Balance Sheet Recessions

Zhen Huo and José-Víctor Ríos-Rull

University of Minnesota, Federal Reserve Bank of Minneapolis, CAERP, CEPR, NBER

Conference on Money, Credit, and Financial Frictions
Can households’ financial distress generate a recession?

In Standard Models it is Difficult

- The economy has a lot of wealth.
- Only the poor would be really affected: They want to work harder.

An expansion.

This project

1. We build a model with goods market frictions, where financial distress leads to a recession.
2. Crucially, the attempt to save reduces productivity due to real frictions.
3. We provide a theory of price dispersion during the onset of the recession.
The logic

- When hit by adverse financial shocks, agents tend to increase saving by cutting consumption expenditures.

- Goods market frictions translate lower consumption expenditures into output loss, despite the decline of prices.

- There is a realignment of consumption patterns: large drops of consumption for the poorest but modest increase of consumption for the richest.

- When we explicitly add housing that can be used as collateral, increased financial frictions greatly amplifies the magnitude of the recession.
The ingredients

- Heterogeneous agents model (How else can there be financial frictions?)
 - There are very rich, rich, poor, very poor, and borrowers; lucky and unlucky: a modern economy’s earnings and wealth distribution.
 - Price dispersion: the rich are not into hassles (they pay higher prices).

- Storage economy: fixed return to savings. In addition to goods (that can be saved) there are services (that cannot be saved).

- Goods (services, really) market frictions a la Bai, Rios-Rull and Storesletten (2011) with a touch of Lagos and Wright (2005)
The contribution

We show that

1. Financial distress can lead to a recession even when agents own a lot of wealth.

2. Goods market frictions are crucial in generating the recession.

3. No nominal rigidities are required.

4. Price dispersion is counter-cyclical.

5. With housing, the effects of financial distress are more pronounced.
The Model
Environment

- Many agents that live forever and have idiosyncratic shocks to endowments. Two goods per period:

 - Numeraire goods
 - Used for consumption and storage.
 - As if traded in a centralized market.

 - Services
 - Used only for consumption.
 - Traded in decentralized markets and subject to search frictions.
Preference

- Agents’ period utility function is $u(c, s, d)$.

- Agents value numeraire goods consumption c and services s.

- To obtain services, agents have to exert search efforts d

 $$s = d\Psi^b(q).$$

 $\Psi^b(q)$: probability of a shopper finding services.
Competitive search in services markets

- Markets are indexed by price p and market tightness $q = \frac{T}{D}$.

- In market (p, q)
 - Active markets, sellers have guaranteed revenue
 $$p\Psi^s(q) \geq \zeta$$

 - equilibrium determined object ζ.

- Buyers face a trade-off between p and $\Psi^b(q)$ when choosing markets:
 - Rich agents go to high p, high q markets.
 - Poor agents go to low p, low q markets.
Endowments

- An agent receives \(y_s \) units of active locations capable of producing services.
 - When a location is found by a buyer, 1 unit of services is produced.
 - When a location is not found by a buyer, nothing is produced.

- An agent receives \(y_c \) units of numeraire goods that can be consumed, sold, or stored/loaned.

\[y = \{ y_c, y_s \} \text{ follows a Markov process } \Pi_{y,y'} \]

- Households’ asset position is \(a \). There is an ad-hoc borrowing limit \(a \).
Agents’ recursive problem

\[V(y, a) = \max_{a', c, s, d, p, q} \ u(c, s, d) + \beta \sum_{y'} \Pi_{y, y'} V(y', a'), \]

subject to

\[p \ s + c + a' \geq (1 + r) \ a + \zeta \ y_s + y_c, \]

\[s = d \ \Psi^b(q), \]

\[\zeta \leq p \ \Psi^s(q), \]

\[a' \geq a. \]

Note that agents choose consumption and savings as well as which market \((p, q)\) to go to.
Macroeconomic Aggregates (what NIPA measures)?

- Aggregate active locations: $T_s = \int y_s dx(y, a)$

- Aggregate numeraire goods endowment: $Y_c = \int y_c dx(y, a)$

- Aggregate savings: $A = \int a \, dx(y, a)$

- Aggregate output (GDP):

 $$Y = rA + Y_c + \int_0^{T_s} p_i \Psi^f(q_i) \, di$$

 $$\approx rA + Y_c + \bar{p} \, M(D, T_s)$$

 Total output is increasing in aggregate search effort D.
Labor and Productivity

- We impute labor to locations and then we can separate output changes due to labor and to productivity.

- Labor
 - To maintain a location, ϵ units of labor is required.
 - When matched with a buyer, additional $1 - \epsilon$ units of labor is required to produce services.
 - Aggregate labor is

\[
N = \epsilon T_s + (1 - \epsilon) \int_0^{T_s} \Psi^f(q_i) \, di
\]

- Productivity

\[
A = \frac{Y}{N}
\]
Analysis

- We build an empirically informed quantitative economy.
- We report its properties in the steady state.
- and its properties in the aftermath of a financial shock.
Functional forms: So consumption and productivity move together

- **Preferences**

\[u(c, s, d) = \frac{1}{1 - \sigma} \left(c_A - \xi_d \frac{d^{1+\gamma}}{1 + \gamma} \right)^{1-\sigma} \]

\[c_A = \left[(1 - \omega)c \frac{n-1}{\eta} + \omega s \frac{n-1}{\eta} \right]^{\frac{n}{\eta-1}} \]

- **Matching**

\[M(D, T) = \frac{DT}{(D^\mu + T^\mu)^{\frac{1}{\mu}}} \]

\[\Psi^d(q) = (1 + q^{-\mu})^{-\frac{1}{\mu}} \]

\[\Psi^f(q) = (1 + q^\mu)^{-\frac{1}{\mu}} \]
Four types of agents: poor, normal, rich and super rich.
Steady state properties

- Rich agents go to expensive markets with short waiting lines.
- Poor agents go to cheap markets with long waiting lines.

![Graph of Price vs. Wealth and Prob of finding services vs. Wealth]
A Shock to the Borrowing Constraint

- The borrowing constraint is tightened unexpectedly but gradually.
- Agents cannot borrow any more in the new steady state.
Transition

- The borrowing constraint changes gradually.

- Otherwise, some agents may have to default on their debts.
The Economy After the Shock

- We now look at the evolution of aggregate variables after the financial shock.

- It requires to solve for the equilibrium values of ζ_t along the transition.
Transition: aggregate

Output

Services

Labor

Productivity
Transition: aggregate

Average price

Price dispersion

Wealth

Numeraire consumption
Transition: cross-section

Goods finding probability

Search efforts

Services

Numeraire consumption
Properties of the Recession

- Total Services decline.

- Aggregate savings increases.

- Realignment of consumption
 - Poor agents reduce both types of consumption and switch to worse markets (with longer lines).
 - But the richest agents increase consumption of services and switch to better markets (with shorter lines).

- Average price of services declines, but price dispersion increases.
Why the Recession is small

- Insufficient people in real trouble (borrowers).
- Those in trouble do not matter much (they are poor).

- A Larger recession requires more people in trouble and the trouble to be larger:

Housing
An Economy with housing
Housing sector

• Decreasing returns to scale in housing construction.

• A reduction in demand for housing cuts construction.

• Reduces the price of existing houses: Capital loses.
Agents’ problem

Utility function

\[V(y, a) = \max_{a', c, s, d, h, p, q, b} u(c, s, d, h) + \beta \sum_{s'} \Pi_{s,s'} V(y', a') , \]

subject to

\[p \ s + c + p^h \ h + b \geq a + \zeta y_s + y_c + \pi, \]

\[s = d \ \Psi^b(q), \]

\[\zeta \leq p \ \Psi^s(q), \]

\[a' = p'_h \ h \ (1 - \delta_h) + (1 + r)b, \]

\[b \geq -\lambda \ p^h \ h. \]
A Shock to the Collateral Constraint

- The collateral constraint is tightened unexpectedly and gradually.

- The size of the shock in the housing economy has to be comparable with the shock to the baseline economy:
 - Same consumption reduction of poorest quintile.
Transition: aggregate

Output

Wealth

Labor

Productivity

Baseline model

Housing model

Baseline model

Housing model
Transition: aggregate

Average price

Price dispersion

Service

Numeraire consumption
Transition: aggregate Cross Section

Housing price

Housing investment
Properties of the Recession

- The magnitude of the recession is much larger.

- Aggregate wealth declines initially: capital loss.

- Larger fraction of agents are affected: more agents are leveraged.
Conclusion

1. In standard models, financial distress generates an expansion.

2. We build a model with goods market frictions, where financial distress can generate a recession.

3. Our model provides a framework to understand price dispersion in business cycles.

4. When housing is added, the magnitude of the recession is much larger.
Numerical example: parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk aversion, σ</td>
<td>2.0</td>
</tr>
<tr>
<td>Return to storage (annual), r</td>
<td>4%</td>
</tr>
<tr>
<td>Elasticity of substitution between tradables and nontradables, η</td>
<td>0.83</td>
</tr>
<tr>
<td>Frisch Elasticity of Substitution of Search Effort $1/\gamma$</td>
<td>0.60</td>
</tr>
<tr>
<td>Fixed labor to keep a location open, ϵ</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Numerical example: parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
<th>Value</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.96</td>
<td>Wealth to output ratio</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>α</td>
<td>0.12</td>
<td>Fraction of negative wealth</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>μ</td>
<td>2.98</td>
<td>Services occupation ratio</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>ξ_d</td>
<td>0.04</td>
<td>St.d of price dispersion</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>ω</td>
<td>0.89</td>
<td>Services to output ratio</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>α</td>
<td>0.20</td>
<td>Numeraire endowments to output</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>$y_{s,4}$</td>
<td>7.385</td>
<td>Wealth held by top 10%</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>$y_{s,1}$</td>
<td>0.155</td>
<td>Total number of locations, T_s</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$\Pi_{1,4}$</td>
<td>0.001</td>
<td>Income Gini index</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>$\Pi_{4,1}$</td>
<td>0.007</td>
<td>Wealth Gini index</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>$\Pi_{1,1}$</td>
<td>0.965</td>
<td>Persistence, ρ_s</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>$\Pi_{2,2}$</td>
<td>0.976</td>
<td>St.d of innovation, σ_s</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Numerical example: parameter

<table>
<thead>
<tr>
<th>Transition matrix</th>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>ϵ_3</th>
<th>ϵ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_1</td>
<td>0.965</td>
<td>0.033</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>ϵ_2</td>
<td>0.018</td>
<td>0.976</td>
<td>0.018</td>
<td>0.001</td>
</tr>
<tr>
<td>ϵ_3</td>
<td>0.000</td>
<td>0.033</td>
<td>0.965</td>
<td>0.001</td>
</tr>
<tr>
<td>ϵ_4</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.979</td>
</tr>
</tbody>
</table>

| Skill Value | 0.155 | 0.388 | 0.872 | 7.385 |
Separable between consumption and housing.

As households become richer, they do not want to hold many houses.

\[
u(c, s, d, h) = \begin{cases}
\frac{1}{1-\sigma} \left(c_A - \xi_d \frac{d^{1+\gamma}}{1+\gamma} \right)^{1-\sigma} + \frac{\xi_h}{1-\sigma_h} h^{1-\sigma_h}, & \text{if } h < \hat{h} \\
\frac{1}{1-\sigma} \left(c_A - \xi_d \frac{d^{1+\gamma}}{1+\gamma} \right)^{1-\sigma} + \frac{\xi_h}{1-\sigma_h^2} (h + \hat{h})^{1-\sigma_h^2}, & \text{if } h \geq \hat{h}
\end{cases}
\]
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk aversion, σ</td>
<td>2.00</td>
</tr>
<tr>
<td>Curvature for Low Level of Housing, σ^1_h</td>
<td>2.00</td>
</tr>
<tr>
<td>Curvature for High Level of Housing, σ^2_h</td>
<td>10.00</td>
</tr>
<tr>
<td>Elasticity of substitution bw tradables and nontradables, η</td>
<td>0.83</td>
</tr>
<tr>
<td>Return to storage, r</td>
<td>4%</td>
</tr>
<tr>
<td>Frisch Elasticity of Substitution of Search Effort $1/\gamma$</td>
<td>0.60</td>
</tr>
<tr>
<td>Fixed labor to keep a location open, ϵ</td>
<td>0.59</td>
</tr>
<tr>
<td>Collateral requirement, λ</td>
<td>0.85</td>
</tr>
<tr>
<td>Elasticity of housing price w.r.t investment, φ</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Housing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
<th>Value</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.96</td>
<td>Wealth to output ratio</td>
<td>4.00</td>
<td>4.20</td>
</tr>
<tr>
<td>ξ_h</td>
<td>0.64</td>
<td>Housing value to output ratio</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>μ</td>
<td>2.98</td>
<td>Average occupation ratio</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>ξ_d</td>
<td>0.04</td>
<td>St.d of price dispersion</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>α</td>
<td>0.18</td>
<td>Numeraire endowments to output</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>ω</td>
<td>0.89</td>
<td>Services to output ratio</td>
<td>0.67</td>
<td>0.70</td>
</tr>
<tr>
<td>\hat{h}</td>
<td>1.85</td>
<td>Housing held by top 10%</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>h</td>
<td>-0.71</td>
<td>u_h is continuous at \hat{h}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ_h</td>
<td>0.006</td>
<td>Investment to output ratio</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>z_h</td>
<td>0.005</td>
<td>Housing stock</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Transition: cross-section