Publications

  1. Y. Mo and J. Tao, Accurate lattice constants from a semilocal density functional. Submitted.

  2. J. Tao, H. Tang, A. Patra, P. Bhattarai, and J.P. Perdew, Modeling the physisorption of graphene on metals. Phys. Rev. B 97, 165403 (2018). PDF
  3. J. Tao, J.P. Perdew, H. Tang, and C.B. Shahi, Origin of the size-dependence of the long-range van der Waals interaction. J. Chem. Phys. 148, 074110 (2018). PDF
  4. J. Tao, Y. Jiao, Y. Mo, Z.-H. Yang, J.-X. Zhu, P. Hyldgaard, and J.P. Perdew, Binding-energy scaling law for nanostructured materials. Phys. Rev. B 97, 155143 (2018). PDF
  5. J. Tao, Y. Mo, L.-H. Ye, Y. Duan, Exchange-correlation energies of atoms from semilocal density functionals: Influence of the electron density. J. Phys. B: Atomic, Molecular and Optical Physics 50, 245004 (2017). PDF
  6. J. Tao, G. Vignale, and J.-X. Zhu, Geometric derivation of the stress tensor of the homogeneous electron gas. Computation 5, 28 (2017). PDF
  7. G. Tian, Y. Mo, and J. Tao, Accurate excitation energies of molecules and oligomers from a semilocal density functional. J. Chem. Phys. 146, 234102 (2017). PDF
  8. J. Tao and J.P. Perdew, Atomic and ionic van der Waals radii from static multipole polarizabilities. To be submitted.

  9. Y. Mo, G. Tian, and J. Tao, Comparative study of semilocal density functionals on solids and surfaces. Chem. Phys. Lett. 682, 36 (2017). PDF
  10. Y. Mo, G. Tian, and J. Tao, Performance of a nonempirical exchange functional from the density matrix expansion: comparative study with different correlation. Phys. Chem. Chem. Phys. 19, 21707 (2017). PDF
  11. G. Tian, Y. Mo, and J. Tao, Performance of a nonempirical semilocal density-functional on noncovalent interactions (unpublished).

  12. G. Tian, Y. Mo, and J. Tao, Energetic Study of Clusters and Reaction Barrier Heights from Efficient Semilocal Density Functionals. Computation 5, 27 (2017). PDF
  13. J. Tao, I.W. Bulik, and G.E. Scuseria, Semilocal exchange hole in the gauge of the conventional exact exchange with an application to range-separated density functionals. Phys. Rev. B. 95, 125115 (2017). PDF
  14. F. Zheng, J. Tao, and A.M. Rappe, Frequency-dependent dielectric function of semiconductors with application to physisorption. Phys. Rev. B. 95, 035203 (2017). PDF
  15. J. Tao, F. Zheng, J. Gebhardt, J.P. Perdew, and A.M. Rappe, Screened van der Waals correction to density functional theory for condensed matter physics. Phys. Rev. Material 1, 020802(R) (2017). PDF
  16. Y. Mo, R. Car, V.N. Staroverov, G.E. Scuseria, and J. Tao, Assessment of a nonempirical semilocal density functional on solids and surfaces. Phys. Rev. B. 95, 035118 (2017). PDF
  17. Y. Mo, G. Tian, R. Car, V.N. Staroverov, G.E. Scuseria, and J. Tao, Performance of a nonempirical density functional on molecules and hydrogen-bonded complexes. J. Chem. Phys. 145, 234306 (2016). PDF
  18. J. Tao, Y. Mo, G. Tian, and A. Ruzsinszky, Accurate van der Waals coefficients between fullerenes and fullerene-alkali atoms and clusters: Modified single-frequency approximation. Phys. Rev. B 94, 085126 (2016). PDF
  19. J. Tao and Y. Mo, Accurate semilocal density functional for condensed matter physics and quantum chemistry. Phys. Rev. Lett. 117, 073001 (2016). PDF
  20. J. Tao and A.M. Rappe, Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability. J. Chem. Phys. Communication 144, 031102 (2016). PDF
  21. J. Tao, G. Vignale, and I.V. Tokatly, Erratum: Quantum Stress Focusing in Descriptive Chemistry. Phys. Rev. Lett. 100, 209901 (2015). PDF
  22. J. Tao, S. Liu, F. Zheng, and A.M. Rappe, Quantum pressure and chemical bonding: Influence of magnetic fields on electron localization. Phys. Rev. B 92, 060401(R) (2015). PDF
  23. J. Tao, J. Yang, and A.M. Rappe, Dynamical Screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes. J. Chem. Phys. 142, 164302 (2015). PDF
  24. J. Tao, Y. Fang, P. Hao, G.E. Scuseria, A. Ruzsinszky, and J.P. Perdew, Van der Waals coefficients beyond the classical shell model. J. Chem. Phys. 142, 024312 (2015). PDF
  25. S. Liu, S. Srinivasan, J. Tao, M.C. Grady, M.Soroush, and A.M. Rappe, Modeling spin-forbidden monomer self-initiation reactions in spontaneous free-radical polymerization of acrylates and methacrylates. J. Phys. Chem. A 118, 9310 (2014). PDF
  26. J. Tao and J.P. Perdew, Non-additivity of van der Waals interactions between nanostructures. J. Chem. Phys. Communication 141, 141101 (2014). PDF
  27. J. Tao and A.M. Rappe, Physical adsorption: Theory of van der Waals interactions between particles and clean surfaces. Phys. Rev. Lett. 112, 106101 (2014). PDF
  28. J. Tao, J.P. Perdew, and A. Ruzsinszky, Long-range van der Waals interaction. Int. J. Mod. Phys. B 27, 1330011 (2013). PDF
  29. Y. Fang, B. Xiao, J. Tao, J. Sun, and J.P. Perdew, Ice phases under ambient and high pressure: Insights for density functional theory. Phys. Rev. B 87, 214101 (2013). PDF
  30. P. Hao, J. Sun, B. Xiao, A. Ruzsinszky, G.I. Csonka, J. Tao, S. Glindmeyer, and J.P. Perdew, Performance of meta-GGA functionals on general main group thermochemistry, kinetics, and noncovalent interactions, J. Chem. Theory Comput. 9, 355 (2012). PDF
  31. A. Ruzsinszky, J.P. Perdew, J. Tao, G.I. Csonka, and J.M. Pitarke, van der Waals coefficients for nanostructures: Fullerenes defy conventional wisdom. Phys. Rev. Lett. 109, 233203 (2012). PDF
  32. J.P. Perdew, J. Tao, P. Hao, A. Ruzsinszky, G.I. Csonka, and J.M. Pitarke, Spherical-shell model for the van der Waals coefficients between fullerenes and/or nearly-spherical nano-clusters. J. Phys: Condens. Matter 24, 424207 (2012). PDF
  33. J. Tao, R.P. Prasankumar, E.B. Chia, A.J. Taylor, and J.-X. Zhu, Theory of ultrafast quasiparticle dynamics in high-temperature superconductors: Pump fluence dependence. Phys. Rev. B 85, 144302 (2012). PDF
  34. J. Tao, J.P. Perdew, and A. Ruzsinszky, Accurate multipole dynamic polarizabilities and van der Waals coefficients. PNAS 109, 18 (2012). PDF
  35. J. Tao and J.-X. Zhu, Theory of the time-resolved spectral function of high-temperature superconductors. J. Phys.: Conference Series 273, 012106 (2011). PDF
  36. J. Tao, S. Tretiak, and J.-X. Zhu, Prediction of excitation energies for conjugated polymers using time-dependent density functional theory. Materials 3, 3430 (2010). PDF
  37. J. Tao and J. X. Zhu, Theory of the time-resolved spectral function of high-temperature superconductors with bosonic modes. Phys. Rev. B 81, 224506 (2010). PDF
  38. J. Tao, J.P. Perdew, and A. Ruzsinszky, Long-range van der Waals attraction and alkali-metal lattice constants. Phys. Rev. B 81, 233102 (2010). PDF
  39. X. Gao, J. Tao, G. Vignale, and I. V. Tokatly, Continuum mechanics for quantum many-body systems: Linear response regime. Phys. Rev. B 81, 195106 (2010). PDF
  40. J.P. Perdew and J. Tao, When does static correlation scale to the high-density limit as exchange does?. J. Mol. Struct. (Theochem) 943, 19 (2010). PDF
  41. J. Tao, S. Tretiak, and J.-X. Zhu, Prediction of excitation energies for conjugated polymers using time-dependent density functional theory. Phys. Rev. B 80, 235110 (2009). PDF
  42. J. Tao, X. Gao, G. Vignale, and I. V. Tokatly, Linear continuum mechanics for quantum many-body systems, Phys. Rev. Lett. 103, 086401 (2009). PDF
  43. J. Tao and S. Tretiak, Absorption spectra of new blue-light emitting oligoquinolines bearing pyrenyl and triphenyl endgroups from time-dependent density functional theory, J. Chem. Theory Comput. 5, 866 (2009). PDF
  44. V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, Erratum: Tests of a ladder of density functionals for bulk solids and surfaces. Phys. Rev. B 78, 239907 (2008). PDF
  45. J.P. Perdew, V.N. Staroverov, J. Tao, and G.E. Scuseria, Density functional with full exact exchange: balanced nonlocality of correlation, and constraint satisfaction. Phys. Rev. A 78, 052513 (2008). PDF
  46. J. Tao, S. Tretiak, and J.-X. Zhu, Absorption spectra of blue-light emitting oligoquinolines from time-dependent density functional theory. J. Phys. Chem. B 112, 13701 (2008). PDF
  47. J. Tao, J.P. Perdew, L.M. Almeida, C. Fiolhais, and S. Kummel, Non-empirical density functionals investigated for jellium: Spin-polarized surfaces, spherical clusters, and bulk linear response, Phys. Rev. B 77, 245107 (2008). PDF
  48. J. Tao, G. Vignale, and I.V. Tokatly, Quantum stress focusing in descriptive chemistry. Phys. Rev. Lett. 100, 206405 (2008). PDF
  49. J. Tao, S. Tretiak, and J.-X. Zhu, Performance of a nonempirical meta–generalized gradient approximation density functional for excitation energies. J. Chem. Phys. 128, 084110 (2008). PDF
  50. J. Tao, J.P. Perdew, V.N. Staroverov, and G.E. Scuseria, Exact-exchange energy density in the gauge of a semilocal density functional approximation. Phys. Rev. A 77, 012509 (2008). PDF
  51. J. Tao, G. Vignale, and I.V. Tokatly, Time-dependent density functional theory: Derivation of gradient-corrected dynamical exchange-correlational potentials. Phys. Rev. B 76, 195126 (2007). PDF
  52. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, V.N. Staroverov, and J. Tao, Exact-exchange functional theory for open systems of fluctuating electron number. Phys. Rev. A 76, 040501(R) (2007). PDF
  53. J.P. Perdew, J. Tao, and S. Kummel, Uniform density limit of exchange-correlation energy functionals in Recent Advances in Electron Correlation Methodology, edited by A.K. Wilson and K.A. Peterson (ACS Books, 2007, ACS Symposium Series 958, distributed by Oxford University Press).
  54. PDF

  55. J.P. Perdew, A. Ruzsinszky, J. Tao, G.I. Csonka, and G.E. Scuseria, One-parameter optimization of a non-empirical meta-generalized gradient approximation for the exchange-correlation energy. Phys. Rev. A 76, 042506 (2007). PDF
  56. J. Tao, J.P. Perdew, A. Ruzsinszky, G.E. Scuseria, G.I. Csonka, and V.N. Staroverov, Meta-generalized gradient approximation: Construction and performance of a non-empirical density functional. Phil. Mag. 87, 1071 (2007). PDF
  57. J. Tao and G. Vignale, Analytic expression for the diamagnetic susceptibility of a uniform electron gas. Phys. Rev. B 74, 193108 (2006). PDF
  58. J. Tao and G. Vignale, Time-dependent density functional theory beyond the local density approximation. Phys. Rev. Lett. 97, 036403 (2006). PDF
  59. L.A. Constantin, J.P. Perdew, and J. Tao, Meta-generalized gradient approximation for the exchange-correlation hole with an application to the jellium surface energy. Phys. Rev. B 73, 205104 (2006). PDF
  60. J. Tao and J.P. Perdew, Non-empirical construction of current-density functionals from conventional density functional approximations. Phys. Rev. Lett. 95, 196403 (2005). PDF
  61. J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, and G.I. Csonka, Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. J. Chem. Phys. 123, 062201 (2005). PDF
  62. J. Tao, Explicit inclusion of paramagnetic current density in the exchange-correlation functionals of current-density functional theory. Phys. Rev. B 71, 205107 (2005). PDF
  63. J. Tao and J.P. Perdew, Test of a non-empirical density functional: Short-range part of the van der Waals interaction in rare-gas dimers. J. Chem. Phys. 122, 114102 (2005). PDF
  64. G.I. Csonka, A. Ruzsinszky, J. Tao, and J.P. Perdew, Energies of organic molecules and atoms in density functional theory. Int. J. Quantum. Chem. 101, 506 (2005). PDF
  65. V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, Erratum: Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 121, 11507 (2004). PDF
  66. V.N. Staroverov, G.E. Scuseria, J.P. Perdew, J. Tao, and E.R. Davidson, Energies of isoelectronic atomic ions from a successful meta-generalized gradient approximation and other density functionals. Phys. Rev. A 70, 012502 (2004). PDF
  67. J.P. Perdew, J. Tao, V.N. Staroverov, and G.E. Scuseria, Meta-generalized gradient approximation: Explanation of a realistic non-empirical density functional. J. Chem. Phys. 120, 6898 (2004). PDF
  68. V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, Tests of a ladder of density functional approximations for bulk solids and surfaces, Phys. Rev. B 69, 075102 (2004). PDF
  69. V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, Comparative assessment of a new non-empirical meta-GGA density functional: Molecules and hydrogen-bonded complexes, J. Chem. Phys. 119, 12129 (2003). PDF
  70. J.P. Perdew, J. Tao, and R. Armiento, How to tell an atom from an electron gas: A semi-local index of density inhomogeneity. Acta Univ. Debreceniensis de Ludovico Kossuth Nominatae Series Physica et Chimica 36, 25 (2003). PDF
  71. J. Tao, J.P. Perdew, V.N. Staroverov, and G.E. Scuseria, Climbing the density functional ladder: Non-empirical meta-generalized gradient approximation designed for molecules and solids, Phys. Rev. Lett. 91, 146401 (2003). PDF
  72. J. Tao, M. Springborg, and J.P. Perdew, Properties of the exchange hole under an appropriate coordinate transformation. J. Chem. Phys. 119, 6457 (2003). PDF
  73. J. Tao and J. P. Perdew, Correlation energy densities: E pluribus unum in Reviews in Modern Quantum Chemistry: A Celebration of the Contributions of R.G. Parr, Pages 719-730, ed. by K.D. Sen (World Scientific, Singapore, 2002). PDF
  74. G. Tian, G. Li, and J. Tao, Study of relations between position and momentum expectation values for molecules, Physica Scripta 66, 449 (2002). PDF
  75. J. Tao, An accurate MGGA-based hybrid exchange-correlation functional. J. Chem. Phys. 116, 2335 (2002). PDF
  76. J. Tao, Exchange energy density of an atom as a functional of the electron density. J. Chem. Phys. 115, 3519 (2001). PDF
  77. J. Tao, P. Gori-Giorgi, J. P. Perdew, and R. McWeeny, Uniform electron gas from the Colle-Salvetti functional: Missing long-range correlations. Phys. Rev. A 63, 032513 (2001). PDF
  78. K. Schmidt, S. Kurth, J. Tao, and J. P. Perdew, Comment on ``Correlation holes in a spin-polarized dense electron gas''. Phys. Rev. B 62, 2227 (2000). PDF
  79. P. Ziesche, J. Tao, M. Seidl, and J. P. Perdew, How correlation suppresses density fluctuations in the uniform electron gas of one, two, or three dimensions. Int. J. Quantum. Chem. 77, 819 (2000). PDF
  80. J. Tao and G. Li, Approximate bounds to the average electron density for atomic systems. Physica Scripta 58, 193 (1998). PDF
  81. J. Tao, G. Li, and J. Li, Relationships between radial and momentum expectation values of atoms within the Hartree-Fock approximation. J. Phys. B: At. Mol. Opt. Phys. 31, 1897 (1998). PDF
  82. J. Tao and G. Li, Upper bounds for the zeroth-order exchange-energy functional. J. Phys. B: At. Mol. Opt. Phys. 31, 1865 (1998). PDF
  83. J. Tao, G. Li, and J. Li, Bounds to information entropies for atomic systems. J. Chem. Phys. 107, 1227 (1997). PDF
  84. J. Tao and G. Li, Relationships between the zeroth-order kinetic and exchange-energy functionals and the average electron density. Physica Scripta 56, 430 (1997). PDF
  85. J. Tao, G. Li, and J. Li, Rigorous bounds to information entropies for atomic systems. Physica Scripta 56, 284 (1997). PDF
  86. J. Tao and G. Li, Bounds for the zeroth-order exchange-energy functional for atomic systems. J. Chem. Phys. 105, 10493 (1996). PDF
  87. J. Tao and J. Li, Lower bounds to the second-order gradient corrections in the gradient expansions of the kinetic- and exchange-energy functionals for atoms. Phys. Rev. A 54, 3859 (1996). PDF
  88. J. Tao, G. Li, and J. Li, A simple relationship between the second-order gradient correction to the exchange-energy functional and the average electron density for atomic systems. J. Chem. Phys. 105, 6995 (1996). PDF
  89. J. Tao and J. Li, Rigorous lower bounds to the second-order gradient corrections in the gradient expansion of the kinetic and and exchange-energy functionals. Physica Scripta 54, 337 (1996). PDF
  90. J. Tao and J. Li, A simple upper bound to electron momentum density. Physica Scripta 54, 335 (1996). PDF