h'_j \)
The Empirical Analog

- In particular:
 - For each individual type ω_j, h'_j,
 \[
 \tilde{f}(\omega_j, h'_j; \theta) = \beta^{e_j} (1 + r) \frac{\chi(h'_j)}{\chi(h_j)} \sum_1^{\omega_j, h'_j} \left(\frac{c'_j}{c_j} \right)^{-\sigma} - 1
 \]
 - Hence, the empirical moment condition for every type $\omega_m \in \Omega$ is
 \[
 \tilde{g}_m(data; \theta) = \sum_j \mathbf{1}_{(\omega_j = \omega_m)} \psi^{i_j}(h_j) \sum_{h'_j \in H} \mathbf{1}_{(h'_j = h'_l)} \Gamma^{e_j, i_j}(h'_j | h_j, a_j) \tilde{f}(\omega_j, h'_j; \theta)
 \]
- Minimize the weighted quadratic loss function
 \[
 \tilde{Q}_J(data; \theta) = \frac{1}{2} \tilde{g}(data; \theta)' W \tilde{g}(data; \theta)
 \]
Data

- PSID 1999-2013

- Why: it has good data on

 a) non-durable consumption and services

 b) oop med expenditures (drugs, doctors, hospital, nursing homes, insurance)

 c) Wealth (household total net worth) and health (self-rated)

- Use HRS estimates of

 - Survival probabilities, $\psi^i(h)$

 - Health transitions, $\Gamma^{e,i}(h' \mid h, a)$

 Pijoan-Mas, Rios-Rull (2014)
Preliminary Estimations

- Sample selection:
 - Households aged 65-85 → No need to deal with earnings uncertainty
 - Headed by males
 - We lump together married and non-married

- (equivalized) consumption growth observations: 2,809

- Moment conditions
 - age group i (4) $\in \{65-69, 70-74, 75-79, 80+\}$
 - education e (3) $\in \{c, h, d\}$
 - health h (2) $\in \{\text{good, bad}\}$
 - wealth a (5): wealth quintiles
 - $120 (= 4 \times 3 \times 2 \times 5)$ moment conditions
Preliminary Estimations

- We pose a simple parametric structure for the age-dependence of the health modifier
 \[\chi^i(h) = \chi_a(h) + \chi_b(h) \times i \]
 where
 - \(\chi_a(h) \): health modifier by health status at age 50
 - \(\chi_b(h) \): change of health modifier with age

- We pose two identifying restrictions
 - \(\chi_a(h_g) = 1 \)
 - \(\chi_b(h_g) = 0 \)

- Hence, we have a maximum of 6 parameters to identify
 - \(\chi_a(h_g), \chi_a(h_g) \)
 - \(\beta_c, \beta_h, \beta_d \)
 - \(\sigma_c \)
Results – Men, 65+ only, time-varying \(\chi \)

- **common \(\beta \)**

Results across different \(\sigma \), (with \(r = 2\% \), Consumption (ndc_s1_v1))

<table>
<thead>
<tr>
<th></th>
<th>(\sigma = 0.8)</th>
<th>(\sigma = 1)</th>
<th>(\sigma = 1.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.9953 (0.0037)</td>
<td>0.9832 (0.0045)</td>
<td>0.9455 (0.0064)</td>
</tr>
<tr>
<td>(\chi_a(b))</td>
<td>0.7816 (0.0402)</td>
<td>0.7869 (0.0491)</td>
<td>0.7854 (0.0733)</td>
</tr>
<tr>
<td>(\chi_b(b))</td>
<td>0.0024 (0.0044)</td>
<td>0.0023 (0.0053)</td>
<td>0.0038 (0.0076)</td>
</tr>
<tr>
<td>J stat (p-value)</td>
<td>124.25 (0.2211)</td>
<td>113.72 (0.4632)</td>
<td>108.15 (0.6115)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\sigma = 2)</th>
<th>(\sigma = 2.5)</th>
<th>(\sigma = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.8989 (0.0084)</td>
<td>0.8447 (0.0102)</td>
<td>0.8447 (0.0116)</td>
</tr>
<tr>
<td>(\chi_a(b))</td>
<td>0.7776 (0.1007)</td>
<td>0.7694 (0.1314)</td>
<td>0.7694 (0.1674)</td>
</tr>
<tr>
<td>(\chi_b(b))</td>
<td>0.0063 (0.0100)</td>
<td>0.0094 (0.0124)</td>
<td>0.0094 (0.0150)</td>
</tr>
<tr>
<td>J stat (p-value)</td>
<td>113.42 (0.4712)</td>
<td>121.41 (0.2776)</td>
<td>129.88 (0.1324)</td>
</tr>
</tbody>
</table>
Picking the right σ

- Men, 65+ only, χ age dependent

![Graph showing the relationship between risk aversion (σ) and J-stat](image-url)
Results – Men, 65+ only, time-varying χ

- **education-specific β**

Results across different σ, (with $r = 2\%$, Consumption (ndc_s1_v1))

<table>
<thead>
<tr>
<th></th>
<th>$\sigma = 0.8$</th>
<th>$\sigma = 1$</th>
<th>$\sigma = 1.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β^d</td>
<td>1.0143 (.0078)</td>
<td>1.0023 (.0094)</td>
<td>0.9642 (.0133)</td>
</tr>
<tr>
<td>β^h</td>
<td>0.9940 (.0050)</td>
<td>0.9815 (.0061)</td>
<td>0.9416 (.0089)</td>
</tr>
<tr>
<td>β^c</td>
<td>0.9859 (.0057)</td>
<td>0.9743 (.0071)</td>
<td>0.9396 (.0108)</td>
</tr>
<tr>
<td>$\chi_a(b)$</td>
<td>0.7918 (.0407)</td>
<td>0.7979 (.0499)</td>
<td>0.7992 (.0747)</td>
</tr>
<tr>
<td>$\chi_b(b)$</td>
<td>0.0006 (.0044)</td>
<td>0.0004 (.0053)</td>
<td>0.0018 (.0076)</td>
</tr>
<tr>
<td>J stat (p-value)</td>
<td>116.13 (.3507)</td>
<td>107.93 (.5647)</td>
<td>105.50 (.6294)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\sigma = 2$</th>
<th>$\sigma = 2.5$</th>
<th>$\sigma = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β^d</td>
<td>0.9173 (.0166)</td>
<td>0.8639 (.0194)</td>
<td>0.8056 (.0216)</td>
</tr>
<tr>
<td>β^h</td>
<td>0.8910 (.0116)</td>
<td>0.8321 (.0141)</td>
<td>0.7672 (.0161)</td>
</tr>
<tr>
<td>β^c</td>
<td>0.8988 (.0147)</td>
<td>0.8537 (.0186)</td>
<td>0.8053 (.0221)</td>
</tr>
<tr>
<td>$\chi_a(b)$</td>
<td>0.7921 (.1021)</td>
<td>0.7835 (.1324)</td>
<td>0.7846 (.1674)</td>
</tr>
<tr>
<td>$\chi_b(b)$</td>
<td>0.0044 (.0100)</td>
<td>0.0079 (.0124)</td>
<td>0.0114 (.0150)</td>
</tr>
<tr>
<td>J stat (p-value)</td>
<td>111.84 (.4597)</td>
<td>119.61 (.2716)</td>
<td>126.98 (.1425)</td>
</tr>
</tbody>
</table>
Picking the right σ

- Men, 65+ only, χ age dependent
with the right σ (Men, 65+ only)

<table>
<thead>
<tr>
<th>Results, (with $r = 2%$, Consumption (ndc_{s1_v1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>β common \quad β edu specific</td>
</tr>
<tr>
<td>$\sigma=1.405$ \quad $\sigma=1.303$</td>
</tr>
<tr>
<td>β^d \quad 0.9534 \quad – \quad 0.9804 \quad (0.0118)</td>
</tr>
<tr>
<td>β^h \quad 0.9534 \quad (0.0060) \quad 0.9587 \quad (0.0078)</td>
</tr>
<tr>
<td>β^c \quad 0.9534 \quad – \quad 0.9542 \quad (0.0093)</td>
</tr>
<tr>
<td>$\chi_a(g)$ (good) \quad 1. \quad – \quad 1. \quad –</td>
</tr>
<tr>
<td>$\chi_a(b)$ (bad) \quad 0.7864 \quad (0.0685) \quad 0.8002 \quad (0.0646)</td>
</tr>
<tr>
<td>$\chi_b(g)$ (good) \quad 0. \quad – \quad 0. \quad –</td>
</tr>
<tr>
<td>$\chi_b(b)$ (bad) \quad 0.0034 \quad (0.0072) \quad 0.0011 \quad (0.0067)</td>
</tr>
<tr>
<td>J stat (p-value) \quad 107.94 \quad (0.6168) \quad 104.65 \quad (0.6517)</td>
</tr>
</tbody>
</table>
Health modifier across age

- Men, 65+ only

Men (65+): β common

<table>
<thead>
<tr>
<th>Age</th>
<th>Health Modifier (χ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>1.0</td>
</tr>
<tr>
<td>70</td>
<td>1.0</td>
</tr>
<tr>
<td>75</td>
<td>1.0</td>
</tr>
<tr>
<td>80</td>
<td>1.0</td>
</tr>
<tr>
<td>85</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Men (65+): β edu specific

<table>
<thead>
<tr>
<th>Age</th>
<th>Health Modifier (χ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>0.8</td>
</tr>
<tr>
<td>70</td>
<td>0.85</td>
</tr>
<tr>
<td>75</td>
<td>0.9</td>
</tr>
<tr>
<td>80</td>
<td>0.95</td>
</tr>
<tr>
<td>85</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Uncertainty in health expenditure (Extension)

- Consumption growth differences between health types can be different because they face different uncertainty in health expenditures.

- Two different strategies to account for this possibility:
 1. $\varepsilon_i(h)$ is zero and x is stochastic and dependent on e, i, a, h.
 2. $\varepsilon_i(h)$ is stochastic, independent of $e, a \rightarrow$ endogeneous choices make x to be related to a, and e.

- We extend the estimation strategy and distinguish the average consumption growth for individuals $(e, i, a, h; h)$ that differ in ε'.

- We consider two equal probability levels for ε': high and low.

- We identify an individual’s ε' differently depending on the model:
 1. Whether x' is above or below the median conditional on $(e, i, a, h; h')$.
 2. Whether x'/c' is above or below the median conditional on $(e, i, a, h; h')$.

Results – Men, 65+ only, time-varying χ

• **common β**

Results across different σ, (with $r = 2\%$, $\sigma = 1.405$, Consumption (ndc_s1_v1))

<table>
<thead>
<tr>
<th></th>
<th>No exp shock</th>
<th>xp shock</th>
<th>ratio shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.9534 (.0060)</td>
<td>0.9554 (.0060)</td>
<td>0.9558 (.0061)</td>
</tr>
<tr>
<td>$\chi_a(b)$</td>
<td>0.7864 (.0685)</td>
<td>0.8272 (.0699)</td>
<td>0.8426 (.0725)</td>
</tr>
<tr>
<td>$\chi_b(b)$</td>
<td>0.0034 (.0072)</td>
<td>-0.0010 (.0072)</td>
<td>-0.0018 (.0072)</td>
</tr>
<tr>
<td>J stat (p-value)</td>
<td>104.65 (.6517)</td>
<td>110.33 (.5536)</td>
<td>114.74 (.4366)</td>
</tr>
</tbody>
</table>
Consumption Composition

Idea

 - Richer data on consumption items than years 1999+

 \(\text{It aggregates to 70\% of NIPA, better than CEX, Attanasio, Pistaferri (2013)} \)

- We build three consumption series

 - \(c \), non-durable consumption and services
 - \(c_s \), consumption expenditures that substitutes healthy time

 (food home, food delivered, household repairs, bus, taxis, other transport)
 - \(c_c \), consumption expenditures that complement healthy time

 (food out, trips, recreation)

- Explore effects of health at different ages on the budget shares

 - \(c_s/c \)
 - \(c_c/c \)
Consumption Composition

Results

<table>
<thead>
<tr>
<th></th>
<th>c_s/c (%)</th>
<th></th>
<th>c_c/c (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates</td>
<td>S.E.</td>
<td>Estimates</td>
<td>S.E.</td>
</tr>
<tr>
<td>50 ≤ age ≤ 59</td>
<td>31.3</td>
<td>(0.67)</td>
<td>11.6</td>
<td>(0.56)</td>
</tr>
<tr>
<td>60 ≤ age ≤ 69</td>
<td>33.8</td>
<td>(0.81)</td>
<td>12.3</td>
<td>(0.68)</td>
</tr>
<tr>
<td>70 ≤ age ≤ 85</td>
<td>34.7</td>
<td>(0.77)</td>
<td>12.6</td>
<td>(0.65)</td>
</tr>
<tr>
<td>$(50 \leq age \leq 59) \times h_{good}$</td>
<td>-0.10</td>
<td>(0.67)</td>
<td>2.63</td>
<td>(0.56)</td>
</tr>
<tr>
<td>$(60 \leq age \leq 69) \times h_{good}$</td>
<td>-1.58</td>
<td>(0.81)</td>
<td>2.81</td>
<td>(0.68)</td>
</tr>
<tr>
<td>$(70 \leq age \leq 85) \times h_{good}$</td>
<td>-1.99</td>
<td>(0.78)</td>
<td>4.59</td>
<td>(0.65)</td>
</tr>
<tr>
<td>$(50 \leq age \leq 59) \times h_{exc}, h_{vg}$</td>
<td>-1.39</td>
<td>(0.67)</td>
<td>4.56</td>
<td>(0.56)</td>
</tr>
<tr>
<td>$(60 \leq age \leq 69) \times h_{exc}, h_{vg}$</td>
<td>-3.73</td>
<td>(0.89)</td>
<td>5.83</td>
<td>(0.75)</td>
</tr>
<tr>
<td>$(70 \leq age \leq 85) \times h_{exc}, h_{vg}$</td>
<td>-3.60</td>
<td>(0.98)</td>
<td>6.20</td>
<td>(0.82)</td>
</tr>
<tr>
<td>working</td>
<td>-2.11</td>
<td>(0.46)</td>
<td>0.86</td>
<td>(0.39)</td>
</tr>
<tr>
<td>married</td>
<td>-2.26</td>
<td>(0.44)</td>
<td>-1.80</td>
<td>(0.37)</td>
</tr>
<tr>
<td>college</td>
<td>-1.29</td>
<td>(0.39)</td>
<td>5.54</td>
<td>(0.33)</td>
</tr>
<tr>
<td>wealth (milion $)$</td>
<td>-0.06</td>
<td>(0.17)</td>
<td>0.92</td>
<td>(0.15)</td>
</tr>
</tbody>
</table>

Note: Missing category: h_{fair}, h_{poor}; Number obs: 6,103
Consumption Composition

Summary

- Individuals in good health
 - Spend more in goods that complement healthy time
 - Spend less in goods that substitute for healthy time
 - The difference is bigger for older groups
- The difference between good and bad health implies different things at different ages
Conclusion

- We use consumption Euler equations to estimate the effect of health on the marginal utility of consumption

- We find that

 1. At age 65, **better health** gives **higher marginal utility** of consumption
 - You need healthy time to enjoy life

 2. At later ages, the difference narrows down: **lower health** gives **higher marginal utility** of consumption
 - Consumption expenditure substitutes for healthy time

 3. Health differences imply differences in consumption patterns that are different at different ages