Penn Arts & Sciences Logo

Alteration features in natural zirconolite from carbonatites

Williams C.T., Bulakh A.G., Gieré R., Lumpkin G.R., Mariano A.N.
2 001
Materials Research Society, Symposium Proceedings
In nature, zirconolite occurs as an accessory mineral in many different rock types, but the majority of reported occurrences are from carbonatites (magmatic carbonates) of geological age varying from a few million years to 2 billion years old. Within these 19 carbonatite occurrences, of which 15 have been studied in some detail, zirconolite displays varying degrees of alteration in six samples. This alteration ranges from incipient minor effects to major corrosion, recrystallization and complete replacement by secondary phases. The degree of alteration broadly correlates with either the age, or actinide content of the zirconolite (or both), and thus the extent and degree of metamictization. Changes in zirconolite composition with alteration include an increase in hydration (H2O), Si, Ba and Pb (possibly radiogenic in origin), and a decrease primarily in Ca and Fe. Th can be remobilized, and of the rare earth elements (REE), there is evidence that the heavy-REE are mobilized more readily than the light-REE. Using backscattered electron images and electron microprobe analyses, this study documents and illustrates the range of alteration features observed in zirconolite from several carbonatites, in terms of both compositional and textural changes, and provides some physico-chemical information on the fluids responsible for the alteration.
EES Authors: 
Reto Gieré

Department of Earth and Environmental Science / University of Pennsylvania, 251 Hayden Hall, 240 South 33rd Street, Philadelphia, PA 19104-6316