Number 
Due 
Problems 
1 
Sep 8th 
1.1.2, 1.1.3, 1.1.5, 1.2.1, 1.2.3 

2 
Sep 15th 
1.2.4, 1.2.5, 1.2.9, 1.2.15, 1.4.1 

3 
Sep 22th 
1.2.6, 1.5.1, 1.5.2, 1.5.3, 1.5.5, 1.5.8, 1.5.10, 1.5.11


4 
Sep 29th 
1.7.4, 1.7.12, Give deductions (in our formal system) of
 (A→B)→(¬B→¬A)
 (¬B→¬A)→(A→B)
 ((P→Q)→P)→P


5 
Oct 13 
2.1.3, 2.1.4, 2.1.5, 2.1.10 

6 
Oct 27 
2.2.3, 2.2.9, 2.2.11, 2.2.18, 2.2.19 

7 
Nov 3 
 Give a deduction of ∀x ∀y Pxy→∀y ∀x Pxy
 Give a deduction of ∀x(Px→Qx)→(∃x Px→∃xQx)
 Give a deduction of ∃x(Px→∀y Py)
 Show that in a modified system of deductions where there is no requirement that y not be free in the other formulas in the forall introduction or exists elimination rules, that it is possible to deduce ∀x∃yPxy→∃y∀x Pxy.


8 
Nov 10 
2.5.3, 2.5.8 

9 
Nov 17 
2.5.4, 2.5.6, 2.6.1, 2.6.2 

10 
Dec 7 
3.3.3, 3.3.8, 3.3.11, 3.5.5 (note that the theory is decidable here, not just the axioms) 
