Health and Heterogeneity

Josep Pijoan-Mas1 Jose-Víctor Ríos-Rull2

1CEMFI and CEPR

2University of Minnesota, CAERP, NBER and CEPR

Universitat Pompeu Fabra, December 2007
Outline

1 Introduction
2 Related Work
3 The Model
4 Mapping the model to data
5 Final Comments
Objective of the paper

- There is ample evidence that health and socioeconomic status are related.
- In particular, more educated people have better health and higher life expectancies.
- More educated people also do better things for their health.
Objective of the paper

- There is ample evidence that health and socioeconomic status are related.
- In particular, more educated people have better health and higher life expectancies.
- More educated people also do better things for their health.

- We want to understand the sources of heterogeneity between people that are behind the correlation between health and education.
Objective of the paper

- There is ample evidence that health and socioeconomic status are related.

- In particular, more educated people have better health and higher life expectancies.

- More educated people also do better things for their health.

- We want to understand the sources of heterogeneity between people that are behind the correlation between health and education.

- We will exploit household level data on health outcomes, health investment and consumption growth to find out in which dimensions people are different.
Mortality rates and economics are related

Education for males

Source: National Vital Statistics Report
Mortality rates and economics are related

Education for females

Source: National Vital Statistics Report
Health and economics are related

Education for males ...

Self-rated health is a very good predictor of mortality
(See Idler and Benyamini, 1997 and 1999)

<table>
<thead>
<tr>
<th>Health</th>
<th>share of individuals, by column (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$edu = d$</td>
</tr>
<tr>
<td>excellent</td>
<td>9.8</td>
</tr>
<tr>
<td>very good</td>
<td>20.6</td>
</tr>
<tr>
<td>good</td>
<td>37.0</td>
</tr>
<tr>
<td>fair</td>
<td>20.3</td>
</tr>
<tr>
<td>poor</td>
<td>12.3</td>
</tr>
<tr>
<td>N</td>
<td>316</td>
</tr>
</tbody>
</table>

Note: White males aged 54-59, from HRS. Proportion of individuals by rows.

- Proportion of individuals with good self-rated health status increases with education
Health and economics are related
... assets and income also matter ...

<table>
<thead>
<tr>
<th>Health</th>
<th>Assets</th>
<th>Income</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>med</td>
<td>mean</td>
</tr>
<tr>
<td>excellent</td>
<td>248.7</td>
<td>131.8</td>
<td>43.1</td>
</tr>
<tr>
<td>very good</td>
<td>208.2</td>
<td>99.9</td>
<td>35.8</td>
</tr>
<tr>
<td>good</td>
<td>147.0</td>
<td>79.1</td>
<td>28.5</td>
</tr>
<tr>
<td>fair</td>
<td>120.7</td>
<td>47.1</td>
<td>21.0</td>
</tr>
<tr>
<td>poor</td>
<td>50.6</td>
<td>28.5</td>
<td>15.1</td>
</tr>
</tbody>
</table>

Note: White males aged 54-59, from HRS. Thousands of 1992 dollars.

- Both wealth and income increase with the health status
Health and economics are related

... conditional on education, wealth still matters.

<table>
<thead>
<tr>
<th>Health</th>
<th>Assets in different education categories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$edu = d$</td>
</tr>
<tr>
<td></td>
<td>mean</td>
</tr>
<tr>
<td>exc. or v.g.</td>
<td>91.1</td>
</tr>
<tr>
<td>good</td>
<td>45.2</td>
</tr>
<tr>
<td>fair or poor</td>
<td>39.4</td>
</tr>
<tr>
<td></td>
<td>$edu = h$</td>
</tr>
<tr>
<td></td>
<td>mean</td>
</tr>
<tr>
<td>exc. or v.g.</td>
<td>156.4</td>
</tr>
<tr>
<td>good</td>
<td>125.9</td>
</tr>
<tr>
<td>fair or poor</td>
<td>97.1</td>
</tr>
<tr>
<td></td>
<td>$edu = c$</td>
</tr>
<tr>
<td></td>
<td>mean</td>
</tr>
<tr>
<td>exc. or v.g.</td>
<td>303.8</td>
</tr>
<tr>
<td>good</td>
<td>235.6</td>
</tr>
<tr>
<td>fair or poor</td>
<td>160.6</td>
</tr>
</tbody>
</table>

Note: White males aged 54-59, from HRS. Thousands of 1992 dollars.

- Conditional on education, the average and median wealth are also increasing by health category.

- And the other way around also works: conditional on wealth quartiles, variation in education also implies variation in health.
Health outcomes and education are related

Why?

Various possibilities of why:

1. Better education \Rightarrow more income \Rightarrow you buy better health.

2. Schooling develops different tastes and attitudes.

3. Schooling allows to produce better health.

4. Old age is relatively more enjoyable with more educ/money.

5. There is a (are) third variables(s) that influence both schooling and health choices.
Health outcomes and education are related

Some facts

- **Grossman (1975):** The relationship between health and schooling persists once we control for income and other socio-economic variables.

 Therefore, hypothesis 1, insufficient.

- **Farrell and Fuchs (1982):** A gradient of smoking behavior with years of schooling persists (and is very strong) when smoking is measured at age 17, before the later years of schooling are completed.

 Therefore, hypothesis 2 seems also insufficient.

- **Kenkel (1991):** the relationship between behavior and education persists once we control for knowledge of its effect on health.

 Hence, hypothesis 3 not enough.
Hypotheses 4 and 5 point to the traditional idea of human capital investment:

- Both education and health require some investment: one has to sacrifice current utility in order to accumulate them.
- Any variable affecting the trade-off between current and future utilities should equally affect education and health.
- Their respective investments are complementary ⇒ Any variable affecting investment in one variable triggers investment in the other.
Then, two questions arise

- How much of heterogeneity in health outcomes is due to people own actions?
- Why some people choose to live longer than others?
Health investment and education

Smoking

<table>
<thead>
<tr>
<th></th>
<th>mar m</th>
<th>sing m</th>
<th>mar f</th>
<th>sing f</th>
</tr>
</thead>
<tbody>
<tr>
<td>edu=d</td>
<td>0.32</td>
<td>0.46</td>
<td>0.27</td>
<td>0.32</td>
</tr>
<tr>
<td>edu=h</td>
<td>0.21</td>
<td>0.36</td>
<td>0.18</td>
<td>0.27</td>
</tr>
<tr>
<td>edu=c</td>
<td>0.12</td>
<td>0.22</td>
<td>0.08</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Note: White individuals aged 54-59, from HRS.

As known, more educated people smoke less.

(But also females and married people)
Health investment and education

Cholesterol tests

<table>
<thead>
<tr>
<th></th>
<th>mar m</th>
<th>sing m</th>
<th>mar f</th>
<th>sing f</th>
</tr>
</thead>
<tbody>
<tr>
<td>edu=d</td>
<td>0.58</td>
<td>0.47</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td>edu=h</td>
<td>0.71</td>
<td>0.59</td>
<td>0.73</td>
<td>0.69</td>
</tr>
<tr>
<td>edu=c</td>
<td>0.79</td>
<td>0.68</td>
<td>0.80</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Note: White individuals aged 54-59, from HRS.

More educated people are more likely of having had a cholesterol test in the last two years.

(Also married individuals and females invest more in health)

- The same behavior arises with flu vaccination and breast and prostate cancer tests.
Some related work

Using the NLSY, Belzil and Hansen (1999) claim that differences in β are important to explain observed years of education, wages and unemployment.

In addition, they find that discount rates are correlated with ability (more able are more patient).

Using the NLSY, Munasinghe and Sicherman (2000) show that non-smokers experience higher wage growth.

– Do smokers self-select into professions with lower wage growth?
– Do smokers invest less in human capital during their careers?
Outline

1. Introduction
2. Related Work
3. The Model
4. Mapping the model to data
5. Final Comments
The model

Exogenous variables

First the types (fixed heterogeneity),

- Ability to learn θ
- Ability to earn η
- Patience β
- Taste for health-related behavior z

Let $\tau = \{\eta, \beta, z\}$ denote a subset of types.

- Since we will only focus on first and second moments, we can state

$$[\theta, \eta, \beta, z] \sim N(\mu, \Sigma)$$
The model

Exogenous variables

Next the shocks

- Labor earnings shock ϵ with transition $\Gamma_{\epsilon,\epsilon'}$

- Shock to health ζ that affects (deteriorates) health, it is i.i.d.
The model

Preferences and endogenous states

Individuals live for a maximum of I periods.

Within period utility function, $u^z(c, y)$ (y is health investments).

Health stock h evolves stochastically $h' = \psi_i(\zeta', h, y)$

Health improves survival odds, $\gamma_i(h)$.

The endogenous state variables are:

- Education $e \in E \equiv \{e_1, e_2, \ldots e_{n_e}\}$ (chosen when young)
- Health $h \in H \equiv \{h_l, h_m, h_h\}$ (updated every period)
- Wealth $a \in A \equiv [a, \infty)$ (updated every period)
The model

Optimization problem

- Agent’s problem at \(i > 0 \),

\[
V^\tau,e_i (\epsilon, a, h) = \max_{c, y, a', h'} \left\{ u^z(c, y) + \beta \gamma_i(h) \ E_{\zeta', \epsilon'}|\epsilon \left[V^\tau,e_{i+1}(\epsilon', a', h') \right] \right\}
\]

with \(c + a' = Ra + \mathbb{I}_{ret} g(e, \eta) + (1 - \mathbb{I}_{ret}) w_f(e, i) \eta \epsilon \)

\(h' = \psi_i(\zeta', h, y) \)

- At \(i = 0 \), *youth*, individuals choose their education level \(e \),

\[
\max_{e, y, a'} \left\{ W^\tau,\theta(a, a', e, \epsilon, y) + \beta \gamma_0(h) E_{\zeta', \epsilon'}|\epsilon \left[V^\tau,e_1(\epsilon', a', h') \right] \right\}
\]

with a yet to be determined current return \(W(\cdot) \)
The model

The consumption Euler equation

The consumption Euler equation is standard,

\[u^\ddot{c} (c, y) = R \beta \gamma_i(h) \ E_{\zeta', \epsilon'} [u^\ddot{c} (c', y')] \]

- If consumption and health related behavior are separable then age profiles of \(c \) only differ due to \(\{ h, \epsilon, \beta \} \)

If we only look at retirees (possibly 65 or older to avoid self-selection), we have

\[u_c(c) = R \beta \gamma_i(h) \ E_{\zeta'} [u_c(c')] \]

- If \(h \) is observable, the age-profiles for \(c \) reveal differences in time preferences, \(\beta \).

We need a data set containing at the same time health status and consumption (or wealth and income instead of consumption).
The model

The health Euler equation

The FOC condition:

\[-u_y^z(y) = \beta \gamma_i(h) E_{\zeta', \epsilon'|\epsilon} \left[\psi_{y,i}(\zeta', h, y) V_{h,i+1}^{\tau,e}(\epsilon', a', h') \right]\]

and the envelope condition:

\[V_{h,i}^{\tau,e}(\epsilon, a, h) = u_y^z(y) \frac{\psi_{h,i}(\zeta', h, y)}{\psi_{y,i}(\zeta', h, y)} + \beta \gamma_{h,i}(h) E_{\zeta', \epsilon'|\epsilon} \left[V_{i+1}^{\tau,e}(\epsilon', a', h') \right]\]

▶ With information on $\psi_i(\zeta', h, y)$ and $\gamma_i(h)$...

... differences in observed y within individuals with same assets a, education e, earnings categories ϵ and η and patience β will be accounted for differences in z.
Finally, we have the optimality condition at *youth* that sorts out people in different educational categories.

This will give us information on the ability to learn or utility cost of education θ.

Note that all the fixed heterogeneity elements, z, β, η and θ may generate $corr(e, h) > 0$.

- By using the model, we want to infer the relative importance of each source of fixed heterogeneity and their (possible) correlations.
Outline

1. Introduction
2. Related Work
3. The Model
4. Mapping the model to data
5. Final Comments
Mapping the model to data

Health functions

► We need to know (possibly only one of them age dependent)

1. the relationship between health and behavior, $\psi_i (\zeta', h, y)$
2. the survival probabilities at different health levels $\gamma_i (h)$

► HRS reports several measures of health stock

• self-rated health, diagnosed conditions

and various measures of health behavior

• smoking, exercise habits, cholesterol tests, cancer tests, ...

plus we see people die

• Additionally, HRS reports self-assessed probabilities of survival to age 75 and 85.
 Hurd and McGarry (1993, 1995) show they correlate very well with risk factors
 and that they actually predict mortality
Introducing heterogeneity in types

We need to back out:

- Population average for each parameter
- Amount of dispersion over each parameter
- Possible correlations between parameters

\[
\begin{bmatrix}
\theta \\
\eta \\
\beta \\
z
\end{bmatrix}
\sim N
\begin{bmatrix}
\mu_\theta \\
\mu_\eta \\
\mu_\beta \\
\mu_z
\end{bmatrix},
\begin{pmatrix}
\sigma_\theta^2 & \sigma_{\theta\eta} & \sigma_{\theta\beta} & \sigma_{\theta z} \\
\sigma_{\theta\eta} & \sigma_\eta^2 & \sigma_{\eta\beta} & \sigma_{\eta z} \\
\sigma_{\theta\beta} & \sigma_{\eta\beta} & \sigma_\beta^2 & \sigma_{\beta z} \\
\sigma_{\theta z} & \sigma_{\eta z} & \sigma_{\beta z} & \sigma_z^2
\end{pmatrix}
\]

We will introduce heterogeneity in each dimension step by step
Introducing heterogeneity in types sequentially

Ability to learn, θ

- We can match σ_{θ}^2 by targeting the *share of highly educated* individuals.

Then, check whether the model of investment in human capital delivers:

- $\text{corr}(h, e)$ and $\text{corr}(y, e)$

This answers the question:

Does education cause the correlation between education and health?
Introducing heterogeneity in types sequentially

Discount factors, β

Let’s define,

$$x_i \equiv \log \left(\frac{c_{i+1}}{c_i} \right) \quad \Rightarrow \quad x_i = \frac{1}{\sigma} \log R + \frac{1}{\sigma} \log \beta + \frac{1}{\sigma} \log \gamma_i(h)$$

We can match σ^2_{β} by targeting $\text{Var}_h \left[E \left[x_i \mid h \right] \right]$, where

$$\text{Var}_h \left[E \left[x_i \mid h \right] \right] = \sigma^{-2} \text{Var}_h \left[E \left[\log \beta \mid h \right] \right] + \sigma^{-2} \text{Var}_h \left[\log \gamma_i(h) \right] + \sigma^{-2} \text{Cov}_h \left[E \left[\log \beta \mid h \right], \log \gamma_i(h) \right]$$

- If $\sigma^2_{\beta} = 0$ or if there is no self-selection of higher β into better health, the 1st and 3rd terms are zero
Introducing heterogeneity in types sequentially

Discount factors, β

- We can match $\sigma_{\theta \beta}$ by looking at $\text{Var}_{e} \left[E \left[x_i \mid \bar{h}, e \right] \right]$, where

$$\text{Var}_{e} \left[E \left[x_i \mid \bar{h}, e \right] \right] = \sigma^{-2} \text{Var}_{e} \left[E \left[\log \beta \mid \bar{h}, e \right] \right]$$

- In absence of self-selection of higher β into better education, this is zero
- Positive variance will come through
 1. individuals with higher β choosing more education and
 2. $\sigma_{\theta \beta} > 0$
Introducing heterogeneity in types sequentially

*Taste for bad life, z

- We need to identify σ_z^2 plus the correlations $\sigma_{\theta z}$ and $\sigma_{\beta z}$
- We need three types of statistics
Additional information

Exploit the panel

- Shocks ζ to health status should trigger responses in savings
- Shocks ϵ to income should trigger responses in health investment
- Heterogeneity in responses according to types?
Mortality rates after 55 for married individuals are about one half of those for the rest of population (2001 data, from National Vital Statistics Report).

Self-rated health is also very related to marital status.

Health-related behavior also varies substantially according to marital status.

In HRS we have data on spouses (when present).

Model marital decisions and exploit these data?
Final comments

- If we succeed in the quantitative exercise, we can tell which sources of heterogeneity are more relevant for the observed correlation between health and education.

- This can inform policy actions.

- If you want the poor to live more,
 - Spend in free health care?
 - Subsidize education? (role of θ)
 - Subsidize preventive behavior? (role of η)
 - Teach people to think ahead? (role of β)

- What if you want smart kids in poor families to study?
 - Subsidize education? (role of θ)
 - Subsidize health care? (role of η)
 - Teach people to think ahead? (role of β)
Mortality rates and demographics are related

Marital status for males

![Male Mortality Rate by Marital Status: U.S. 2002 graph](image)

Source: National Vital Statistics Report
Mortality rates and demographics are related

Marital status for females

![Female Mortality Rate by Marital Status: U.S. 2002](image)

Source: National Vital Statistics Report